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reproduced by the second and first terms of GJ,
respectively.

It is easily seen that the scattering Green’s function
Gi® contains only outgoing waves: The asymptotic
behavior of the Hankel functions is?!

H D (kr) — (2/mkr)'2 exp[i{kr—3 (1417} ]
H® (kr) — (2/mkr)2 exp[—i{kr—3(+37}]. (BY)

The scattered waves have an exponential time depend-
ence W; ) ~exp[FiEid], so that both positive- and
negative-energy solutions contain outgoing cylindrical
waves of the form 7172 exp[ &1 (kr— Eid)].

With the explicit form of G, it is possible to prove
the relation between the reaction matrix and the phase
shift [Eq. (60)].* The standing-wave solution W,
satisfies an integral equation

‘%®=%®+[r%%MmNMﬂWMW (B10)

3 Reference 24, pp. 303-306.
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In the limit of large 7, only the first term of Eq. (B6)
contributes, and we find

Eper® — yr®

kr
y+(2m) 1(k2+x2):| 1(er)

W) — V) [

00

X/ r'dr' Ty (kr" )0, (7)) W, (7). (B11)

The quantity in square brackets may be rewritten with
Egs. (10), (11), and (51) as (2p/m)RORD, If J,(kr)
and Y;(kr) are replaced by their asymptotic forms,*
Eq. (B11) then becomes

Wi(r) = N (2/nkr) 2 [cos{kr—3 (+3)n}
+mpRysin{kr—3(+3)r}]. (B12)
Comparison of Egs. (61) and (B12) shows that
mpR;= —tand;, (B13)

which is Eq. (60).
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The complete “formal” density expansion of any momentum autocorrelation function—at any frequency
—is derived from the density expansion of the generalized master equation. (The sth term in this expansion
is explicitly defined in terms of the time-displacement operator of s4-1 particles and involves the dynamics
of s+1 isolated particles.) The entire derivation consists of only a few algebraic steps, and is valid for
noncentral (polar) pair forces as well as central forces. It is then shown that the third and higher order terms
in the zero-frequency limit of the density expansion diverge—although the first two terms and the entire sum
coverage (the density expansion “breaks down’’). This suggests that transport coefficients are not analytic
functions of the density. It is suggested that a partial resummation (renormalization)—analogous to that
used in the electron-gas problem—be used to calculate the nonanalytic behavior of transport coefficients.

I. INTRODUCTION

HE subject of autocorrelation functions has been
receiving a great deal of recent attention. This is
primarily because the study of certain autocorrelation
functions provides a convenient means for calculating
transport coefficients from first principles.!'? In view of
this it is somewhat surprising to find that there has been
little significant advance in the calculation of transport
coefficients for classical systems since the work of Choh
and Uhlenbeck.? They used the Bogolioubov approach
to obtain formulas for the first density correction to
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transport coefficients, that is, for the effects of triple
collisions on transport coefficients. Derivations of
comparable results from the autocorrelation-function
approach have since been presented in Refs. 4-8, and
a systematic method for analytically calculating the
triple-collision operators in these density corrections of
transport coefficients has been given in Ref. 8. Still
remaining to be determined are the formulas for hlgher
order terms (general term) in the density expansion of
transport coefficients, the frequency dependence of
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transport coefficients, and the basic question of whether
or not the higher order terms converge in the limit of
zero frequency (infinite time).

The purpose of this communication is to derive the
complete “formal” density expansion of the autocorrela-
tion of any function of momenta—at any frequency—
from the density expansion of the master equation®?
(the coefficient of the sth term in this expansion is in
terms of propagators which involve the dynamics of
s+1 isolated particles similar to those in Ref. 9). The
entire derivation consists of a few algebraic steps and
is very simple. Furthermore, it is valid for noncentral
pair forces as well as for central forces. (The master-
equation approach has also been used by Mori* and
Swenson!? to obtain the first term—binary-collision
term—in the density expansion of transport coefficients.)

The density expansion of autocorrelation functions
at zero frequency is examined in Sec. IIT where attention
is drawn to a peculiar and, perhaps, profound result
for transport coefficients, namely, that although the
first- and second-order terms (these terms are asymp-
totic collision operators for binary and ternary collision,
respectively) in the density expansion converge, the
third and higher order terms diverge at infinite times
(zero frequencies). This was first noted in Ref. 9 (Sec.
IITA). The asymptotic time dependence of these
divergent terms is, in fact, shown in Sec. III to be given
by

B (t)/ot= 03 Int), (s23).

5%

A similar result for B;(/) has been independently
obtained by Dorfman and Cohen, and by R. J.
Swenson.!® This has been further verified by Sengers!4
who has calculated the “two-dimensional” triple-
collision operator in some detail. He finds that this
“two-dimensional” operator also diverges and that the
coefficient of the divergent part does not vanish. The
fact that the density expansion of transport coefficients
breaks down at zero frequency suggests that transport
coefficients are not analytic functions of the density
and, hence, the theory of transport coefficients for dense,
or moderately dense, gases would appear to be even
more complicated than had been widely anticipated.
It is suggested, however, that a partial resummation
procedure (renormalization), analogous to that used in
the electron-gas problem,'® be used to calculate the
nonanalytic dependence of transport coefficients.
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II. DENSITY EXPANSION OF AUTOCORRELA-
TION OF ANY FUNCTION OF MOMEMTUM—
FROM THE GENERALIZED MASTER
EQUATION

Let R; and P; denote the position and momentum,
respectively, of particle 7, { R} denote the positions of
all N particles of the system and {P} denote the
momenta of all N particles of the system. If we further
let ¢y=y({P}))=y¢y (P, ---Py) denote any function
whatsoever of the momenta of all NV particles, then the
autocorrelation of ¢ is defined by

o) = e itrg)= / URYRye Dy (1)

where L is the Liouville operator defined by
LEL0+ Z LJka

i<k

N
Le=—1i Y m'P;-9/4R;,

=1

@)

L,-k.=—i(6 ij/aR,-k) . (a/aP]—a/aPk> .

Dy is the normalized thermal distribution function of
the system defined by

Dy=cou / / d(R}d(P)et¥. @
H is the Hamiltonian of the system defined by
N
H= 3 Qm)7'Pi+ 3 Vi
i=1 i<k
=Hot+ 2 Vi )
i<k

B! is the product of the temperature with Boltzmann’s
constant, and Vj is the interaction potential (not
necessarily central) between particles 7 and k.

We shall consider the Laplace transform of a(t),
denoted by @(E), which is given by taking the Laplace
transform of both sides of (1)

d(E)E/ dt e—E‘[d{P}d{R}¢e_“L¢DN. )
0
Denoting the quantities e~**“¢Dy and Sd{R}e &
X¥Dn by Fx(t) and ¢(¢), respectively,
Fy()=e*YDy=e""LFy5(0),

¢(t)E/d{R}e‘i‘%DNE/d{R}FN~(t), (6)

and assuming commutation of integrations, Eq. (5)



A 462

for @(E) can now be written in the suggestive form
d(E)=/d{P}¢/dt e—E‘/d{R}e‘“LFN(O)

= / d{P}y f dt e Eg(1). )

The {R} integral in Eq. (7), it will be noted, is the time-
dependent momentum distribution function of N particles
—the formal solution of the master equation—defined
by S'd{R}e*LF 5 (0).

We can now easily obtain the density expansion of
G(E) from the density expansion of the master equation
which is exactly given in Ref. 10, Eq. (5) [see Eq. (29)
of Ref. 9] by

a6 (1)/ot= ij 8. (1)OpFx(0)

+[ BLE B =D)L V=) @

where 3, (f) is defined in Ref. 9 as a function of Lo, L,
and ¢ through the time-displacement operators of (s+1)
particles (primes denote derivatives). The properties of
B, which are of present concern are that it is propor-
tional to the sth power of the particle density (N/V)
and it involves the dynamics of s+41 isolated particles
in an explicit and well defined way. Further details
about the properties, and definition, of 8, will be found
in Refs. 9 and 8.

The term 3, 8,’(t)OpFx(0) vanishes when Fy(0) is
independent of particle configurations since!®

ODFN(O)EFN(O)— V_N/d{R}FN(O) .

It thus describes the effects of initial “correlations” in
configuration space upon the evolution of ¢(f) and,
providing the ‘“correlations” are of finite extent, it
vanishes in the limit of infinite ¢, i.e.,

lim 3° 8./ ()0pFx(0)=0. ©)

[Equation (8) differs from Eq. (29) of Ref. 9 in that
it is valid for arbitrary Fy(0) whereas Eq. (29) of
Ref. 9 is only valid when OpFx(0)=0 and, hence, does
not contain the term X, 8,/ ({)OpFx(0).]

If we denote the Laplace transforms of 3,(¢) and ¢(¢)
by B.(E) and &(E), respectively, then the solution of
(8) for ¢(E)—obtained by taking the Laplace transform
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of both sides of (8)—is easily shown to be

$(B)= f s / d(R}e—2F (0)

—[E-E S B.(E)]"

=1

X[6(0)+ 2 EB.(E)OpFx(0)] (10)

where we have used the fact that® 8,(0)=g,'(0)=0.
Substituting (10) into (7) we obtain the desired result

a®)= [ apyuts/ a5 £ 5.0

X[$O)+E 3 B.(E)OpFx(0)], (11)

g==1
where, from (6), ¢(0) is defined by
¢(0)=yDx"

D=0 / / d{P}ePHo,

Equation (11) is the complete ‘“formal” density expan-
sion of any momentum autocorrelation function at any
frequency. At nonzero frequencies (Es0), however, it
can be seen that Eq. (11) actually involves a double
expansion in the density. The momentum operator
B.(E), as we have mentioned, is proportional to (N/V)?,
involves the time-displacement operator of no more
than s+41 isolated particles (it involves the dynamics
of s+1 isolated particles) and is defined in Ref. 9. The
explicit expression for 81 (¢), B2(f), and B3(¢) is also given,
for the reader’s convenience, in Appendix A of the
present article.

To obtain @(E) to a given order in the density one
can terminate the series Y ,;® ,(E) at the correspond-
ing s—providing E is large enough (see Sec. III for
complications at small E).

To evaluate G(E) numerically—to order #, let us
say—one must be able to calculate the quantity

and

[E-F' L A®T$O=K() (1)
which obviously satisfies
[E-E* ¥ A.(BIK()=6(0) (13)

and involves the numerical solution of the dynamical
(n+1)-body problem. Life would be easy if ¢(0) were
an eigenvector of E?8,(E), with eigenvalue A,(E), since
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then K (n) would be given by

K(n)=¢(0)/[E— 7_: (B, (14)

N (E) = f AP OERE0) [ f AP, (15)

More likely, for transport coefficients, ¢(0) is an
approximate eigenvalue of E*8,(E) and (15) is a good
first approximation. This cannot yet be justified, but
has already been shown to be the case for [E*8:(E) Jz—o
(binary collision operator) by Mori"' who used an
expression comparable to (15) to obtain the usual
results for transport coefficients to lowest order in the
density.

III. ZERO-FREQUENCY LIMIT—NONANA-
LYTICITY OF TRANSPORT COEFFICIENTS
AND DIVERGENCE OF 8,/ ()

In this section we shall examine the zero-frequency
limit of autocorrelation functions, and shall point out
an unusual and, perhaps, profound result for transport
coefficients, namely, that although B:'(®) and B;'(«)
converge, the four-body and higher terms 3, (=) (s>3)
do not converge.?

The zero-frequency limit of @(E) is obtained imme-
diately and exactly from (11) and (9) [the magnitude
of 8,(E)OpFx(0) must have a finite upper bound since
the spatial “correlation” length of Fx (0) is finite]. Thus,

30 [apets/Om— £ B.E DD (16)

But, since B (£) Jimo=B:(#) Jt=0=0,° we have

: 23 =1 —tEQ 11
lim %, (E)=lim f die—58,7 (1)

0
=B,'()
so that (16) can be written

an

3= [aPyy/lin- £ 8090w (19

or
a(0)= f p / 4B expltlim 5 6/ OWDS. (19)

Equation (19) expresses @¢(0) in the familiar relaxation
form, and is exact for any momentum autocorrelation
function with any pair interaction potential between
particles. An immediate consequence of (19), previously
noted by others,!®:" is that one only needs the asymp-
totic forms of the master-equation operators (scattering
operators) to calculate transport coefficients.

16 R. Balescu, Physica 27, 693 (1961).
17 R. J. Swenson, Physica 29, 1174 (1963).
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Equation (19), or (16) or (18), is the density expan-
sion of the ‘kinetic parts” of transport coefficients
provided B, (0 )=lim,.,, dB,(f)/dt exists. It has already
been proven?® that By'(«) exists and B;'(®) exists.
It turns out, however, that 8,/(«) does not exist for
every s—as was previously pointed out.® In fact, it is
shown in Appendix B that

B/ () =0(@3Inp), (s23). (20)

The fact that the third and higher coefficients of the
density expansion of the ‘“kinetic parts” of transport
coefficients diverge at zero frequency suggests that
transport coefficients are not analytic functions of the
density (the density expansion breaks down). It is im-
portant to note here, however, that although 8,’ () di-
verges the infinite sum

lim 3 8./(2)

t—0 g=1
converges—very rapidly. The proof of this convergence
is somewhat complicated (and not terribly relevant
here) and will be published separately.

It is important to note that Egs. (8), (11), and (19)
are each valid, despite Eq. (20), since they contain
the convergent infinite sum of collision operators.
[It is their usefulness as a density expansion for dense
gases that is jeopardized by Eq. (20).] We have simply
established that the limit can not be interchanged with
the sum.

In view of Eq. (20) it appears that the theory of
transport coefficients is even more complicated than
had been widely anticipated. To circumvent this
difficulty one can expand 3 ,—;®@8,’(f) into “binary
collision operators’” and then partially resum the
resultant terms into convergent groups—in a manner
similar to what has been done for the electron gas.!®
The details of this “renormalization” will be the subject
of a future communication.

APPENDIX A

Formulas for 8,(¢), B2(¢), and B3(¢) are obtained from
Egs. (26), (11), (12), and (16) of Ref. 9. Thus, with

N, V—> w,

Bl(t)E Z V—l[dR;jtcij(t)—Go(t)], (Al)
1<i<j<N
/32([)5 Z V‘z/‘dRideisz(ijk, t)
1<i<j<k<N

= Z V_Z/dRu‘dRik[Gijk(t)'*'ZGo(t)_Gij(l)

i<ji<k
ijk ¢t t
—Ga(O)—Ga()— X / dn / dts
(rshie S o

XGas(t1)iLarGea(te—1)iLeaGo(t—12), (A2)
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B:il)= X V"defdeideiz[ijkz(t)—Go(l)
i<i<k<l
ijkl ¢
- dti[Gas (1) —Go(t1) 1Gijui(t—t1; F ab)
a<b /g
ijk1 4
—_ Z thz((IbC; tl)Gijkl(t_tl; :# abC) ’ (AS)
a<b<e J g

where Go, Gij, Gix, and Giji; are the time-displacement
operators for free particles, two interacting particles,
three interacting particles and four interacting particles,
respectively, defined by

= pitL
Go——'--e1 o,
GijE e:t(Lo-I-L.',') ,

Gijp= eit(LgtLij+Lik+Lik) , (.\4)
15kl

GijklE eXp[’l:t (Lo+ Zb Lab)] ,
a<<

and Gini(t; #abc) and Giu(t; #ab) are defined, with
a=1, b= j, ¢c=k, for example, by

Gina(t; Fijk)=Go+GutGit+Gu,
Gij(t; F17) =Gt Giri—3Go—Gr—Ga—Gu—Gji

—GjrteitotLact L git(LotLat Lip)
The sum Y ,<»%* means, for example,

ikl
> Lay=Lij+La+La+Liux+Li+ L.

a<lb

Equations (A1), (A2), and (A3) are explicit definitions
of the first three terms in the density expansion of
momentum autocorrelation function (‘“kinetic parts”
of transport coefficients) in terms of the time-displace-
ment operators for zero, two, three, and four interacting
particles. They involve the solution of the two-body,
three-body, and four-body problems, respectively, in
an explicit and well-defined manner.

APPENDIX B

The asymptotic time dependence of the four-particle
collision operator B3(¢) can be calculated by the binary-
collision-expansion method of Refs. (9) and (8) [which
was used there to obtain the asymptotic time depend-
ence of B2(£)]. This method consists of expanding Bs(f)
in a sum of ordered products of binary-collision opera-
tors, each term of which corresponds to an ordered
sequence of successive binary collisions among four
isolated particles, and then calculating the asymptotic
time dependence of each term—which we shall now do.

Thus, a leading term in the binary collision expansion

WEINSTOCK
of B3(£)%9 is

Tayasanay

t
= Vadelng13dR14/ dtIGn(tl)iL]g
0

t t
X/ dtZGIS(tT—tl)iwa dt3Gra(ts—t2)iL1y
t

t2

t
X/ dt Gro(ti— 13)iL12Go(t—13)

1]

EV‘adelzdRladRuflzflsfuflzGo (B1)

where f12 has been defined in Ref. 9.

It has been established in Ref. 8 that fisfizf1sf12
corresponds to a sequence of successive binary collisions
in which a collision between particles 1 and 2, is followed
by a collision between 1 and 3, followed by a collision
between 1 and 4 followed by a collision (recollision)
between 1 and 2. That is, fiaf1sf14f12 is different from
zero for only those regions in the space of Ry, Ry;, and
R4 which lead to a collision between 1 and 2 followed
by successive collisions between 1 and 3, 1 and 4, and
1 and 2 in that order.

Hence, as in Ref. 8, we note that fisf15f14/f12 is zero
when Rjs, Ry; and Ry lie outside the ‘‘collision
cylinders®” for the first, second, and third collision in
the sequence, respectively, so that, as in Ref. (8), we
can restrict the integrations over Rys, Rys, and Ryy to
lie within the respective “collision cylinders,” and then
we can transform these integrals into integrals which
are parallel and perpendicular to the axes of the respec-
tive collision cylinders to obtain?

V‘"adelzdklsdR14f12f13f14f1260

t t t
=/ dll*/ dh*/ dla*/dwlfdwgfdw3C. (B2)
0 u* %

Here £,*) i5*, and £3* are the instants of time at which the
first, second, and third collisions in the sequence are
“aimed” to take place,® w;, ws, and w; are the solid
scattering angles for the first, second, and third colli-
sions, and C has been defined by

C=V"3m3P19012P15(1)013P14(2) 014 f12 13 14f12G0

where Py;(k) is the relative momentum between 7 and 7,
immediately after the kth collision of the sequence has
taken place, oy is the differential scattering cross
section for the collision between 4 and 7, and m is the
particle mass.

The Riz, Ry, and R4 integrations in (B2) have been
restricted to “collision cylinders” which ensure that
the first three collisions in the sequence will take place.
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But fisf13f14f12, and C, can still vanish for those regions
of the “collision cylinders” which do not eventually
lead to the fourth and last collision in the sequence.
Hence, the regions of integration on the right-hand side
of (B2) can be further reduced to ensure that the fourth
collision takes place. This can be done by restricting the
solid angle w; to that region for which the impact
parameter of particles 1 and 2 at the instant following
the conclusion of the third collision (this impact
parameter is a function of #;*, f5¥, #3%, w1, w2, and w;) is
less than the diameter of the particles. That is, we
must require that

R12(3) 'P12(3)SG (83)

where Rj2(3) is the distance between 1 and 2 at the
instant following the third collision, P5(3) is a unit
vector in the direction of the relative momentum
between 1 and 2 at that instant, Ry5(3)-P5(3) is the
impact parameter between 1 and 2 at that instant, and
a is the diameter of the particles. The distance R;2(3)
can be expressed as®

ng (3) = (tg*—tl*)m-1P13(1)

-+ (t3*-‘t2*)m_1P14(2)+ € (B4)
where the magnitude of ¢ is of pzrticle size and is
independent of time (for hard spheres ¢ is simply the
product of the particle diameter with the unit vector
in the perihelion direction of the first collision in the
sequence).

But as ¢ approaches infinity we see that for most of
the integration region in (B2) (f;*—1£*) and (f.*—4,*)
will be very large and, hence, Ri2(3) will be very large
in relation to the particle diameter. Hence, we see from
(B3) that to ensure that the fourth collision is aimed
to take place, the direction of the relative velocity
between 1 and 2 at the conclusion of the third collision
must lie within a very small solid angle of order of
magnitude:

0(a*/R12(3)%), (larget).

It then follows—since the direction of the relative
velocity between 1 and 2 at the conclusion of the third
collision depends on w;—that the integration over w; in
(B2) must be restricted to lie within a small solid angle
of order of magnitude @’R;2(3)~2 in order to ensure
that the fourth collision takes place (i.e., that fisfi3f14f12
does not vahish) when ¢ is large. In other words

/dw36'=0(a2/R12(3)2)C (large ¢ for 4th collision). (BS5)
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Substituting (BS) into (B2) and making use of the
mean-value theorem we have

t t t
I(12)(13)(14)(12)=/ dtl*/ dlz*/ dta*/dwl—/dw2
0 11* tz*
2

a

o

where Co means that C must be evaluated at a value of
wz which lies within the restricted solid angle and
satisfies the mean-value theorem.

We can now substitute (B4) into (B6), differentiate,
and carry out the indicated time integrations to
obtain the desired result.

(8/0D1 a2y a an an=0(Int)

Since the higher order terms in the binary collision
expansion of 83(f) can not be larger than 7 19y 13y 14y (12)
it follows that®

large t). (B7)

985 (2)/0t=0(Int). (B8)

For the general (s41)-particle collision operator 3, (¢)
we write the leading term in its binary collision expan-
sion as

I19y...asyan= V"‘/dR12' . '/dR1,sf12' -+ f15f12Go (B9)

which at large ¢ becomes [for the same reason as in (B6) ]

t t a2
1(12).~-<1S)<12>Ef at*- - f dfs*O( ), (B10)
0 ta—1* R12(3)2

where ¢,* is the time at which the sth binary collision in
the sequence (12), (13)---(1S), (12) is aimed to take
place, and Rj:(s) is the distance between 1 and 2 at
the conclusion of the sth collision and can be expressed
as

R12(S)=m_1 Zs (fk*—tk_l*)PLk.}.l(k—1)+8. (Bll)
k=2

Carrying out the time integrations in (B10) we find
(61,/(%)](12)... 18)a2)y= O(t‘-a h’ll) (B12)
so that

98,(t)/8t=0(1>=3 Int). (B13)
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