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The diagrammatic method used by Abe to obtain the Helmholtz free energy of the classical electron gas
is used to derive the pair distribution function beyond the Debye-Hiickel result. The calculation can be done
systematically either in configuration space or wave-number space and is carried out exactly to O(A?) where
A=1mpAptis the classical plasma parameter. It is shown that g(r) has the form g(r) = e #%[ 14 g2 (r)+g2°(r)],
where u,= (¢2/r) exp(—r/\p) is the Debye screened potential, and gs® and g.° are functions of »/Ap which are
evaluated analytically to O(A?). For the region Be2<r <Ap the correction in brackets multiplying the Boltz-
mann factor exp(—pu,) is less than 1. A surprising result is that for 7>>\p the linear Debye-Hiickel theory
does not correctly describe the disappearance of particle correlations, and instead the correction function g»°
dominates. As r — it is found that g(r) —1~3(In3)A% exp(—r/Ap).

I. INTRODUCTION

HE classical Debye-Hiickel theory* gives a

familiar, useful, and simple result for the dis-

tribution of a pair of particles of charge z:¢ and zqe at
a distance 7 apart:

g(r)=1—(2128¢*/r) exp(—7/\p)=1—Bz:zous(r) , (1)

where u.(r) is the static screened Coulomb potential
with Ap= (4mBe®Y_2.20.) V2. The Debye-Hiickel deri-
vation of this expression is valid when Bu,(r) <1, and
hence for particle separations greater than the average
distance of closest approach r>Be?. For r<Be* Eq. (1)
gives a meaningless negative result for g(r). Neverthe-
less, in spite of this difficulty for small r, the Debye-
Hiickel result is useful since it describes the screening
out of particle correlations at distances such that r~p.
Also Eq. (1) may be used to obtain the correct leading
order result for the Coulombic interaction energy valid
at high temperature and low density, i.e., when Be?/
Ap<1. The purpose of this paper is to systematically
calculate corrections to the Debye-Hiickel expression
and obtain results for g(r) that will be valid for short
distances 7~B¢%. In the classical theory the short-
distance difficulty of Eq. (1) is not worrisome since it
is understood that the actual behavior as r — 0 must
be described by the Boltzmann factor,

g(r) =exp(—2z120€%/7).

For charges of like sign, electron-electron and ion-ion
pairs, the Boltzmann factor vanishes strongly as » — 0.
For charges of unlike sign the Boltzmann factor di-
verges badly as r — 0 and gives the classical catastrophe
of the attractive Coulomb force causing point particles
to collapse together. Quantum mechanics through the
uncertainty principle saves this situation since the point
charges have a finite extension, the thermal de Broglie
wavelength X1o= 7%/ (2m1:kT)V2, and the classical Boltz-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

!For a modern treatment of the Debye-Hiickel theory as
applied to fully ionized gases see L. D. Landau and E. M. Lifshitz,
géagtfszt;gal Physics (Pergamon Press, Inc., New York, 1958), pp.

mann factor applies only for >A;,. In this paper we
are mainly interested in the case of repulsion so that
classical theory may be assumed down to »=0. Thus the
work which follows applies primarily to the electron gas
in a continuous positive background, and to the ion-ion
pair distribution function in real plasmas for which
usually X;;<pPe? because of the large mass of the ions.
The results here will also apply to electron-electron and
electron-ion pairs for distances greater than the appro-
priate thermal de Broglie wavelength.

The nodal expansion of Meeron? and Friedman® as
applied to the classical electron gas by Abe* provides a
systematic perturbation expansion of the partition
function from which one obtains the Helmholtz free
energy

A? A3
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where A=pe¢®/A\p=1/4rp\p?, and D,=In3—2C+11/6
with C=0.5772. The term of first order in A is the
Debye-Hiickel result obtained from the ring diagrams
and the higher order terms exhibited in Eq. (2) are
obtained from the watermelon diagrams or ladder
diagrams in the quantum theory. Beginning with O(A3)
more complicated diagrams contribute, namely, water-
melons connecting clusters of three and more particles.
The same diagrammatic methods used to obtain Eq.
(2) may with more work be used to calculate g(r). A
test of the results is that the appropriate integral must
give back the known exact results for the free energy.

Recently Frieman and Book® have suggested a
corrected form of g(r), namely:

g(r)=1—Bu,(r)+eb"— (1—Bet/r)
=@/2)(1—e*)+e =, x=r/rp. (3)

This result is an improvement over the Debye-Hiickel
result, but is nevertheless too crude since a calculation

2 E. Meeron, Phys. Fluids 1, 139 (1958).

8H. L. Friedman, Ionic Solution Theory Based on Cluster Ex-
pansion Methods (Interscience Publishers, Inc., New York, 1962).

“R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959).

S E. A. Frieman and D. L. Book, Phys. Fluids 6, 1700 (1963).
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(a) a{r'

n=0

of the free energy with it gives a logarithmically di-
vergent result. The Frieman-Book expression becomes
more reasonable if the screened potential u,(r) is used
in place of €?/7 in Eq. (3); thus one obtains

g(r)~exp(—pu.)=exp(— (4/z)e™). 4)

We will call Eq. (4) the nonlinear Debye-Hiickel pair
distribution. It was considered by Carley® and compared
numerically with the hypernetted chain approximation
and the Percus-Yevick results. The presence of screening
in Eq. (4) removes the logarithmic divergence in the
calculation of BF that one has with Eq. (3). The
O(A%InA) term in Eq. (2) is obtained correctly, but
the terms of O(A?) and O(A3 InA) are incorrect.

Since it is useful to connect expressions for g(r) with
known exact results for the free energy, we begin with
the diagrammatic expansion of BF and use it to generate
the appropriate diagrams for g(r). For this purpose
some formal relations should be noted. The free energy
is connected to the pair distribution function by the
relation

1d,
BE—F)=3Np / f / FrBue), 6

where ¢ is a measure of the coupling constant. Thus for
the Coulomb potential we have e2=ce?, the Debye
charging process. The internal energy is a more con-
venient quantity, namely,

B(E—Eo)=c(8/3c)8(F—Fa).
(©)

=%Np/d3r ﬁu(r)g(f) .

If both %(r) and g(r) have Fourier transforms, then
Eq. (6) may also be written as

B(E—Eq)=3N? / T s (e® )
_m=ivt [ T men
@np 8

where

u(k)= V“/dsr ety (r).

In the Abe calculation of the free energy of the
electron gas the result is of the form

B(F—F0)= _Z\T{Sring(A)'*’z_z Sn(A)} ) (8)

where the summation # is over clusters of nodal point
particles, namely, particles with three and more inter-
actions ending on them. The evaluation of S(A) gives
Eq. (2); S3(A) and S4(A) begin with O(A3). In this
expansion all simple chains of Coulomb interactions

¢ D. D. Carley, Phys. Rev. 131, 1406 (1963).
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Fic. 1. Diagrams contributing to the lowest order results for
the Helmholtz free energy. In configuration space every particle
coordinate is integrated over all space. In (a) the ring diagrams
are shown as a modification of second-order perturbation theory.
In (b) the Abe watermelon diagrams are shown. Here one sums
not only chains of Coulomb interactions, but also the number of
screened lines. Points 7; and 7, are the nodal points.

are summed to produce screened Coulomb potentials.
We can also write the following relationship which
corresponds to Eq. (8)

g(r) =1+ gring (4, %)+ Z=2 ga(Ax), x=7/\p, (9)

where g.(A,x), when substituted into the free-energy
expression Eq. (5), gives S.(A) in Eq. (8). Similarly
gn(Ax) with k=kAp will denote the Fourier transform
of ga(A,x) that goes into Eq. (7) to give the internal
energy.

II. DIAGRAMMATIC EXPANSION OF THE
PAIR DISTRIBUTION FUNCTION

Although the perturbation expansion of the pair
distribution function expressed by a sequence of dia-
grams may be written down without reference to the
Helmbholtz free energy, it seems convenient to use the
diagrammatic expansion of the free energy to generate
the expansion for g(r). In the theory of the electron
gas one must first, by adding up the appropriate groups
of diagrams, remove the various divergencies that
appear due to the long- and short-distance behavior of
the 1/7 potential. The sequence of operations is shown
in Fig. 1. First one corrects the linear divergence of
second-order perturbation theory by adding the ring
diagrams. The long-distance logarithmic divergence of
the third order is removed by adding all chains of
Coulomb interactions to form the screened potential,
and finally the logarithmic divergence at short distance
is removed by adding watermelons (or ladders) of
screened interactions to bring in the distance of closest
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approach Be? as the cutoff distance. The result is

Yde  Vdk (/SuC(k))2
F—F,)=—3\?
B )= {/0 / Q2x)* 14N ﬁuc(k)

( B)m Vm—ld3k1 dsk
e B e
u(ky) u(km)
X (it ki) (10a)
1+VBu(k)  1+NBu(kn)

or as a configuration space integration

lde
pe=ry=—13oler [ = [aruom..
0o C

+ / dar[expt—au,,(r)]—1+ﬁu,—%<ﬂu.)21} . (10b)

The diagrams for g(r) are obtained from those in Fig. 1
by the process of cutting the interaction between every
pair of particles. The differentiation with respect to the
coupling constant to give the internal energy, Eqgs. (6)
and (7), does this cutting.

Using the wave-number integral form of the free
energy Eq. (10a) one finds

B(E—Ez)=—1N? ‘B’/ —-u(k)u,(k)

( —B) Vmidky- -
o [ e
d u. (k)

5 (it - - +km)m[c— ————]
dc 1+A:3uc(k) c=1

Xy (k) - 'ua(km)] .1

The quantity in square brackets in Eq. (11) is

u(k)
C_ua,c(k) l c=1=__'*—"
dc [14+NBu (k)P
14+NBu(k) 12)
NBu(k)
o)

=u(k)[1— 2N Buq (k) +(NVBus (k))2].

In the case of interest where % (r) =¢€?/r and u(k)=4we?/
V&2, the correction factor in Eq. (12) arisingfrom cutting
every Coulomb line in the chains forming the screened
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F16. 2. Diagrams for the pair distribution function. The wavy
lines indicate the Debye screened potential obtained by summing
chains of Coulomb interactions as in Fig. 1. The labeling a, b,
and c indicates the three diagrams one gets when the screened
potential is cut in every possible way.

potential is
(14 NBu(k))*=k'/ (+Xp7*)%. (13)

This correction factor has been broken into three parts
in the second line of Eq. (12) in order to show corre-
spondence with the diagrams for g(r) or g(%) in Fig. 2.
Next by working directly from the diagrams of Fig. 2
or by using Egs. (11) and (7) one finds for g()

g (k)= —Bus(k)+[1—2NBu. (k)+ (NBus(k))*]

X[ho(R)+Gs(R)], (14)
where
L L Lo
2! V\r 2'Vk

» Xtan—ENp/2  (15)
r
Gs(k)= / 7 e r (e~ P —14Bu,—3 (Bu.)?)

= r=0(4m\p*/ V)

X { (A%/31)(In3A+2c—11/6)---}. (16)

The m=3 term in Eq. (11) has been separated from the
m>3 terms [h(k) and Gs(k) in Eq. (14)] because of
the fortunate circumstance that 1/72 has a Fourier
transform Eq. (15) whereas 1/7" with #>2 does not.
The Fourier transform of ladders of screened potentials
G;(k) could be worked out completely, but since it is
not needed it will not be given here.

Let us now introduce the dimensionless wave number
k=Fk\p and the plasma parameter A so that Eq. (14)
may be written as’

g(k)=g(A)K)ring+g2.2(A7K)+g‘l.3+(A)K) e
41!')\D [ A I's
T e ey

A2
X[—Z—'; tan x/2+G3(A,K):|~ .- } . 3an

The notation g2 » means diagrams with two nodal points

7 The result for g2,5(k) was obtained independently by J. Coste
(private communication).
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and two screened potentials between them; gz 34 indi-
cates two nodal points connected by three or more
screened potentials. The sum gs(A,x)=gs,2+g2,34 in
Eq. (7) gives the entire Abe S2(A) term of the free
energy.

It is now convenient to divide up g, into a sum of
three pieces,

82,2=g2,2%+ g2,2%+ £2,2°,

as indicated by the second line of Eq. (12) and the
three diagrams shown in Fig. 2 resulting from the
different ways of cutting the Coulomb interactions in
the chains forming «,. If to all orders in A we take only
diagrams of type a and neglect types b and c [thus
replacing the correction factor &4/ (k*+Ap=2)? by 1]
then we obtain

822 (r) =g, +g2.42= Z=2 [(—Bu)™/m!]
(18)

so that the complete pair distribution function to this
approximation is

= CXP(—ﬁ“s) —14-Bu,,

8(r) =1+ gring+g2%=exp(—Bu.) (19)
which is the nonlinear Debye-Hiickel result. In the
limit of zero density for which u,(r) — ¢>/r, the non-
linear Debye-Hiickel result reduces to the familiar
Boltzmann factor. The terms go®=gs2%4g2,3:¢ and
g2°= ga,2°+g0,3+.° are corrections to the physically
reasonable Boltzmann factor with u,(r) replacing «(r).

Before proceeding with the exact calculation of g; 9?
and g»0° in configuration space a few general obser-
vations are in order. Since there are two fundamental
lengths Be¢* and Ap, there are three regions of r to con-
sider, 0<r<Be? Be*<r<\p, and Ap<r. We observe
that g,,22(r) goes as (Be?/r)? for r<Ap and thus it is a
reasonable correction to the Debye-Hiickel term for
r> e, but for small 7, i.e., less than Be?, one must take
the entire sum of ladders g,%=gs, 2%+ g2,5,% to get the
correct Boltzmann factor. The next correction gs,° is
negative and goes as 1/k* for large k£ and hence as
A*In(\p/r) for small ». Thus g,,2%(r) is useful by itself
only for r>Be? because of its logarithmic divergence as
r — 0; adding the remaining piece g,3,%(r) will remove
this logarithmic divergence. The last correction gs,»°
is positive and goes as 1/k% for large 2 and hence
g2,2°(r) goes to a constant as r — 0.

III. EVALUATION OF g,(r) TO O(A?)

Since gi,2 is known exactly in % space, as given by
Eq. (17), we now need only to perform the Fourier
inversion to find gs,2(r). The contribution from diagram
(a) in Fig. 2 is

g2,2%(A,x) = (A2/21) (e72/2%). (20)
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The correction g »® from Eq. (17) is

, (—2)(Be?)? / Bk er \p~?
A =
g2.2 ( 7x) 2[ (21r)3 k2+XD_2
tan“k)\D/Z
X___—
(—2)p° ¢
— ? / Pratta(ra) (e (r10) 2
. r=r12=]r1——r2[
= ((—2)A%/21) (2%)
X{e*In3—e*E,(x)+e*E:1(3x)}, (21)
where
*d
El(x)=/ ——j—le””
z Y
=In(xy)1—x+2a2/2.21—---, x<1, y=e°,
=(e*/x)(1—x 1421 /a2—---), x>1. (22)

For x<1(r<\p) the expression for g,,,® from Eq. (21)
becomes
(—2)A? sinhx 1

g2.2b(A’x) = In— ) (23)
2! x 3yx
and for x>1 it is
2 e e—21:
g2.2°(A,x) = —-—{~ In3—- } . (24)
21 » 3 a2

Note from Eq. (22) that the short-distance form of
g2,2°(A,x) is logarithmically divergent as anticipated in
Sec. II. This logarithmic divergence is easily removed
by adding the higher order terms indicated by gs,3,%
For r=0 one finds

gzb(r=0)=g2,2b+g2,:;+b= —Ag{ln(l/A)
— (In3+2C—-3/2)}. (25)

The final correction of O(A*)- namely go 2°(Ax)- is

(662)2 d3keikvr )\0—4
g2.2°(A,x)= /
20 ) o sy
tan—'k\p/2
k

B4p2
N

/ /daf;; d37’4 Ug (rlg)us(r;“)?us (7’42)

= (A2/21)(4x)H{ (1+x)e~* In3— 4 (e —e22)

— (A+4x)eE(x)+ (1—x)e=E(3x)} . (26)
For 2«1, Eq. (26) gives
g2.2°= (A% 2){§+4x In(3yx)™} (27)

which is finite at x=0, and consequently g, 3, is not



A 470 HUGH E.

VALY

F16. 3. Lowest order diagrams contributing to the three-node
function S3(A). The structure connecting points 1 and 2 through
3 is g2 o*. The screened potentials connecting 1 and 2 directly give
exp(—pBus) —14Pu,. Cutting each of these screened lines gives
the contribution [exp (—Bu.)—1]gs,2° to g(r).

2

needed. Of more interest is the behavior of gy,.¢ for
#>1 (r>\p). The dominant term in Eq. (26) is evi-
dently e=21n3, which is larger than the Debye-Hiickel
term as x— . The complete result for g(r) to O(A?)
for large x is

g(r)=1—(A/x)e~*+3A e In3— (4+3 In3)
X(e#/2)]. (28)

g2 becomes larger than gring; when x>8/(A In3) even
though g is higher order in the coupling parameter A.
This same phenomenon has been seen previously and
more dramatically in the related problem of collision
damping of plasma oscillations studied by DuBois,
Gilinsky, and Kivelson.® For the electron gas the
collisional damping in the long-wave limit (small &) is
proportional to Ak? while the lower order Landau
damping in the same limit disappears as exp(—1/k?).
We have seen that g,® and g.° are, respectively,
O(A?InA) and O(A?) as x — 0. This does not mean that
g(r) has a finite value of O(A®InA) at r=0, since in
fact g% and g.° are themselves multiplied by the
Boltzmann factor exp(—pBu,) which goes rapidly to
zero as r — 0. The derivation of the Boltzmann factor
with the screened potential Egs. (18) and (19) required
only the watermelon diagrams giving the Abe S2(A)
function. An examination of the diagrams which make
up the three-node term S3;(A) shows as indicated in
Fig. 3 that ge® is included in some of the diagrams.
Such diagrams may be looked at as a special case of

g(x)

0.5+ ’

1 1 L 1 2
| 2

Fi1G. 4. Plot of g(r) from Eq. (29) for A=0.5. The dashed line
shows for comparison the result from the Boltzmann factor
exp (—pBu).

X

8 D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963).
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the watermelon diagrams connecting two nodal points
except that one screened interaction —pBu, is replaced
with g2%(A,x). From these diagrams one obtains a
contribution to the pair distribution function of the
form [exp(—pBu,)—1]g.% Similarly in the diagrams
for S4(A) one finds g»°(A,x) and a contribution to g(r)
of the form [exp(—pBu,)—1]gs°. Adding these contri-
butions to gz and g,° obtained from S(A), one gets
the complete Boltzmann factor. This same argument
holds for any correction to g(r) of some power of A
obtained from the diagrams for S,(A) for some #; the
same structure will be found in diagrams of larger #
and will result in the given piece being multiplied by
the Boltamann factor. Thus a practical expression for
g(r) valid from r=0 to « and which is exact to O(A?)
for r>pBe is

g(r)=ebtue{1+g25(r)+g2,2°(r)} ,

where go%(r) is adequately approximated by g 2® from
Eq. (21) for r>Be%. go*(r) is negative for all » and
g2,2°(r) is positive for all 7. The factor in braces multi-
plying the Boltzmann factor in Eq. (29) reduces the
pair distribution function below exp(—Bu,) for 0<r<Ap
and g»,»°(r) dominates for large 7, >>>\p. A plot of g(r)
as given by Eq. (29) is shown in Fig. 4.

Note added in proof. Recently it has come to the au-
thor’s attention that most of the results of this paper
have been obtained independently several times. Al-
though some of the earlier investigations have been
published, the results for g(r) beyond the Debye expres-
sion do not seem to be well known, perhaps because the
original publications were in Russian. Results have been
obtained by Tyablikov and Tolmachev,® Fisher,!?
Hooper, Jr.,! Coste,'? Hirt,'® and O’Neil and Rostoker.
References 9, 10, 12, and 14 use the Bolgoliubov hier-
archy of equations for the distribution functions while
Refs. 11 and 13 use the Abe diagrammatic expansion
technique. The present paper differs from Refs. 11 and
13 only in that the diagrammatic method begins with
the free energy expansion to obtain the results for g(r).

(29)
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