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Classical Theory of the Pair Distribution Function of Plasmas*
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The diagrammatic method used by Abe to obtain the Helmholtz free energy of the classical electron gas
is used to derive the pair distribution function beyond the Debye-Huckel result. The calculation can be done
systematically either in configuration space or wave-number space and is carried out exactly to O(A ) where
A = ~42rpX~' is the classical plasma parameter. It is shown that g (r) has the form g(r) = e &"s/1+gg~ (r) +g2'(r) j,
where u, = (e'/r) exp( —rAD) is the Debye screened potential, and g2 and gg' are functions of r/) g which are
evaluated analytically to O(A~). For the region Pe'&r &) z the correction in brackets multiplying the Boltz-
mann factor exp{—pu, ) is less than 1. A surprising result is that for r») g the linear Debye-Huckel theory
does not correctly describe the disappearance of particle correlations, and instead the correction function g"
dominates. As r —+ ~ it is found that g(r) —1 $(ln3)h. ' exp( —r/X~).

I. INTRODUCTION

HE classical Debye-Huckel theory' gives a
familiar, useful, and simple result for the dis-

tribution of a pair of particles of charge 2'1e and 22e at
a distance r apart:

g(r) = 1—(zqzzPe'/r) exp( —r/XD) = 1—Pz gsg. (r), (1)

where u. (r) is the static screened Coulomb potential
with Xo= (4zPe'Pz 'p ) "'. The Debye-Huckel deri-
vation of this expression is valid when pu, (r) (1, and
hence for particle separations greater than the average
distance of closest approach r)Pe' For r.(Pe' Eq. (1)
gives a meaningless negative result for g(r). Neverthe-
less, in spite of this difhculty for small r, the Debye-
Hu*ckel result is useful since it describes the screening
out of particle correlations at distances such that r~X~.
Also Eq. (1) may be used to obtain the correct leading
order result for the Coulombic interaction energy valid
at high temperature and low density, i.e., when Pe'/
XD&1. The purpose of this paper is to systematically
calculate corrections to the Debye-Huckel expression
and obtain results for g(r) that will be valid for short
distances r Pe'. In the classical theory the short-
distance difhculty of Eq. (1) is not worrisome since it
is understood that the actual behavior as r —+0 must
be described by the Boltzmann factor,

g(r) =exp( —zgzse'/r).

For charges of like sign, electron-electron and ion-ion
pairs, the Boltzmann factor vanishes strongly as r —+ 0.
For charges of unlike sign the Boltzmann factor di-
verges badly as r ~ 0 and gives the classical catastrophe
of the attractive Coulomb force causing point particles
to collapse together. Quantum mechanics through the
uncertainty princip1e saves this situation since the point
charges have a Gnite extension, the thermal de Broglie
wavelength Xrs ——5/(2m~nkT)'", and the classical Bolts-
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'For a modern treatment of the Debye-Huckel theory as
applied to fully ionized gases see L. D. Landau and E.M. Lifshitz,
Statistical Physics (Pergamon Press, Inc. , New York, 1958), pp.
229-233.

mann factor applies only for r&K». In this paper we

are mainly interested in the case of repulsion so that
classical theory may be assumed down to r=0. Thus the
work which follows applies primarily to the electron gas
in a continuous positive background, and to the ion-ion

pair distribution function in real plasmas for which
usually X,;(Pe' because of the large mass of the ions.
The results here will also apply to electron-electron and
electron-ion pairs for distances greater than the appro-
priate thermal de Broglie wavelength.

The nodal expansion of Meeron' and Friedman' as
applied to the classical electron gas by Abe4 provides a
systematic perturbation expansion of the partition
function from which one obtains the Helmholtz free
energy

A A~

P (F Fo) = —X +—(ink D—,)+—1nA— —
3 12 12

(2)

where A =Ps'/Xn = 1/4s pXn', and D, = In3 —2C+ 11/6
with C=0.5772. The term of hrst order in A is the
Debye-Huckel result obtained from the ring diagrams
and the higher order terms exhibited in Eq. (2) are
obtained from the watermelon diagrams or ladder
diagrams in the quantum theory. Beginning with O(A')
more complicated diagrams contribute, name1y, water-
melons connecting clusters of three and more particles.
The same diagrammatic methods used to obtain Eq.
(2) may with more work be used to calculate g(r) A.
test of the results is that the appropriate integral must
give back the known exact results for the free energy.

Recently Frieman and Book' have suggested a
corrected form of g(r), namely:

g (r) = 1—Pu, (r)+s-z "~"—(1 Pe'/r)—
= (A/x) (1—e—*)+e ~~*, x= r/Xn. (3)

This result is an improvement over the Debye-Huckel
result, but is nevertheless too crude since a calculation

'E. Meeron, Phys. Fluids 1, 139 (1958).
3 H. L. Friedman, Ionic Solution Theory Based on Cluster Es-

Pansion Methods (Interscience Publishers, Inc. , New York, 1962).' R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959}.
~ E. A. Frieman and D. L. Book, Phys. Fluids 6, 1700 {1963).
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of the free energy with it gives a logarithmically di-
vergent result. The Frieman-Book expression becomes
more reasonable if the screened potential u. (r) is used
in place of e'/r in Eq. (3); thus one obtains

g(r) =exp( —Pu, )=exp( —(A/x)e-~).

—f2

~
' In

l2 l5

~e will call Eq. (4) the nonlinear Debye-Huckel pair
distribution. It was considered by Carley' and compared
numerically with the hypernetted chain approximation
and the Percus- Yevick results. The presence of screening
in Eq. (4) removes the logarithmic divergence in the
calculation of PF that one ha, s with Eq. (3). The
0(A'lnA) term in Eq. (2) is obtained correctly, but
the terms of 0(A') and 0(A' lnA) are incorrect.

Since it is useful to connect expressions for g(r) with
known exact results for the free energy, we begin with
the diagrammatic expansion of PF and use it to generate
the appropriate diagrams for g(r). For this purpose
some formal relations should be noted. The free energy
is connected to the pair distribution function by the
relation

fTl= nfl

~ s ~

FIG. j.. Diagrams contributing to the lowest order results for
the Helmholtz free energy. In con6guration space every particle
coordinate is integrated over all space. In (a) the ring diagrams
are shown as a modi6cation of second-order perturbation theory.
In (b) the Abe watermelon diagrams are shown. Here one sums
not only chains of Coulomb interactions, but also the number of
screened lines. Points r~ and r2 are the nodal points.

where c is a measure of the coupling constant. Thus for
the Coulomb potential we have e"=re', the Debye
cha, rging process. The internal energy is a more con-
venient quantity, namely,

are summed to produce screened Coulomb potentials.
e can also write the following relationship which
corresponds to Eq. (8)

g(r) =1+g„;„e(A,x)+Q g„(A,x), x=r/Xn, (9)

,'A'p d'r Pu(r-)g(r).

If both u(r) and g(r) have Fourier transforms, then
Eq. (6) may also be written as

where

VfPk
P(F Ep)=JAP Pu—(k)g(k)

(2pr)p

In the Abe calculation of the free energy of the
electron gas the result is of the form

P(F—Fp) = —X{5„,p(A)+ Q S„(A)),

where the summation n is over clusters of nodal point
particles, namely, particles with three and more inter-
actions ending on them. The evaluation of 5&(A) gives
Eq. (2); Sp(A) and $, (A) begin with 0(A'). In this
expa, nsion all simple chains of Coulomb interactions

fl D. D. Carley, Phys. Rev. 131, 1406 (i963).

where g (A,x), when substituted into the free-energy
expression Eq. (5), gives 5 (A) in Eq. (8). Similarly
g„(A,e) with e=kkn will denote the Fourier transform
of g (A,x) that goes into Eq. (7) to give the internal
energy.

II. DIAGRAMMATIC EXPANSION OF THE
PAIR DISTMBUTION FUNCTION

Although the perturbation expansion of the pair
distribution function expressed by a sequence of dia-
grams may be written down without reference to the
Helmholtz free energy, it seems convenient to use the
diagrammatic expansion of the free energy to generate
the expansion for g(r). In the theory of the electron
gas one must first, by adding up the appropriate groups
of diagrams, remove the various divergencies that
appear due to the long- and short-distance behavior of
the I/r potential. The sequence of operations is shown
in Fig. 1. First one corrects the linear divergence of
second-order perturbation theory by adding the ring
diagrams. The long-distance logarithmic divergence of
the third order is removed by adding all chains of
Coulomb interactions to form the screened potential,
and finally the logarithmic divergence at short distance
is removed by adding watermelons (or ladders) of
screened interactions to bring in the distance of dosest
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and two screened potentials between them; g2 3+ indi-
cates two nodal points connected by three or more
screened potentials. The sum g2(A, x)=g2, 2+g22+ in
Eq. (7) gives the entire Abe S2(A) term of the free
energy.

It is now convenient to divide up g2, 2 into a sum of
three pieces,

The correction g2, 2' from Eq. (17) is

(—2) (Pe')2 d'k e'~' Xn '
g2, 2'(A, x) =

2! (22»)2 k2+Xn '

tan —'k).22/2
X

g2, 2 gR, 2 +g2, 2 +g2, 2

as indicated by the second line of Eq. (12) and the
three diagrams shown in Fig. 2 resulting from the
different ways of cutting the Coulomb interactions in
the chains forming I,. If to all orders in h. we take only
diagrams of type a and neglect types b and c Lthus
replacing the correction factor k4/(k2+Xn ')' by 1j where

then we obtain

(-2)P'~
d'rku (r») (u*(r»))'

2!

= ((—2)A'/2')(2x) '

X (e * ln3 —e 'Ei(x)+e'Ei(3x)}, (21)

g2'(r)=g2, 2+g2.~ = 2 L(—Pu.) /~'1 Ei(x) =

= ln(xy)-' —x+x'/2. 2!— x(1, y =e'

= (e-*/x) (1—x-'+2!/x' — ) x& 1.
= exp (—Pu, )—1+Pu„(18)

(22)
so that the complete pair distribution function to this
approximation is

g(r) =1+g„,+g2' ——exp( —Pu,), (—2)A' sinhx 1

g2 2'(A, x) = — ln
2 f! x 3vx

and for g& 1 it is
which is the nonlinear Debye-Huckel result. In the
limit of zero density for which u, (r) ~ e"/r, the. non-
linear Debye-HQckel result reduces to the familiar
Boltzmann factor. The terms g2' ——g2, 2 +g2, 3+' and
g2'= g2, 2'+g2, 3+' are corrections to the physically
reasonable Boltzmann factor with u, (r) replacing u(r)

Before proceeding with the exact calculation of g2, 2

and g2, 2' in configuration space a few general obser-
vations are in order. Since there are two fundamental
lengths Pt."" and A~, there are three regions of r to con-
sider, 0(r(Pe, Pe'(r(Xn, and XiD(r. We observe
that g2, 2 (r) goes as (pe /r)' for r(A~ and thus it is a
reasonable correction to the Debye-Huckel term for
r&Pe"-, but for small r, i.e., less than Pe2, one must tal. e
the entire sum of ladders g2'=g2, 2 +g2, ~ to get the
correct Boltzmann factor. The next correction g2, 2 is
negative and goes as 1/k' for large k and hence as
A' ln()~n/r) for small r. Thus g2, 2'(r) is useful by itself
only for r&Pe2 because of its logarithmic divergence as
r ~ 0; adding the remaining piece g2, 2+ (r) will remove
this logarithmic divergence. The last correction g2, 2'
is positive and goes as 1/k' for large k and hence
g22'(r) goes to , a constant as r ~ 0.

2z

ln3 ——
3 x2

g2 e
—z

g, ,'(A, x) = ——
2t x

Note from Eq. (22) that the short-distance form of
g2 22(A, x) is logarithmically divergent as anticipated in
Sec. II. This logarithmic divergence is easily removed
by adding the higher order terms indicated by g2, 3+'.
For r=0 one finds

g2 (» 0) g»2 +g22+ —A'{, ln(1/A)
—(In3+ 2C—3/2) }. (25)

The final correction of O(A )- namely g2 2'(Ax)- is

(Pe2)2 d2ke4k r P,
—4

g2, 2'(A, x)=
(22r)2 (k2+Xn-2)2

tan 'B,n/2
X

P4p2

21
d'r2d'»4 u, (ri2)u, .(r24)'u. (r42)

For x(1(r(XD) the expression for g2, 2k from Eq. (21)
becomes

(19)

III. EVALUATION OF g2(r) TO O(A2)

Since g2, 2 is known exactly in k space, as given by
Eq. (17), we now need only to perform the Fourier
inversion to find g2 2(r). The contribution from diagram
(a) in Fig. 2 is

For x&(1, Eq. (26) gives

g2, 2'= (A'/2!) (-,'+ $x ln(3yx) —'} (27)

=(A2/2!)(4x) '((1+x)e * In3 —
24(e "—e '*)

—(1+x)e E,(x)+(1—x)e*Ei(3x)}. (26)

g2, (A,x) = (A-"/2!) (e
—-'*, 'x-") . (20) which is finite at x=0, and consequently g2, 3+' is not



A 470 HUGH E. 0 E W I TT

FIG. 3. Lowest order diagrams contributing to the three-node
function S3(A.). The structure connecting points 1 and 2 through
3 is g2 2~. The screened potentials connecting 1 and 2 directly give
exp{—Pe,)—1+Pe,. Cutting each of these screened lines gives
the contribution /exp( —pv, )—1/g2 &' to g(r).

needed. Of more interest is the behavior of g~, 2' for
x&1 (r&Xn). The dominant term in Eq. (26) is evi-
dently e ln3, which is larger than the Debye-kINckel
term us x —+ 40. The complete result for g(r) to O(A')
for large x is

g (r) = 1—(A/x) e '+x~A'[e *ln3 —(x4+3 ln3)

X(.—./*)j (28)

gm becomes larger than g„e when x&8/(A ln3) even
though g2 is higher order in the coupling parameter A.
This same phenomenon has been seen previously and
more dramatically in the related problem of collision
damping of plasma oscillations studied by DuBois,
Gilinsky, and Kivelson. ' For the electron gas the
collisional damping in the long-wave limit (small k) is
proportional to Ak' while the lower order Landau
damping in the same limit disappears as exp( —1/k').

VVe have seen that g2 and g2' are, respectively,
0(A' lnA) and O(A"-) as x —& 0. This does not mean that
g(r) has a finite value of O(A'"'lnA) at r=0, since in
fact g2 and g2' are themselves multiplied by the
Boltzmann factor exp( —Pu, ) which goes rapidly to
zero as r ~ 0. The derivation of the Boltzmann factor
with the screened potential Eqs. (18) and (19) required
only the watermelon diagrams giving the Abe S2(A)
function. An examination of the diagrams which make
up the three-node term S4(A) shows as indicated in
Fig. 3 that g2~ is included in some of the diagrams.
Such diagrams may be looked at as a special case of

g (x)

li

Fro. 4. Plot of g(r) from Eq. (29) for A=O.S. The dashed line
shows for comparison the result from the Boltzmann factor
exp (—Pzc.).

D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963).

the watermelon diagrams connecting two nodal points
except that one screened interaction —Pu, is replaced
with g24(A, x). From these diagrams one obtains a
contribution to the pair distribution function of the
form Lexp( —pu, .)—1jg44. Similarly in the diagrams
for S4(A) one finds gm'(A, x) and a contribution to g(r)
of the form )exp( —Pu, )—1)g4'. Adding these contri-
butions to g24 and gm' obtained from Sl(A), one gets
the complete Boltzmann factor. This same argument
holds for any correction to g(r) of some power of A
obtained from the diagrams for S„(A) for some r4; the
same structure will be found in diagrams of larger e
and will result in the given piece being multiplied by
the Boltamann factor. Thus a practical expression for
g(r) valid from r=0 to ~ and which is exact to O(A')
for r&Pe" is

g(r) =e-e" (1+gm'(r)+gm, g'(r)), (29)

where g2'(r) is adequately approximated by g2, 4' from
Eq. (21) for r&Pe'". g24(r) is negative for all r and
g2, 4'(r) is positive for all r. The factor in braces multi-
plying the Boltzmann factor in Eq. (29) reduces the
pair distribution function below exp( —pu, ) for 0(r(Xn
and g22'(r) d, ominates for large r, r)&An. A plot of g(r)
as given by Eq. (29) is shown in Fig. 4.

Pote added 4r4 proof. Recently it has come to the au-
thor's attention that most of the results of this paper
have been obtained independently several times. Al-

though some of the earlier investigations have been
published, the results for g(r) beyond the Debye expres-
sion do not seem to be well known, perhaps because the
original publications were in Russian. Results have been
obtained by Tyablikov and Tolmachev ~ Fisher '0

Hooper, Jr. " Coste "Hirt "and O' Neil and Rostoker '4

References 9, 10, 12, and 14 use the Bolgoliubov hier-
archy of equations for the distribution functions while
Refs. 11 and 13 use the Abe diagrammatic expansion
technique. The present paper dift'ers from Refs. 11 and
13 only in that the diagrammatic method begins with
the free energy expansion to obtain the results for g(r).

ACKNOWLEDGMENT

The author wishes to thank Dr. Philippe de Gottal
and Dr. Radu Balescu for several useful conversations
concerning this work, and also acknowledges the
hospitality of Professor I. Prigogine of the Universite
Libre in Brussels where this work was begun.

'S. V. Tyablikov and V. V. Tolmachev, Dokl. Akad. Nauk
SSSR 114, 1210 (1957) LEnglish transl. : Soviet Phys. —Doklady
2, 299 (1957)j.' I. Z. Fisher, Statistical Theory of Liquids (University of Chi-
cago Press, Chicago, 1964},pp. 109-118.

"C. F. Hooper, Jr. , Ph. D. thesis, Department of Physics,
Johns Hopkins University, 1963 (unpublished).

L1 J. Coste (unpublished).
'3 C. %. Hirt, Phys. Fluids 8, 693 (1965}."T.O' Neil and N. Rostoker, Phys. Fluids 8, 1109 (1965).


