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with k, and kf the initial and final wave numbers in
the excitation process.

In a calculation which will be reported later the
present calculation will be extended to higher excited
states and to higher energy ranges, and exchange of
the electrons will be included.

ACKNOWLEDGMENT

I wish to thank Robert Baxter for the efficient pro-
gramming of this problem, Bernard Rugg for taking
responsibility for the production of the tables, and the
Computing Branch of the Theoretical Division for
generously providing their services.

PIC YSICAL REVIEW VOLUME 140, NUM BER 1A 4 OC TOB E R 1965

Radiative Cascade Theory

P. LAL* AND P. T. LANDSBERG

Departrlent of 3ppbed mathematics arId Mathematica/ Physics, University College,
Cathays Park, Cards, Wales

(Received 19 April 1965)

A steady-state cascade theory has been set up for radiative electron transitions. These are assumed to
occur between a continuum and various excited states, as well as between any two excited states, of hydrogen-
like atoms. The work contains two features which have not previously been fully taken into account:
(1) Both spontaneous and induced transition probabilities have been included exactly. (2) In addition to
the radiative transitions, the reverse transitions due to absorption of background radiation have also been
included. The following graphical results are given: (a) The steady-state occupation probabilities of the
excited states as a function of excess electron density. (b) A "sticking probability" P„(for an electron from
a level e to reach the ground state without leaving the atom) as a function of the principal quantum num-
ber ~. (c) The effect of the cascade on the transition rate into the ground state. The calculation is valid for
semiconductors and for the analogous astrophysical problem. Temperature dependences have also been
studied. The graphs shown bear out quantitatively the expectation that P„decreases as either the tern-
perature or the principal quantum number increases.

1. INTRODUCTION

KCOMBINATION-generation processes involving
a series of levels (e.g. , excited atomic states) lead

automatically to cascade problems. In these, electrons
can move up and down the energy scale and the transi-
tion probabilities between any two levels, together with
the assumption of a steady state, leads to a steady non-
equilibrium probability distribution for the occupation
of the quantum states involved. This will in general
differ from the cruder "quasi-Fermi" distribution often
hypothesized in solid-state work.

The simplest cascades are those involving a con-
duction band (a continuum in astrophysics) and the
states, labeled by the principal quantum number n, of
hydrogen-like ions. In such cases the results of the cal-
culation may be given in terms of the probabilities II„
that an electron will reach the ground state from level
n without leaving the atom. This has been called the
"sticking probability" in solid-state work, and has
proved difficult to calculate. If states lying above n=.V
are neglected an approximate probability II„,~ is ob-
tained. Many results of this paper are presented in terms
of "reduced" sticking probabilities I'„,~. As far as we
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are aware, this is the first time this probability has been
investigated systematically for a solid-state problem by
a quantum-mechanical method.

The assumptions made in this paper are: the electrons
in the band having a Maxwell distribution in the steady
state; hydrogen-like wave functions for the discrete and
continuum states, modified by an eR'ective mass and a
dielectric constant; black-body radiation in the solid;
Saba dissociation formula for equilibrium even for the
large principal quantum numbers n; neglect of term struc-
ture for given n. If the steady state is maintained by
pumping electrons back into the continuum a general
theory is readily set up LEq. 4.2(a)7. If it is also assumed
that all transitions are radiative, the matrix elements
which occur are standard. For the purposes of numerical
calculations the problem can be further simplified by
supposing that because the lowest level n= 1 is the most
highly populated of the discrete levels, the pumping
action may be neglected for the levels n&~ 2. This leads
to the final set of Eqs. (5.17) whose solutions are readily
computed.

The cascade model set up in this way is informative in
spite of the limitations implied by the above assumptions.
It provides guiding lines for a more complete cascade
theory which incorporates also the effect of phonons and of
electron collisions, but such a theory is not attempted here.
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The first question is whether the distribution obtained
has the correct properties in the limit 1V ~~ (Sec. 6).
The calculations could also apply to steady-state gaseous
nebulae and stellar atmospheres. Something equivalent
to a pumping rate occurs also in these cases, and in the
numerical part of earlier work its eRect on levels e ~& 2 has
been neglected (see Sec. 4). In such cases the cutoff
level n=A can be much higher than in a realistic solid-
state problem (1V 7). One, therefore, wants to know up
to what level e the distribution obtained is reliable for
various values of E.We find that with V =55, the results
are reliable up to n 30. We, therefore, do not extra-
polare to X= ~ in presenting our later results (Figs.
5 to 10).

Apart from the cutoR value X, the same 6gures serve
to give results for the solid-state and the astrophysical
situation Lsee Eqs. (5.14) and (5.16)$, and the reduced
sticking probability is given as a function of n, A', and of
temperature in Figs. 5 to 8.

One also wants to know the extent to which the exis-
tence of cascade paths enhances the transition rate into
level n= 1 for a given steady-state electron concentration
in the band. This is measured by a cascade ratio C
(Figs. 9 and 10).

The connection with previous work is as follows:

(i) Solid-State Work

Phonon cascades in the steady state were considered
by Lax' and by Ascarelli and Rodriguez" . For a syste-
matic account of the radiative transition probabilities
for solids, see Lasher and Stern' and references given
there. None of these authors considered the radiative
cascade, though the formal considerations of Nagae4
should be mentioned.

(ii) Astrophysics and Piasmas

Upward electron. transitions (absorption) have nor-
mally been neglected, and induced emission due to
radiation at the electron temperature has been taken
into account approximately as negative absorption. "
Both eRects have been included exactly here. For a
review of earlier work, see Ref. 7. For the case where
there is no cascade, adequate discussions of spontaneous
emission are available (e.g. , Milne, ' Biberman et al. ,

'
etc.), but the present paper goes further in the case

' M. Lax, Phys. Rev. 119, 1502 (1960).
~ G. Ascarelli and S. Rodriguez, (a) Phys. Rev. 124, 1321

(1961); (b) 127, 167 (1962).' G. Lasher and F. Stern, Phys. Rev. 133, A553 (1964).
4 M. Nagae, J. Phys. Soc. Japan 18, 207 (1963).'M. J. Seaton, Monthly Notices Roy. Astron. Soc. 119, 90

(1959).' D. H. Menzel and J. G. Baker, Astrophys. J. 86, 70 (1937).
7 R. N. Thomas, in Physics of the Solar Chromosphere, edited by

R. N. Thomas and R. G. Athay (Interscience Publishers, Inc, ,
New York, 1961),p. 83.

8 E. A. Milne, Phil. Mag. 47, 209 (1924).'L. M. Biberman, Y. N. Toropkin, and K.. N. Ul'yanov, Zh.
Tekhn. Fiz. 32, 827 {1962)LEnglish transl. : Soviet Phys. —Tech.
Phys. 7, 605 (1963)j.
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FIG. 1. The effect of induced emission and absorption on the
reduced sticking probability P„~. The effects are neglected in
curves a and b (taken from Seaton, Ref. 5). Curves c are based on
the present work. E is the value of the principal quantum number
beyond which the excited states are neglected. P„~ is defined in
Eq. (5.19).Temperatures are given on the curves.

of the induced and total emission. Thus the usual ex-
pression for the negative absorption rate is shown in
Sec. 3 to be valid only in equilibrium, and it has been
replaced by a more accurate expression in the present
work. On the other hand, collisions between electrons
have been introduced in astrophysical work (Bates
et al ") in a. ddition to the radiative effects. In the
present paper collisional contributions to the cascade
are neglected. That the two physical effects incorporated
here can be of importance is illustrated in Figs. 1 and 2.
The fact that curve c lies below the other curves shows
that on balance these two eRects make ionizing transi-
tions out of the discrete levels more probable. Thus the
eRect of absorption on the occupation probabilities is
more important than the eRect of induced emissions. A
simple demonstration that both eRects can become im-
portant, and that absorption tends to be more important,
where higher excited states are involved is given at the
end of Sec. 5.
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Fro. 2. The effect of induced emission and absorption on the
reduced sticking probability P„N. The effects are neglected in
curves a and b {taken from Seaton, Ref. 5). Curves c are based on
the present work. E is the value of the principal quantum number
beyond which the excited states are neglected. P„~ is defined in
Kq. (5.19).Temperatures are given on the curves.

'0D. R. Bates, A. E. Kingston and R. W. P. McWhirter,
Proc. Roy. Soc. (London) A267, 29 (1962).
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R =iV PA„k jB ~ kI,7
—X„B„„eI„(n')n) . (2.1)

Here A~ and BE are the Einstein coefFicients, and the
terms on the right represent in turn: spontaneous emis-

sion, induced emission and absorption. I, is the energy
emitted normally by a black body per unit time, per
unit frequency range, per unit area, per unit solid angle:

I„=(2h voz/z)ct exphv/kT —17 ' (2.2)

and I =—v„„is the frequency corresponding to a transition
between levels e' and n. Here p is the refractive index of
the solid, and may be replaced by unity in some astro-
physical applications. If g„be the number of atomic
states with quantum number e one has in thermody-
namic equilibrium at temperature T, denoted by an
additional suffix 0,

2. BOUND-SOUND TRANSITIONS

I.et cV„be the concentration of electrons in the atomic
levels having principal quantum number e. Then the
radiative transition rate per unit volume out of levels.
fl ls

—,'moo'+ I =hv, dv/do = m*o/h, (3.2)

where I is the ionization energy for the levels ts. The
e6'ective mass m* may be replaced by the electron mass
in astrophysical applications.

As in the Einstein argument quoted in Sec. 2, one
may first consider thermodynamic equilibrium. Then
(3.1,3.2) yield

vhv
I„=- (3.3)

4zr [m*o/ f(o)h7(JV„p/IV; pIV, p) (n„./n, .) 1—0 cn/&cn

For black-body radiation (2.2) one now finds

for electrons with velocities in the range (o, o+do). IV;

and X, are the concentrations of ions and of conduction
electrons, respectively. f(o)dk is the probability of find-

ing a conduction electron in the velocity range (o, o+do).
a.„ is the cross section for spontaneous emission, and
n„, is the cross section per atom for radiative absorp-
tion. n, „has dimensions LLoT '7, and since it is a
coeKcient describing induced emission, this term is
proportional to E; and X,. The relation between v and
u is given by energy conservation

&Y o/zV o= (g /g. )e-"""'""' (2.3) 0'oa/n oogzl v JIz /'pc (3.4)

g A;.e/g. B.;e=2hvozko/c', (2.4)

Substituting (2.2), (2.4), (2.5) into (2.1), one finds

R„.„=iVf„A„„(1—.'V iV o/.V„p.Y ) (n') n), (2.6)

where
e kv/kT7 i A, —E— (2.7)

It appears that in astrophysical work (Seaton, ' Menzel
and Pekeris"), induced emission can normally be ne-
glected. This enabled one to use the Einstein A~ co-
efficient in (2.6) instead of the coefficient (2.7).

3. BOUND-FREE TRANSITIONS

The radiative transition rate per unit volume from
the continuum to states with principal quantum nurn-
ber e is

Einstein's argument applied to these equations enables
one to infer

&.o f(p)h n..
ek~/kT (n 1 2 . . .) (3 5)

&;~,o m*v n.,

Introduce next the mass-action constant for the re-
action ion+electron=neutral atom, which is given by
the Saha dissociation formula

~V o g h'
elnlkT (n —1 2 . . . ) (3 6)

iY;pzV. p gzg, (2zrm*kT)ot'

where g; is the degeneracy factor for the state of the
ion, and g,=2. For equilibrium the Maxwell distribution

f(o) =4zo(m*/2zrk T) z "o'e "'"ZokT—(3.7)

gnofnc gcofcn y gt;= 4Ã'~ Vh g age . (3.8)

The analog of (2.4) is obtained from (3.4) and (3.8),
and 1s

may be used. Putting (3.6), (3.7) into (3.5), one finds,
in analogy with (2.5)

d(R, ) = V;)V,f(o)doL&r.„o+(4zr/hv)n. I.7
—(4zr/hv)n .tV I„dv (3.1)

&«g& 2vh p

e«g g, m*2v2c2
(3.9)

"D. H. Menzel and C.L. Pekeris, Monthly Notices Roy. Astron.
Soc. 96, 77 (1935). This relation is due to Milne, ' and the above equations
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g 2~2 2 I /2

S;V. -- — (mPkT) '"
gag~ C 7I"

(hv)'n. .
X e{l» hl ) {krd(hv)

ehv/kT
(3.11)

8~v2p2 a~,.V~
d(hv) =

hC2 eh. /k

~ &'o~'.o g

- 1"nO gsge

2p' 2 '" (hv)'n„.
X—— (m*k T) '{-'er" {Prd(hv), (3.12)

C ehv/kT

are, respectively, spontaneous emission, induced emis-
sion and absorption rates per unit volume, due to elec-
trons in the velocity range (v, p+dv). (3.6) has been
used in (3.12). Combining these rates, (3.1) becomes

g„~&~ 2 ~/2

d(E,.) =X;X, —— (mPkT) "'
gage C X'

(hv)'n. ,
&( e'»{" (1 b„)d(hv), —(3.13)

ehv[kT ]

1V„/iV„p
b„=-—

(1V,/1V;p) (X,/S. p)

(3.14)

The factor 1—b„measures the extent by which the
steady state departs from the equilibrium state. (3.13)
implies the assumption that the Maxwell distribution
and the black-body radiation formula hold also in the

are well known in astrophysics (Aller, "), except for
(3.1), (3.8) which may be new.

One can now substitute (3.2) to (3.9) into (3.1) in
order to obtain expressions for the nonequilibrium
steady state. All rates will be expressed in terms of G ..
Hence,

g 2~2 2 1/2

X,,V. — (m'kT)-»'
g g~ C Vl

)&(hv) n„,e{ " ""~~P d(hv), (3.10)

steady state. The integrated form of (3.13) is

E.„=Ã;1V,B (1 b„—) (n=1, 2, - ) (3.15)

In astrophysical problems X; is usually the concentra-
tion of ionized hydrogen atoms. In semiconductors lV;
may be interpreted from

(3.17)

where Sg is the concentration of acceptors.
In astrophysical work, the induced emissions, repre-

sented by the second term in (3.1), have been taken into
account as negative absorptions (Aller" ). To explain
this idea, consider the last two terms in (3.1) as negative
and positive absorptions, respectively. The absorption
rate per unit volume becomes then

4Ã A sA q 0!crt dV
1— f(p) n„.X—I„dv.

hv E o, , dv
(3.18)

By (3.2) and (3.8) this becomes in the case of thermo-
dynarnic equilibrium

(47r/hv)(1 e""{Pr)n„„&—V„I„dv. (3.19)

The negative term in (3.19) is due to induced emissions
and gives the volume rate of negative absorption.
(3.19) has been used extensively also away from equili-
brium. The above argument shows that this is an
approximation, and the present theory, which is based
on (3.1) is more accurate.

4. THE STEADY-STATE CONDITION

Suppose that G is the transition rate per unit volume
out of the levels n due to some external pumping action
into the conduction band. Then the condition for a
steady population of levels I is by (2.6) and (3.15)

g„2 2 &/2

B, —= —— (m*kT) "'
gag~ C 2

"p'(hv)'n. .
Xe "{Pr d(hv) . (3.16)

eh~/kF
~n

G =,V;.V,B. (1 b„)+ Q X .4 —(1—.V 1V„p/{V„!V„p)
n'&n

n —1

A .4„„(1—X ".V p/X V„"p) (m=1, 2, .). (4.1)n"-i

It will eventually be supposed that the external pumping acts predominantly on electrons in levels n= j., i.e.,G„=G&b„&. This is in agreement with the usual approximations in astrophysics (Seaton, Baker and Menzel ). The
condition for a steady population in the conduction band is then

Gg ——iV,.V, P B, (1 cV &V,p.Y;p/.V, Vc.pX,)—. (4.2)

12 L. H. A11er, Astrophysics (Ronald Press Company, New York, 1953), p. 148.



A 50 P. LAL AN D P. T. LANDSBERG

This is not an independent condition, since it may be obtained by summing (4.1) over all n. As a result the steady-

state occupation number must be specified for one set of levels n, since one is otherwise one equation short. It will

be convenient to take bi as given, and determine the other b's in terms of it. For the formal part of the theory, all
G's will be kept, as this does not cause any diSculties.

Using (3.6), (4.1) becomes with x =I /kT,

t" h' n —1

=B. (1—k )+ (2xm*kT) '"( P (b b)g—A„e*"' P—(fi b„—)g A "e*"}(n=2, 3, .). (4.2a)
n') n n"=I

In virtue of (3.2) and (3.16) this may be written

where

gage
(2sm*kT)'i2G —s = Q D b ~ (n=2 3 )

h' n'=1
(4 3)

and

SxI„'g„
— e+f4

C2h

D =g A„„e*"' (n(n')

" (1+n) 'a, ii'dN

eon (1+u)
(4.4)

= —s„—P g. A. .e*"'—g.e*. P A„„- (n=n')
n'&n

=g„A.„e* (n) n') .

n"=1

(4 5)

(4.3) are the cascade equations.
By treating the term n" = 1 in (4.2a) separately, one can obtain this equation in the form

G 1—b2 i —b3
+ =f (n=2 3 . .)

V;.V,(1—bi) g;g, (2am~k T)"' 1—bi 1—bi

where f denotes an appropriate function. This shows
that in the present case when G =0 for n=2, 3,
values of b need be obtained for only one value of b~.

The values of the b (b
' say) can be deduced from them

for other values of fir (bi' say) by the relation

i—b„ i —b '

(4.6)
i —bg 1—bg'

I'„ is a reduced sticking probability (Sec. 7). Hence it
was thought useful to show the sticking probability
rather than b in most figures given in this paper.

Seaton s results, given in Figs. i and 2, and originally
calculated for b~ ——0, can also be adapted so as to be
applicable to general bi,

S. DEMVATION OF FINAL FORM OF
CASCADE EQUATION

The A's and the absorption cross sections can be re-
lated to the oscillator strengths" f„„

g„8m2e2p2
A„„= — v„.„'f„„)1 e"""rj ', (n'—)n) (5.1)g„m*c'

xe K

Here R is the modified Rydberg constant

R= (2ir'me'/k') (m*/me') Z'- (5 3)

where e is the static dielectric constant of the material
and may be replaced by unity in some astrophysical
applications. Ze is the nuclear charge of the hydrogen-
like atoms. If, is introduced in order to enable one to put
the energy in the conduction band in a form analogous
to that appropriate to discrete levels in a hydrogen-like
atom:

I =R/n2 ime2=R/K2 (5.4,5.5)

2' i 1

Men'n" n' n" (5.6)

Provided (5.4) is not used as an identification of I„ in
(4.4), the results (4.3), (5.1), and (5.2) are general in
the sense that the wave functions for the various elec-
tron states n enter only into the oscillator strengths,
and have not yet been specified.

Using now Coulomb functions for the continuum and
for the discrete states, one finds with g„=2n' (Menzel
and Pekeris")

&nc= nc ~

mc 2E

"See Ref. 12, pp. 131, 146.

(5.2)
2' i i

f..= —+— gii.
3~3~n 5~3 n 2

ff
2

(5.7)
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p giidn
s =—e"

n' p [e* &'+"&—1][1+u]
(5.8)

Here gi and gli are Gaunt factors and are of order unity.
They are complicated expressions, and will therefore be
replaced by unity in subsequent numerical work.

The above results enable one to give simple expres-
sions for the quantity z of (4.4) and for the modified A

coefficients of (2.7)

In order to solve the equations (4.3) the excited
energy levels must be cut ofI' at some value n= X. This
leaves E—1 independent equations, and implies neglect
of the discrete energy levels for which E„&EN. We shall,
therefore, write b„N instead of b„. The only parameters
left in (4.3) are then b,ff, x„,and 1V. These determine the
cascade completely. The refractive index p, cancels out.

By (5.3), (5.4),
x =I /kT—= R/n'kT. (5.13)

pgi

nn"(n" —n')
where Z= 1, m*=0.22m, &= 16,p—= (2"m'/3v3)(e" fn* ft'Z'/p'c' h') . (5.10) (5.14)

T=4'K(semiconductors)
Although normally g;= 1 and g, = 2, one may put so that

(5 9) The cascade problem will be considered for the case of
germanium

1V.=g;g, (2frm—*kT)'1'/h' (5.11) x =33 944/.n' (5.15)

and note that the quantity B,„currin gin (3.15)
satisfies

B..=z„/1V. . (5.12)

To write the set of Eqs. (4.3) for the b„ in final form,
note that one of the equations must be omitted, since
it is not independent, as already observed with (4.2).
Since G„=G&b„&by hypothesis, it is convenient to omit
the equation for n=1. All remaining terms in the set
(4.3) are proportional to P in virtue of (5.8), (5.9), and
this quantity cancels out of (4.3).

Z= 1, m*=m, &=1,

T=4650'K(astrophysics) .
(5.16)

This is in the range of interest in astrophysics.
The equations to be solved are now given by (4.3)

with z„and A„„given by (5.8), (5.9)

Our calculations remain valid, however, for any set of
values (5.14) which lead to (5.15). The same numerical
values for x„arise in the astrophysical problem speci-
fied by

1 " e'~ du e&rs

0=-— +bgN
2n' p

e»&'+»i —1 1+u n(n —1)

n—1 e*a" bn, "N e&n bn'N+E „„+2»"=p e»"»—1 nn" (n —n" )»' »+i e*»=»'—1 nn'( 'np nP)— 2n' () e* ('+"&—1 1+u

where

+ p +p, (n=2, 3, , 1V) (5.17)»"-i e*«"»—1 nn"(n' —n"')»'=»+i e*""'—1 nn'(n" —n')

R 1 1
(n'&n).

kT n2 n'2
(5.18)

Here b» must be assigned a numerical value appropriate to the steady state under consideration. (5.17) may then
be used to obtain the other b„Ns. This was done on a digital computer for values up to %=55.

If now a different value of biff(bUf', say) is chosen, the resulting new values, b N' say, of b ff need not be worked
out again, since the argument leading to (4.6) is valid even if the levels considered are cut off at n= &V

1 b ff 1 b —ff' —1V„/1V„p
PnN= =

y bnN=
biN 1 biN (1V&/1V&p)(1V«/&V«p) for cotoif at »=1v.

(5.19)

A simple estimate of the effects of stimulated emission and of absorption can be obtained as follows. Let

Rate of stimulated emission n'~n (or of absorption n~n')
s. „(or a..)—=

Rate of spontaneous emission n' —n
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FIG. 3. The steady-state concentration, as measured by b„z
/see Eq. (5.19)j, obtained by solving the cascade equations (5.17)
with x„given by (5.15).

Fic. 4. For.V ~~, b1„——0.9 and x„given by (5.15) b„v Lsee
Eq. (5.19)j follows the asymptotic law (6.3).

g, ,= [e~ari' 1 j—i
b„—a„„=e'""'s„u„. (5.21l, (5.22)
b 14

Adopting the numerical value (5.15), i.e. ,

R 2~'me4 m*7'
= 33.N4,

k T h'-'k 7' m e'-'

The definition can be made to include transitions
which involve the continuum, if the latter is identi-
fied by n= ~. For bound-bound transitions the two
ratios (5.20) can be obtained from (2.1), (2.2), (2.4),
(2.5). For bound free transitions, they are obtainable
from (3.10), (3.11), (3.12). The four results can be
summarized thus (b„=1)—

lim( lim b„~)=1.
n~~ N~~

(6.1)

An extrapolation procedure was used to check (6.1).
From values of b„N for fixed n and &7=37, 40, 43, 46,
49, 52, 55 the constants t."j in the formula

fixed by (3.6), one would expect the value of b N for
given n to increase as .V increases. This is borne out by
the calculation (Fig. 3). Next consider b„~ for given X
as n increases. The equilibrium concentrations .V„p de-
crease as n goes up, but the steady-state concentrations
.V decrease less rapidly, so b„N increases. For large n
the occupation probability entering into sV„, must tend
towards that entering into X,. The same is true for .'V„p

and V,p. Hence one would expect

one finds the results given in Table I.
It will be seen that, given n')n, both eHects can be
appreciable as n increases. In particular (5.22) shows
that the eAect of absorption tends to be a more impor-
tant correction than the efI'ect of stimulated emission.

fj

b„.v fi„+Q c,e "——~"

v ere identified. Hence

b„.=—lim b„,g.
N ~gl

(6.2)

TAsr. K I. Ratios of rates of stimulated to spontaneous
emission and absorption.

~n'ra

~e'—Q rnn
b„

(10,1) {3,2) (6,5) (10,9) (~,1) (~,2) (~,5) (~,9)

10 '4 10 ~ 2.0 12 10 '4 2&10 '4 0.34 2.0

1 3.1 13 1 1.3 2.9

0. EXTRAPOLATION TO AN INFINITE NUMBER
OF EXCITED STATES

Equations (5.17) describe a steady-state radiative
cascade in which the total electron concentration
iV,+g„ i iV„ is constant for given!V. Consider now
the concentration X„,as measured by b„~ LEq. (3.14)j
for fixed n, and fixed b1N, as Ã increases. This introduces
additional excited states, and the total number of elec-
trons increases. Since, however, for the levels already
present the equilibrium concentration lY„p remains

was found. The quantities (6.2) are also shown in Fig. 3.
The extrapolated values were found to obey the law

fi„'=1—(6, '11n) "~' (n lar-ge)- (6 3)

TAsr. E II. Percentage errors in distribution parameters
caused by neglect of levels with e&55.

10 15 20 25 30 35

Error in bastt for b& ss =0.9 0.004 0.032 0.061 0.087 0.11 0.13 0.15
Error in Pnsm, (for all

values of bt sq) 004 04 10 18 26 36 46

as shown in Fig. 4. This confirms (6.1).
In the semiconductor case only values of 'V up to

about X= 12 will in general be of interest.
If the values for b„55 are compared with those of b„,

one can estimate the error caused by the neglect of
levels with n)55. The results are given in Table II.
Thus no great error is incurred up to n=35 by a cutofI'
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at 3;"=55. In the results to be presented below there has
therefore been no extrapolation to A = ~.

7. THE STICKING PROBABILITY: THEORY

The steady-state cascade equation (5.17) which has
been solved here arose from (4.2a) which holds for
more general cascade processes, for instance, phonon
cascades or photon-phonon cascades in solids. In the
solid-state work the concept of sticking probability has
been used in order to take approximate account of
the eQect of reverse transitions into the continuum
(Lax, ' Ascarelli and Rodriguez, l' and Hamann and
McWhorterI4). In the case of the photon cascade the
reverse transitions appear to have been neglected
(Baker and Menzel, ' Seaton'), but the concept of stick-
ing probability can be applied also in this case as will be
seen below. In the present work the reverse transitions
are taken into account exactly, and in the form of Eq.
(4.2a) the theory applies to photon and phonon cas-
cades. The connection between this equation and a
a theory using sticking probabilities will be discussed
in this section.

In the absence of reverse transitions the first two b„'s
on the right-hand side of (4.2a) and b„" all become
zero. Insofar as return transitions to the conlinulns are
concerned, therefore, the present theory replaces 8,„
by B.„(1—b„).This may also be seen from (3.15) which
can be written

cascade process. An explicit expression for b will now

be derived from (4.2a).
The following symbols are useful

H„= (8,—G —/1V;$, )$,
A', =—(g,g./h') (2lrnl*k2')"'

G„„=g„e 4 . (In&n)

8,„1V,—+ P g„A e*"'
n'&n

+ P g„A„„.e' (nl=n)
n" 1

(7.1)

(7.2)

(7.3)

=g„e"A„„(nl&n) .

bG =H+ Q b G
n' n+1

+ P b. G.-. (n, =1, 2, 3, . ). (7.4)
n" 1

By examining these equations for n=1, 2, 3, etc. , the
last sum can be eliminated and one finds by a procedure
similar to Gaussian elimination methods (Newman" )

The cascade equation (4.2a) is (the case n, =1 is

again included),

b„G„„"'=H„" '+ Q b G ~
" '.

n'~n+j,
(7.5)

Thus the net transition rate from the continuum to
levels n may be thought of as the difI'erence between the
downward (c~n) transition rate W,„ in the absence
of all return transitions and an upward (n —+ c) reverse
rate W,„(1—II ) due to all cascade paths. II„ is there-
fore a probability that an electron in level n will not
make a transition into the continuum by any cascade
path (excepting a transition via level 1 when it can be
aided by the pumping to the continuum from level 1).
Alternatively, II„ is the probability that an electron
will reach the ground state from level n without leaving
the atom. Thus II„ is a "sticking probability, " and
11,/(1 —bl) is by (4.6) the "reduced" sticking probability
I' . It is determined by the assumed parameters of the

Here

m—H m—I+H m—IG m—I/G m—I (7 6)

One finds
Plm Grimm '/=—GII' ' (&&nl) (7 9)

G m G m—I+G m—IG m—I/G m—I (b+n)
m—I G m—IG m—I/G m—I (b —1) (7 7)

where
H„'=—Hn, GI,„'—=GI, .

Equation (7.5) is a generalization of Eq. (2) of Baker
and Menzel and Eq. (5) of Seaton. Using this procedure
it may be solved for the b 's in terms of the quantities

00 oo n2—1
b G„„" '=H„" '+ Q H„,~I——IP„,„+—P P H„, ~IP„„P

nI=n+1 ng~n+2 nI~n+1

n3 —1 n2 —j.

+ 2 Q Q H, "1 IP „„P,,P, + . (7.10)
nl n+3 ng n+2 nI n+1

This is the required expression for b„.
To interpret these results, suppose first that the re-

turn transitions from the lower levels into level n are

"D.R. Haman and A. L. McVj/horter, Phys. Rev. 134, A250
(1964).

negligible. Then the last sum in (7.4) disappears, and
(7.4) and (7.5) are identical. The terms H„ in the
solution (7.4) for b„represent the transition rate into

"M. Newman, in Surveys of numerical Analysis, edited by
J.Todd (McGraw-Hill Bppg company, New York, 1962), p. 222.
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FIG. 5. The reduced sticking probability as a function of princi-
pal quantum number n and temperature T if the levels are cut
off at n=E=55. The temperatures are as follows t see Eq.
(5.14), (5.16)j:

a b c d e f
Semiconductor case ('K) 4 10 20 30 50 100
Astrophysical case 4.65 11.65 23.30 34.95 58.25 116.5

(10 'K)

proximate, series given earlier (Seaton' and Ascarell&

and Rodriguez). '~ The quantities (4.6) and (5.19) are
"reduced" sticking probabilities.

8. STICKING PROBABILITY AND CASCADE
RATIO; NUMERICAL RESULTS

Figure 5 illustrates the expected drop in the sticking
probability as the continuum is approached. As the
temperature is raised the increased background radia-
tion causes more upward transitions, and the sticking
probability is therefore again decreased. This is in con-
trast with the sticking probability obtained by Ascareill

I.O

.5--

O'K

lO 20

Fco. 6. The re-
duced sticking prob-
ability if the con-
tinuum is assumed to
start at the level
n=S+1. The tem-
perature stated is for
the semiconductor
case. For the astro-
physical case the cor-
responding tempera-
tures of Fig. 5 should
be used.

the level n from the conduction band. G „represents
the transition rates from the discrete levels m into
levels n (mWn) for unit concentration in the continuum.
G„ is the total transition rate out of levels n for unit
concentration sV„. The quantities (7.9) have now no
super6ces and are analogous to conditional probabili-
ties. I'I, is the transition rate k —+m given a unit
transition rate out of levels k. (7.10) states that the rate
out of levels n is equal to the rate into levels n. If the
last term in (7.4) is not negligible, the generalized ex-

pressions, characterized by superhces are needed. These
terms take into account the possibility of transitions

0
I

Pn g1

lO 20

FM. 7. The reduced sticking probability if the continuum is
assumed to start at the level n=X+1. The temperature stated
is for the semiconductor case. For the astrophysical case the
corresponding temperatures of Fig. 5 should be used.

and Rodriguez' for their phonon cascade, which be-
comes zero abruptly at n=4.

In the semiconductor case it may sometimes be a
better approximation to regard the discrete levels n) V
as merged with the continuum, than to neglect them al-
together. An approximate way of taking this e8ect into
account is to bring down the bottom of the conduction
band to the level n=E+1. In this case x„ in (5.17) is
replaced by x ~+a Lsee Eq. (5.18)j. The sticking
probability for this situation is illustrated in Figs. {i,7, 8,
which should be compared with Fig. 5. The lowering of

into the levels n via levels lying below n. For example
from Eq. (7.6) H&' takes into account the direct transi-
tion from the continuum into levels three already in-
cluded in Hs, as well as direct transitions into levels
one, which are followed by transitions from levels one
to levels three. LI3' takes account of the transitions in-
cluded in H3' as well as of transitions via levels one
and two.

It is therefore seen from (7.10) that the sticking
probability 1—b„may be thought of as composed of
separate contributions from many diGerent transi-
tions. This agrees with the analogous, but more ap-

l.0-

2 4 lO 20

FIG. 8. The reduced sticking probability if the continuum is
assumed to start at the level n =X+1. The temperature stated
is for the semiconductor case. For the astrophysical case the cor-
responding temperatures of Fig. 5 should be used.
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the continuum, even down to the level n=8, has no
marked effects on the sticking probabilities up to n=4.
Above this value there is a more rapid drop to zero than
is found in Fig. 5.

In order to have a parameter which gives information
about the effect of the cascade paths on the recombina-
tion trafFic in the absence of the cascade, it is convenient
to define a cascade ratio

Transition rate into level 1 due to all cascade paths

Transition rate into level 1 directly from the conduction band

calculated for fixed temperature and other parameters. As the temperature is increased, it has been seen in
For a steady state the numerator is, by L4.2(a)), Fig. 5 that the sticking probability goes down. Hence

4 e

3.0-

3

2.0-

2

IO 30 50 70

~ e I I e e ~ e ~

0 ~0 20 30 40 50 50 70 80 90 l00
T (K)

FIG. 10.The cascade ratio as a function of temperature for S=55.
The temperature axis is labeled for the semiconductor case.

Fio. 9. The cascade ratio C at 4'K in the semiconductor case
and at 4650'K in the astrophysical case.

from (8.2) one would expect the cascade ratio also to
simply g„& B,„(1—b„&) and the denominator is decrease. This is illustrated in Fig. 10.
B,&(1—b&). Hence

B,yC= Q B. P„~. (8.2)
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Figure 9 shows how the cascade ratio increases as the
number of excited states increases. The change is seen
to be slight for X&30. An extrapolation procedure
analogous to that leading to Eq. (6.2) was used to find
the value for E= ~. The curve can be fitted by the
equation
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