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The mean-free-path dependence of collective excitations in strong-coupling superconducting alloys is
investigated by extension of the Fermi-liquid theory, which was developed by Larkin and Migdal for pure
strong-coupling superconductors. Numerical results, which are presented, shower that the dependence of the
energy of transverse collective excitations on mean free path is large enough to suggest that the precursor in
the infrared absorption spectrum of lead alloys is not due to collective excitations.

I. INTRODUCTION

HE onset of absorption of infrared radiation in
superconducting lead and mercury at low tem-

peratures belovr the energy which is required to break
a pair (precursor)'~ has been the subject of several
theoretical investigations. Absorption due to collective
excitations was always considered as a possible explana-
tion for the appearance of the precursor.

It has been known for some time that a weak-

coupling theory of collective excitations disagrees vrith
the infrared experiments in two respects: The intensity
of absorption in the precursor region turns out an order
of magnitude smaller than measured (see Ref. 4); and
the onset of absorption is predicted to be a sensitive
function of mean free path (see Ref. 5), again in dis-
agreement with experiments. Since the precursor was,
until now, found only in strong-coupling materials it is
of interest to investigate whether or not a strong-
coupling theory of collective excitations possesses the
same shortcomings as the vreak-coupling theory. In a
recent investigation Larkin' vras indeed able to derive
absorption intensities, using a strong-coupling theory,
which are in partial agreement vrith experiments. The
aim of this communication is to investigate the in-
Quence of a 6nite mean free path on transverse collec-
tive excitations in a strong-coupHng theory. This will
be done by extending the theory of Larkin and Migdalv
to the case of strong-coupling superconducting alloys.

The characteristic feature of Larkin and Migdal's
approach to strong-coupling superconductors is that of
a Fermi-liquid theory of Landau's type, s and therefore
diBers from the approach in Ref. 9 vrhich starts from
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6rst principles. In a Fermi-liquid theory a number of
experimentally determined functions of the direction in
momentum space are introduced. They make it un-
necessary to know the single-particle Green's function
except near the Fermi surface, where it has a simple
form. While for a normal metal it is sufhcient to intro-
duce one unknown function in order to characterize the
two-particle excitation spectrum, Larkin and Migdal
have shown that we need tvro functions, which vre call
I', F~, in order to do the same for a superconductor.
Furthermore, Larkin's work shovrs that the onset of
absorption of infrared radiation due to a collective state
of quantum number l determines a certain combination
of the fp, f~', which are the expansion coefficients of
I", F~ in terms of spherical harmonics. While there is,
in the weak-coupling case, an additional relation
between fp, f~', which 6xes fp, f~' as soon as the onset
of absorption is 6tted, such an additional relation does
not exist in the strong-coupling case, and one is there-
fore left with one more degree of freedom. The mean-
free-path dependence of the onset of absorption, vrhich
follovrs uniquely in the weak-coupling case, will in the
strong-coupling theory depend on the specihc choice of
fp Neverthele. ss, one can show that for any physical
choice of fp the mean-free-path dependence will be
strong enough to suggest that the precursor in lead
alloys is not due to collective excitations.

In the next section vre @rill vrrite down a formalism
vrhich applies to strong-coupling superconducting
alloys, and in the last section the change of collective
excitation energy with impurity concentration will be
calculated and discussed.

II. STRONG COUPLING SUPERCONDUCTING
ALLOYS

Owjng to the vrork by Migdal" and Kljashberg jt is
well known how one has to formulate the theory of
superconductivity if the electron-phonon interaction is
not weak. This work was later extended by Tsuneto"
to include impurity scattering. In this section we will
state some of the results of these authors. Hovrever, we
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Fro. 1. Graphical representation of the equations for the vertex,
phonon, and electron Green's function in the presence of impuri-
ties. Solid and wavy lines represent electrons and phonons, re-
spectively. A double line represents the "dressed" particle. The
dashed line connects two scattering events (crosses) taking place
at the same impurity site.

shall rewrite the results in a form which will be more
convenient in view of the following considerations.

First, we consider a normal metal in the presence of
impurities. The vertex I' (see Fig. 1) is equal to I'o= 1
up to terms of the order (ohio/M)"' due to phonon correc-
tions and of order (osksr) ' due to impurity scattering. "
Here m and M denote the electron and ion mass, re-
spectively, and r is the mean free time of an electron
between collisions with the impurities. The phonon
Green's function can be calculated with the help of
Fig. 1. It is unaffected by impurity scattering as long as
~,up)&1, where q is the phonos momentum. "Finally,
the equation for the electron Green's function is de-
picted in Fig. 1. One can show that impurity scattering
leads only to an additional term isgoo/2r in the de-
nominator of the Green's function as compared with
the pure case.

Using these simplidcations we want to calculate the
Green's function in a superconductor using Nambu's
formalism. "

Ke start with the zero-order Green's function

Go '(p) =po» (o, ib—sgo,)», — (1)

where v 0, v j, . ~ .r3 denote the unit matrix and the three
Pauli matrices, respectively, and e„is the single-particle
energy in the normal state calculated from the Fermi
surface. The equation for the full Green's function
G(p) reads (again, see Fig. 1)

Go '(p) =Go '(p)+& (p)+& (p) (2)

where &oh(p) and Z; (p) are the self-energy due to
phonons and that due to impurities, respectively. %'e
write Zo~(p) in the form

~.h(p) = D—Z(p))poro+ LZ(p) 4—"j»+~(p)ri (3)

The self-energy Z; (p) is given by

do pt

p; (p) =so; v(y', P)roG(p')roo(y, y')
(2or)o

=g; 'ro+P; '~4.

Here oo, is the impurity concentration and o(y, p') is
the impurity scattering potential. For simplicity we will

"Y.Nambu, Phys. Rev. 117, 648 (1960).

g= 1+i/2rZ(po' Do'—)'~' (6)

Here we have defined r as usual by (2r) ' = oo,~
~
o

~

'X (0),
where E(0)= ooo*ks/2x' and sao is the eRective mass of
the electron. 6& is dedned by 6=DQ. The quantity p
resembles very much the corresponding quantity in the
weak-coupling limit except for the appearance of the
renormalization constant Z. Near the Fermi surface the
Green's function has the simple form

1 (gporo+o, ro+gAo»)
G(p) =-

Z (~po)' ,'-(-.~o)'

where oo=ps/ohio(~y~ ps). Theref—ore it seems ap-
pealing to apply Landau's concept of the Fermi liquid'
which requires only the knowledge of the Green's func-
tion near the Fermi surface.

III. COLLECTIVE EXCITATIONS

The collective excitations can be viewed as exciton-
like bound states between particle-particle and particle-
hole. The eigenfunctions and eigenvalues of the excites
can be found by solving an equation which corresponds
to the diagram drawn in Fig. 2. In Xambu's notation"
we obtain

dk
y(p, q) =i ooV(p k)G(k—+)g(k,q)G(k )ro . (g)

(2or)4

V(p-it) stands for the potential which scatters two par-
ticles; and in diagram language corresponds to the sum
of a phonon line and an impurity line, i.e., a line con-
necting two scattering events at the same impurity
atom. The Coulomb interaction has been taken into
account only insofar as it enters into the derivation of
Frohlich s Hamiltonian describing the electron-phonon
interaction. Transverse collective excitations do not
couple to the Coulomb 6eld and therefore the intro-
duction of the screened Coulomb interaction between
electrons would complicate the calculations unneces-

I'zo. 2. Graphical representation of the exciton-like collective
state g. V represents the electron-electron interaction which in
our model consists of the phonon interaction and the impurity
scattering.

assume S-wave scattering only. It is convenient to
introduce two new quantities po and 3 defined by

Zpo=Zpo+Z; ',
Z=s(p) —z; '.

If we solve Eq. (2), making use of the relations (3) and

(4), we see that we can express p, and Z as po=qp„
5=gh, where ot is given by
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f)"=V i, fi'= V«Vi/(Vo —«), (12)

sarily. Neglecting it does not change any of the results
of this section. By writing out Kq. (8) explicitly, we see
that in all terms which contain the product of the two
diagonal elements of 6 the integration extends over
regions far from the Fermi surface. On the other hand,
the elements of 6 do have a simple form only near the
Fermi surface where Eq. (7) holds. We therefore intro-
duce two functions 1"6 and F~, which depend on the
direction in momentum space, as experimentally de-
terminable parameters which will restrict all integra-
tions to regions close to the Fermi surface. F, F~ are
defined by I"= V «V (G—G+FF)'I",

I'= V i V—(GG FF—)OI

An integration over d4p/ (2n.)4 is always understood to be
included. G, 0, and F denote the functions G(p)

[G(p)jll @(p)= —[G(p)j««and F(p) =«[G(p)3».
The index 0 indicates that 0= ~q~ =0. Details of how
F and F~ can be used to eliminate regions far from the
Fermi surface in integrations may be found in Refs. 6
and 7. Our function I'6 diGers slightly from the corre-
sponding function in Ref. 6 since our dehnition is more
appropriate in the case of 6nite mean free path. Since
we will be interested only in how the lowest eigenvalue
of the collective excitations changes, we can restrict our
further considerations to the case g=0. Furthermore,
we set X&= —&4 and X2= —&s, thus losing only the un-

physical eigenstate (see Ref. 5). In this way we obtain

&«= iT'~[G+G +F~= (GG+FF)'1&«
+I' [G+F- G-F+1x«, (10)

x,= —r«[G~+F G jx,
+«T'[G+6= F+F (GG—FF)']&«. —

Since the quantities in the square brackets approach
zero fast enough as functions of their arguments, we may
interchange the order of integrations and use for G
and F the simple expressions given by Eq. (7).

First let us 6nd the eigenvalue of Eq. (10) in the
absence of impurity scattering. It is advantageous
to introduce the quantities f = AT (0)1'~/Z«and
f P«'(0)I'/Z Th«e expansion coefficients in spherical
harmonics we call fp and fP (the latter notation was
used in Ref. 6 and we will adopt it here). Furthermore,
we set f~"=f~ /(1 f~ ). Using th—e results of Refs 5.
and 6, where the integrals in Kqs. (10) were calculated,
we obtain the following equation for the determination
of the eigenvalue 0:

1= (f~'+ fi )g(o) . — (11)

Here g(u)=are sinx/x(1 —x)'~«and u=Q/2h«. It is
clear that the knowledge of 0 from experiments de-
termines a certain combination of fP and f~" but not
the quantities themselves. The situation is therefore
diGerent from the weak coupling case where

A. Low Impurity Concentrations

As long as the impurity concentration is low enough
so that 2Z~cc~&&1, where ~~ is the Debye energy' we
can calculate explicitly the change in the collective ex-
citation energy as a function of mean free path. In that
case inspection of Eqs. (10) shows that the integration
extends over regions near the Fermi surface even if we
set (Zrho) '=0 in (GG+FF)' and (GG FF) . T—here-
fore, in delning Eqs. (9), we may use the G and F
functions in the absence of impurity scattering. Conse-
quently, in Eqs. (10) the G+, F+ will be r dependent
while (GG+FF) and (GG FF)«wiQ—not. For the r
values under consideration here this method is accurate.
Only if 2ZTND becomes of the order of 1 will the inte-
grations in Eqs. (10) extend over regions in which
Eq. (7) is no longer a good approximation for G.
Furthermore, since we assume 5-wave scattering only,
there will be no r dependence of f««, f«" coming from
V'(p-p') and it follows that f«&, f«" are identical to
f«»„&, f«,~„„"This allo. ws us to calculate the mean-
free-path dependence of the collective excitations for
given values of f«»„«, f«,»,„".Por this purpose, with
the help of Kqs. (10), we write the eigenvalue equation
as

(I/f«"+I+~«) (I/f«'+ J~)+ (J«)'-= o (13)

where the quantities Ii,2, s are dehned as

iz'
Ig=—

d4p
[G.G -FW —(Gf".-FF) j

X(0) (2«r)4

1 1+ (a&+co —6«')/p+p
dc@

2 p++ p +«/rZ —p

AT(0)

d«p
(G+F +F+g )

(2«r)'

~o(~+ & )/P+P-
1k'

2 p++ p +i/rz

I3=—
X(0)

d4p
[G+G +F+F (GG+FF)')—

(2«r)4

1—(~+ —&o«)/p p
c4

p++ p +«/rz

Here p+ are given by p+
—(co~«—g«')'" numerical

results for different values of (Z2rg«) —' are shown in

and Vo, V~ are the zeroth and 3th harmonic of the inter-
action potential V multiplied by the density of states.
In that case 0 determines V~, and since Vo is determined
by the gap, f&" and fP are known. For the following,
we assume that we have only collective excitations with
l= 2 and want to investigate how 0 changes as impurity
scattering is introduced. %e distinguish two cases.
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I'10. 3. Change of the energy 0 of the exciton with g=0 as a
function of mean free time v. ~ =0/2ho. Z denotes the renormali-
zation constant and diBerent curves correspond to dMerent values
of f&&, all of which lead to an exciton energy a =0.5 or 0.75 in the
pure case. f~" ranges from 0.23 (f~&=4.25) to —0.98 (f~&= —0.6)
and from 0.22 (fg&=1.41) to —0.92 (fg&= —0.6).

Fig. 3. We have chosen sets of f~&,fn" values such that
in the absence of impurities the collective excitation
energy 0 is 0=ho and 1.560, respectively. As a finite
mean free path is introduced Q will shift toward higher
values depending on the size of f& In the w. eak-coupling
case with V0=0.25, fr=4 25 and .1.41. As Larkin' has
discussed, f& will be comparatively small for a strong-
coupling superconductor. Figure 3 shows that as f& de-
creases, Q becomes somewhat less sensitive to mean free
path as compared to the weak-coupling case, But as
the values of f& decrease further, the sensitivity of 0 to
mean free path increases again. In the cases under con-
sideration, f&~ 0 20 and . —0.25 are the values of
f& which give least mean-free-path dependence for Q.

Ke want to remark that curves corresponding to
f&& —0.2 have rapidly varying slopes near the points
(n, 1/2Zrh, ) = (0.5; 0); (0,75; 0). For practical purposes
an expansion in terms of 1/2Zrho is therefore not very
useful and we omit it here. Finally, if f& becomes smaller
than f„;,&, which is defined as having a corresponding
f"=—1, the curves are bent in the opposite direction
i.e., toward smaller o. values, and become complex as
(2Zrho) ' increases. This is not surprising if one looks
at Eq. (13).From the discussion in Ref. 6 it is clear that
these f& values are unphysical and we will not consider
them any further. f„;t& is, for the two cases under con-
sideration, approximately f„;&&=—0.7 and —0.75. For
(1/2Zrh0) ~00 all curves drawn in Fig. 3 approach
n= 1 asymptotically. Figure 3 thus shows that it is im-
probable that collective excitations are responsible for
the occurrence of a precursor found in infrared absorp-

tion experiments on lead alloys. In those experiments'
no appreciable mean-free-path dependence of the pre-
cursor was found for r values as low as rh0~1/13 or
2Zrd~3 if Z is assumed to be approximately equal to 2.

Since the onset of absorption in pure lead takes place
roughly at +=0.5, one sees that the theory leads to a
reduction of the precursor width of at least 50% for
2Zrho ——~ which has not been observed.

B. High-hnyurity-Concentration Limit

If 2Zrco~& j the calculations have to be carried out
with the r dependent quantities f2 and f2& In .that
case no relation between fq, f2& and f2„„„,, f2 ~«,& can
be given. Only in the weak-coupling case can we show
that f2&~ 0 in the high-impurity-concentration limit
while fq" is r-independent so that f,"=f2,,«.". For
high impurity concentrations one can derive by ex-
pansion a simplified equation for the eigenvalue of the
form

(1/f ' (2Zr—~o)LF (~)—&(~)])
(1/ jp,"+1+ (2Zrho) LF(a)—E(a)1)

+ (2Zrhp)'cr"F'(n) =0. (15)

Here F (a) and E(a) are the complete elliptic integrals
of the first and second kind. The equation is of the same
form as in the weak-coupling case and can be discussed
in the same way as in Ref. 5.

IV. SUMMARY

By using a Fermi-liquid-theory approach for the de-
scription of strong-coupling superconductors, we have
investigated the mean-free-path dependence of the
excition-like collective states with total momentum
q=0. Ke have shown that the mean-free-path de-
pendence is large enough so that it should have been
detected in lead alloys if the precursor in the infrared
absorption spectrum of those alloys were due to those
collective states, as recently proposed by Larkin. The
Landau type of approach is very useful in this context
since it keeps calculations relatively simple and allows
strong enough general statements. Despite this, it
would be interesting to calculate the parameters intro-
duced into such a theory from erst principles rather
than having them determined from experiments. An
attempt in this direction is planned.
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