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reproduced by the second and first terms of &&&0,

respectively.
It is easily seen that the scattering Green's function

g&&+& contains only outgoing waves: The asymptotic
behavior of the Hankel functions is"

H&&'& (kr) ~ (2/&rkr)'" expLi{kr —-', (l+-,')w) ]
H&&'& (kr) ~ (2/s kr)'" expL i{—kr ',—(l+-2)s)] .(89)

The scattered waves have an exponential time depend-
ence 'll&&+&=expf&iE&, „t], so that both positive- and
negative-energy solutions contain outgoing cylindrical
waves of the form r 'I' expL&i(kr —E~,l)].

With the explicit. form of &&&0, it is possible to prove
the relation between the reaction matrix and the phase
shift LEq. (60)]." The standing-wave solution 't«'&

satisfies an integral equation

In the limit of large r, only the first term of Eq. (86)
contributes, and we find

gi „~(» &~(l)
W&(r) ~ g&(r)+ 1+ V&(kr)

2 p+ (2') '(k'+&&')

r'dr'J&(kr')'U&(r')V7&(r'). (811)

The quantity in square brackets may be rewritten v ith
Eqs. (10), (11), and (51) as (2p/r&&')K&+&Fl, &+&t. If J&(kr)
and Y&(kr) are replaced by their asymptotic forms, "
Eq. (811) then becomes

am&(r) ~ Ot&+&(2/&rkr)'&'I cos{kr——,', (1+-,')w)
+xpR& sin{kr —2(l+x2)m)]. (812)

Comparison of Eqs. (61) and (812) shows that
~&(r) = '&&i&(r)+ r'dr'&&&0(r r')'U&(r') VP&(r') . (810)

"Reference 24, pp. 303—306. which is Eq. (60).

~pE)= —tan8) ) (813)
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The complete "formal" density expansion of any momentum autocorrelation function —at any frequency—is derived from the density expansion of the generalized master equation. (The sth term in this expansion
is explicitly defined in terms of the time-displacement operator of s+1 particles and involves the dynamics
of s+1 isolated particles. ) The entire derivation consists of only a few algebraic steps, and is valid for
noncentral (polar) pair forces as well as central forces. It is then shown that the third and higher order terms
in the zero-frequency limit of the density expansion diverge —although the first two terms and the entire sum
coverage (the density expansion "breaks down" ).This suggests that transport coefBcients are not analytic
functions of the density. It is suggested that a partial resummation (renormalization) —analogous to that
used in the electron-gas problem —be used to calculate the nonanalytic behavior of transport coef5cients.

I. INTRODUCTION

'HE subject of autocorrelation functions has been
receiving a great deal of recent attention. This is

primarily because the study of certain autocorrelation
functions provides a convenient means for calculating
transport coefrlcients from first principles. ' ' In view of
this it is somewhat surprising to find that there has been
little significant advance in the calculation of transport
coeKcients for classical systems since the work of Choh
and Uhlenbeck. ' They used the Bogolioubov approach
to obtain formulas for the first density correction to

~ M. S. Green, J. Chem. Phys. 22, 308 (1954).' R. Kubo, J. Phys. Soc. 12, 570 (1957).' S. T. Choh and G. E. Uhlenbeck, Navy Theoretical Physics,
Contract No. Nonr. 1224 (15}, University of Michigan, 1958
(unpublished).

transport coefficients, that is, for the eBects of triple
collisions on transport coeS.cients. Derivations of
comparable results from the autocorrelation-function
approach have since been presented in Refs. 4—8, and
a systematic method for analytically calculating the
triple-collision operators in these density corrections of
transport coeKcients has been given in Ref. 8. Still
remaining to be determined are the formulas for higher
order terms (general term) in the density expansion of
transport coefficients, the frequency dependence of

4 S. Qno and T. Shizume, J. Phys. Soc. (Japan) 18, 29 (1963).' R. Zwanzig, Phys. Rev. 129, 486 (1963).
6 E. Cohen and M. Ernst, Phys. Letters 5, 192 (1963).'K. Kawasaki and I. Oppenheim, Phys. Rev. 136, A1519

(1964).' J. Weinstockp Phys. Rev. 132, 470 (1963).
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transport coefficients, and the basic question of whether
or not the higher order terms converge in the limit of
zero frequency (infinite time).

The purpose of this communication is to derive the
complete "formal" density expansion of the autocorrela-
tion of any function of momenta —at any frequency—
from the density expansion of the master equation' "
(the coefficient of the sth term in this expansion is in
terms of propagators which involve the dynamics of
s+1 isolated particles similar to those in Ref. 9). The
entire derivation consists of a few algebraic steps and
is very simple. Furthermore, it is valid for noncentral
pair forces as well as for central forces. (The master-
equation approach has also been used by Mori" and
Swenson" to obtain the first term —binary-collision
term —in the density expansion of transport coefficients. )

The density expansion of autocorrelation functions
at zero frequency is examined in Sec. III where attention
is drawn to a peculiar and, perhaps, profound result
for transport coeKcients, namely, that although the
first- and second-order terms (these terms are asymp-
totic collision operators for binary and ternary collision,
respectively) in the density expansion converge, the
third and higher order terms diverge at infinite times
(zero frequencies). This was first noted in Ref. 9 (Sec.
IIIA). The asymptotic time dependence of these
divergent terms is, in fact, shown in Sec. III to be given
by

where I. is the Liouville operator defi.ned by

1.0—=—z Q m 'P; 8—/BR;, (2)

I.,I,
= i(8V,I/8R—~'~) ' (g/BP, —g/gpk)

D~ is the normalized thermal distribution function of
the system de6ned by

d(R}d(P}e &u

II. DENSITY EXPANSION OF AUTOCORRELA-
TION OF ANY FUNCTION OF MOMEMTUM-

FROM THE GENERALIZED MASTER
EQUATION

I.et R; and P, denote the position and momentum,
respectively, of particle i, {R}denote the positions of
all X particles of the system and {P}denote the
momenta of all X particles of the system. If we further
let g =—f({P) )=—iP(Pi, .P~) denote any function
whatsoever of the momenta of all )7 particles, then the
autocorrelation of f is defined by

A similar result for Pz(t) has been independently
obtained by Dorfman and Cohen, and by R. J.
Swenson. "This has been further verified by Sengers"
who has calculated the "two-dimensional" triple-
collision operator in some detail. He finds that this
"two-dimensional" operator also diverges and that the
coefFicient of the divergent part does not vanish. The
fact that the density expansion of transport coeKcients
breaks down at zero frequency suggests that transport
coeKcients are not analytic functions of the density
and, hence, the theory of transport coefhcients for dense,
or moderately dense, gases would appear to be even
more complicated than had been widely anticipated.
It is suggested, however, that a partial resummation
procedure (renormalization), analogous to that used in
the electron-gas problem, " be used to calculate the
nonanalytic dependence of transport coefIicients.

II is the Hamiltonian of the system dehned by

H= Q(2m) 'F—P+ Q V;i

Hp+ Q V,v, . —

P ' is the product of the temperature with Boltzmann's
constant, and V;~ is the interaction potential (not
necessarily central) between particles j and k.

Ke shall consider the Laplace transform of u(t),
denoted by u(E), which is given by taking the Laplace
transform of both sides of (1)

u(E) = dt e E' d{P}d(R}—ge
—"+Du (5)

' J. WVeinstock, Phys. Rev. 132, 454 (1963).
'0 J. einstock, Phys. Rev. 140, A98 (1965).» H. Mori, Phys. Rev. 111,694 (1958).
I' J. A. McI.ennan and R. J. Swenson, J. Math. Phys. 4, 1527

(1963).
» J. Dorfman and E. Cohen (private communication). R. J.

Swenson (private communication).' J. V. Sengers (private communication)." J. ~einstock, Phys. Rev. 133, A673 (1964). LSee also I
R. Goldman and K. Frieman, Bull. Am. Phys. Soc. 11,531 (1965).gK. Kawasaki and I. Oppenheim have also obtained this result
for the diffusion coefBcient (private communication).

Denoting the quantities e "QD~ and Jd{R}e"z'-
&(fD& by F~(l) and P(f), respectively,

Fpr(t)=e "QD~=e*'zFx(0), —

Q(l)
—= d(R)e "QD~= d(R}Fp (t), (6)—

and a,ssuming commutation of integrations, Eq. (5)
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But figfia f)4fi~, and C, can still vanish for those regions
of the "collision cylinders" which do not eventually
lead to the fourth and last collision in the sequence.
Hence, the regions of integration on the right-hand side
of (82) can be further reduced to ensure that the fourth
collision takes place. This can be done by restricting the
solid angle co3 to that region for which the impact
parameter of particles 1 and 2 at the instant following
the conclusion of the third collision (this impact
parameter is a function of ti", t~*, ta*, co), eau, and co3) is
less than the diameter of the particles. That is, we

must require that

R»(3) Pig(3)((t (83)

where the magnitude of e is of pzrticle size and is
independent of time (for hard spheres s is simply the
product of the particle diameter with the unit vector
in the perihelion direction of the erst collision in the
sequence).

But as t approaches inhnity we see that for most of
the integration region in (82) (t3*—t~*) and (4*—ti*)
will be very large and, hence, R»(3) will be very large
in relation to the particle diameter. Hence, we see from
(83) that to ensure that the fourth collision is aimed
to take place, the direction of the relative velocity
between 1 and 2 at the conclusion of the third collision
must lie within a very small solid angle of order of
magnitude:

O(a'/E»(3) ), (large t).

It then follows —since the direction of the relative
velocity between 1 and 2 at the conclusion of the third
collision depends on ~3—that the integration over ~3 in
(82) must be restricted to lie within a small solid angle
of order of magnitude a 2(.'»(3)—'- in order to ensure
that the fourth collision takes place (i.e. , that f»f»f)4f»
does not vahish) when t is large. In other words

CkugC=O(a'/R»(3)')C (large t for 4th collision). (85)

where R»(3) is the distance between 1 and 2 at the
instant following the third collision, P,~(3) is a unit
vector in the direction of the relative momentum
between 1 and 2 at that instant, R»(3) P»(3) is the
impact parameter between 1 and 2 at that instant, and
a is the diameter of the particles. The distance R»(3)
can be expressed as'

Rip(3) = (tg' —ti')m —'P(3(1)
+ (t3*—t~*)m—'P„(2)+s (84)

Substituting (85) into (82) and making use of the
~nea~s-v. alue theorem we have

t t

I(12)(13)(14) (12) dt1
0 t1

dt3 JM1

XC00
Zip(3)'

which at large t becomes )for the same reason as in (86)]
I{12)~ ~ ~ (1S)(12)= dtl

0

a2
ct,*o ~, (810)

R(g(3)9
where t,* is the time at which the sth binary collision in
the sequence (12), (13) (1S), (12) is aimed to take
place, and R»(s) is the distance between 1 and 2 at
the conclusion of the sth collision. and can be expressed
as

S

R»(s)=m ' P (4'—4 i*)P, ),+,(k—1)+s. (811)
k=2

Carrying out the time integrations in (810) we find

((l ()t)1(»)" (») (») = O(t ' lnt) (812)
so that

aP, (t) at=0(t 'lnt).

ACKNOWLEDGMENT

(813)

It is a pleasure to thank Dr. M. S. Green for several
interesting discussions.

where C0 means that C must be evaluated at a value of
cu3 which lies within the restricted solid angle and
satis6es the mean-value theorem.

AVe can now substitute (84) into (86), differentiate,
and carry out the indicated time integrations to
obtain the desired result.

(~ '~t)1(») ()3) ((4) ()&)=o(1~), »rg«) (87)

Since the higher order terms in the binary collision
expansion of Pa(t) can not be larger than I(») (ig)(i4) (»)
it follows that'

ap, (t)/Bt = O(lnt) . (88)

For the general (s+ 1)-particle collision operator P, (t)
we write the leading term in its binary collision expan-
sion as

I(»)...()s) ()g) = V CR» CRlsf12' ' ' flsflBO (89)


