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Two- and three-step laser cascades have been recently detected experimentally in He-Ne mixtures and
in pure neon. In the present paper a two-step cascade is treated in detail theoretically, starting with the
density-matrix formulation. The corresponding equations can be simplified to rate equations under an
assumption about the relative size of certain phase-memory times, which seems well &ustified in the present
case. Because there are usually only minor differences in the results between a gaseous laser and a solid-

state laser with an inhomogeneously broadened line, and because the mathematical treatment of the gas
laser is more involved, the solid-state case will be treated here. The laser condition for both the lower and

upper transitions is derived for the most general case, i.e., that all three levels are pumped. Finally, a special
two-step cascade is treated in detail. The results are in qualitative agreement with the experimental fin&-

ings, although a quantitative comparison is still impeded by the lack of an exact knowledge of some of the
parameters, especially the radiative linewidth.

1. INTRODUCTION

ECENTLY, the detection of laser cascades has
been announced in a series of papers. ' "Although

these cascades were first observed in a mixture of He and
Ne, similar phenomena have also been detected in a
pure gas system. "The experimental facts can be sum-

marized in the following way: Let us consider a gas
laser with a wide-band cavity, the active medium con-

sisting of a discharge in a mixture of He and Ne. Under
standard conditions, for example pt,.t=0.6 Torr with a
ratio He/Ne= 4, several lines are simultaneously present
in the spectrum of this source. The accurate determina-
tion of the wavelengths of these lines and the subsequent
identification of the transitions responsible for the light
emitted shows that besides 2p-2s and 3p-3s transitions
we have some 2s-3p transitions simultaneously present

as, for example, those which can be seen on the energy-
level diagram of the Fig. 1. It is clearly shown in this

figure that the transitions are grouped; each element of

one group is related to the others by optical connection.
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For example, in the group consisting of the 3p4-3s~,

2s2-3p4, and 2p4-2s2 transitions, the suppression of the

upper transition (X=3.39 p) by insertion of an absorp-
tive medium (e.g. , methane) in the cavity simultane-

ously eliminates the 2.395-p line and reduces noticeably
the intensity of the 1.15-p line. The study of the varia-

tions of intensity of these lines with pressure shows that
the 1.15-p, line has 2 maxima, the first being in close

coincidence with the maximum of the 2.395-p line and

the other in the near vicinity of the maximum of the

3.39-p line. The suppression of the 3.39-p line eliminates,

besides the 2.395-p, line, the first maximum of the 1.15-JLf,

line but does not alter noticeably the other (Fig. 2).
Moreover the 2.395-p, line shows absorption in the same

medium (8~7 dB/m) when the cavity is removed.

From these facts, it results that this last line is optically

pumped by the 3.39-p line and besides that we have a
transmission of the pumping process to the 1.15-p line

(suppression of one maximum with methane).
In a He-Ne mixture the main population mechanism

of the 3s2 level can be attributed to the reaction

He(2'5)+Ne ~ He+ Ne(3s2)+ DE&

after Benton et al."For the 2s2 level we have

He(2'S)+Ne ~ He+Ne(2s2)+ AEg

as pointed out by Javan et al."In a wide-band optical

cavity the large cross section of the first reaction
(a~4&&10 "cm') leads to lower-level pumping through

a cascading-stimulated emission following the scheme:

3s2 ~ 3p4 ~ 2s2 ~ 2p4.

Although this cascade is not always the main populating

"E.E. Benton, E. E. Ferguson, F. A. Matson, and W. W.
Robertson, Phys. Rev. 126, 206 (1962).

' A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev.
Letters 6, 106 (1961).
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process for these lower levels, it cannot be neglected.
Let us mention also the case of another cascade ob-
served in the same mixture for which the intermediate
transition is not usually suppressed by eliminating the
upper transition but shows only an important decrease
in its intensity.

It is

3$s ~ 3p4 ~ 2$4 ~ 2ps.

In this case the lower transition is probably not very
efFiciently pumped by the action of the He metastable
because the 2s4 level is energetically far (~0.15 eV)
away from the 2'5 level; the action of the He in the
absence of the upper transition is probably to increase
the temperature of the electron gas. For this cascade
the cascade pumping process is much more important
for the lower transition than in the first case since it is
possible to find conditions (for example by shortening
the discharge length) in which we suppress it by block-
ing the 3.39-p line.

Similar eGects have also been observed in pure neon.
For example, the simultaneous observation in Ne of
two lines in stimulated emission, namely the 2.10-p line
(transition 2ss-3p&) and the 1.15-p line (transition
2p4-2ss), with a higher gain for the upper transition and
an appreciable reduction in the gain of the lower transi-

tion by use of dielectric mirrors centered at 1.15 p
demonstrates experimentally the efficiency of a cascade
pumping process.

In the present paper we intend to develop a theory of
the laser cascade in order to elucidate among others the
following questions:

(1) What requirements are to be fulfilled in general
for a laser cascade to occur and what are the critical
parameters?

(2) In what way does the lower transition depend on
the upper one? In particular, is there a conservation of
phase?

In order to treat these and related questions we use
the density-matrix formalism. %e confine ourselves to a
two-step cascade between three optical levels, which can
be pumped from a ground level or a set of levels inde-
pendent of the levels participating in the laser process.
The generalization to more complicated cases does not
introduce supplementary theoretical difhculties, but
leads to very lengthy formulas. Although all experiments
showing laser cascades have been performed with gas
lasers, it is not unreasonable to believe that similar
results can be obtained with solid-state lasers. In an
earlier paper" the close analogy between the theoretical

'~ H. Haken and H. Sauermann, Z. Physik 176, 47 (1963).
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treatment of a solid-state laser and that of a gaseous
laser has been demonstrated. Since the case of fixed
atoms is mathematically somewhat simpler, this case is
treated in the present paper. For the gas laser, the
results are not fundamentally diferent, the correspond-
ing calculations have been performed and will be
published later.

The cooperation of two 6elds has been extensively
investigated in the case of a three-level maser by Javan,
Lamb, and Wilcox and others. '~" Our present in-
vestigation requires extension of these maser results in

"A. Javan, Phys. Rev. 107, 1579 (1957)."L. R. Wilcox and W. E. Lamb, Jr., Phys. Rev. 119, 1915
(1960)."N. Bloembergen and Y.R. Shen, Phys. Rev. 133, A37 (1964).
Further references are given here,

several directions: as mentioned above, our system
should consist of at least four levels; the wavelength
should be small compared to the dimension of the
cavity; and the theory should allow for both homo-

geneously and inhomogeneously broadened lines.

2. HAMILTONIAN AND EQUATIONS
OF MOTION

In this section we derive a Hamiltonian for the general
case of a solid-state laser. %e assume that the laser
consists of a set of impurity atoms embedded in a solid

matrix. It will be assumed that these impurity atoms are
so far apart that there is no direct interaction between
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their electrons, for instance by Coulomb interaction or
dipole-dipole coupling. Each of these atoms is supposed
to possess three optically active levels and a fourth one
which acts as a reservoir. The pumping process is sup-
posed to be incoherent, for instance, provided by an
incoherent light source. For gas atoms one can make
similar assumptions in a series of cases (low pressure,
etc.):the atoms participa, ting in the lower process do not
interact (collide) during their single light-emitting
phase; the only important perturbation comes from
"pumping" collisions.

As usual, we assume that there exists a set of decaying
light modes, which are distinguished by their spatial
behavior, their frequencies and their lifetimes. Since, for
moderate pumping, only modes with the longest lifetime
can participate in the laser process, we may con6ne
ourselves to those. Furthermore, only those modes
which are close to the resonance frequency of optical
transition have su%cient gain. Therefore we may con-
sider explicitly only three modes, or, if the 1-3 transition
is forbidden, only the two modes corresponding to the
transition 1 ~ 2 and 2 —+ 3. Whereas for a homogene-
ously broadened line (and running waves) this procedure
is perfectly all right, an inhomogeneous transition might
support several modes, their frequencies being sufB-
ciently close to the center of the atomic line. In Sec. 4
we will briefly indicate how this eGect can be taken into
account.

We start with the formalism of second quantization
which describes the annihilation and creation of elec-
trons and light quanta. We denote the creation operator
for an electron at atom p, in the state i by a; „tand the
corresponding annihilation operator by a;,„.The energy
of the state i is given by h»;. The creation operator for
a light quantum of mode X is denoted by b&t and the
corresponding annihilation operator by b&. Making use
of the fact that the occupation number is given by

we can write the energy of the electronic levels in the
form

3

HEr, ——Q Q he, a; „ta;„. (2.1)

The energy expression of the light field takes the well-

known form

Hg Kgb' bg+Kmbm b2. —— (2.2)

The interaction between light field and electrons is
described by terms in which one photon is either annihi-
lated or created while one electron is thrown out of one
state i into another state j. This process can be de-
scribed by

Qg, ~ Gs, ~by

Hr= h Q( ai,„am,„hi2, „(bg+by)+ay, „ai,„hn,„*(bc+bi)

+a2,„al,„h23,„(b2+.b2)+a3„a2,,h23, ,,*(b2+b~ )) . (2.3)

The coefficients h;; „aregiven (in the dipole approxi-
mation) by

h;;,„=G;,(8/V)'" sin(h, X„)sin(h„V„)sin(h. Z„), (2.4)

where
G;;= —(e/m)L2n/her&5'"(q, yy;) e~. (2.5)

(p,yp, ) is the optical matrix element of a single atom for
the corresponding transition. k is the wave vector of the
light field and V is the volume of the cavity. e), denotes
the polarization of the light wave X. The total Hamil-
tonian reads

H= HEz, +HI.+Hy, (2.6)

where Hzr, , HI, and Hr are given by (2.1), (2.2), and
(2.3), respectively. In the following we neglect, as usual,
terms which describe photon creation together with an
upward electronic transition or photon annihilation
together with a downward electronic transition, because
these terms are antiresonant.

The most elegant way to deal with our problem is to
derive the equations of motion in the Heisenberg picture,
which means that we assume the operators depend
explicitly on time. For this end we proceed in two steps.
First we derive the equations of motion for operators of
the form a;~a; using as usual

(a;ta;)
' = (i/h) [H,a ta;5= (i/h)(Ha;~a, —a,~a;H), (2—.7)

where H is the total Hamiltonian (2.6). However, this
Hamiltonian contains neither the atomic decay into the
nonlasing modes, nor the atomic decay by radiationless
processes, nor the pumping process. Therefore, in a
second step we take these efI'ects into account by
applying appropriate heat baths to the system (2.6).
For the treatment of this problem we adopt the method
of Wangsness and Bloch" which was developed for the
problem of spin resonance, similar in form, and apply
the following procedure": We take expectation values
of both sides of (2.7) with respect to a superposition of
atomic states and take the trace over the heat baths:

(2.8)

Simultaneously, we introduce loss terms as caused by
the heat baths. Because they enter into the equations of

"R.K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
~A most explicit derivation using heat baths with diferent

temperatures has recently been given by W. Weidlich and I.
Haake, Z. Physik 185, 30 (1965); 186, 203 (1965).

for light absorption, and by

CJ ~ Cs ~v)v
~ t . b t

for light emission.
The total interaction Hamiltonian then reads for the

laser cascade
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the diagonal and nondiagonal elements of the density
matrix (2.8) in a different way we treat them separately.

(a) Equations for j;;, i/j
The spontaneous emission, the nonradiative decay,

and the pump destroy the relative phase of the atomic
levels i and k after a time called T;~=I";I, '. This eGect
is described by adding an imaginary part to the real
frequencies of the levels. The equation of motion for the
nondiagonal elements of the density matrix p;; then
reads

where

P32 p,
= Z632P32 &

—ZX&P31 &+ZP

p31,y= &&31p31,p+&~p p21, p &Xp p32, y )
t ' t

P21,p ~&21P21,is+ '~P12, IsXfzz 1'~ ~pP21, p )
t

+2I ' ' h, b =X
h23 Izz~2 I y I Pil' Pii Pl k ~

(2.9)

(b) Equations for j;;
We now write down the equations for the diagonal

elements of p.

pll, y zp12, y~ y +'lp21, pXp+ (dl pll, p), Tl+Pzz, p& Tl

p» „——zp23 „V„—+zp» „t„+zplz„X„1p21 „X„—(2.10)

+ (d.—P22 ~)& T,+ (P,, I,)/Tz'

P33,y "P23,p p P3z2, p p+ ( 3 P33,p)l 3 ~

In establishing (2.10), the pumping process as well as
nonradiative and spontaneous radiative transitions are
taken into account. These processes, which manifest
themselves in all the expressions in (2.10) containing
relaxation times T, are in detail the following:

Fro. 3. Schematic diagram of laser cascade. The cascade process
occurs between the three upper levels; the two lowest levels serve
as reservoir. The y's represent the radiative half-widths.

and
level 2: p33,„'T2' (where T2' '=2y32)

level 1: P22 „/Tl' (where Tl' ' 2y21). ——

(p) Increase of Occupation lVumber

The transitions considered above also give rise, of
course, to a corresponding increase of the occupation
numbers of the lower levels:

(zz) The Decay

Level one decays into the "reservoir, "which consists
of one or a set of lower levels with a decay time
T1 = 2p]p. For radiative transitions y10 is the total
half-width of level one (the difference between Tl ' and
Tl ' etc. will be explained below).

Level two decays both into the "reservoir" and into
level one with a decay time T2 '= 2y»+2pzp (where for
radiative transitions the y's are the corresponding
partial half-width of the homogeneously broadened part
of the line). For level three we assume decay into level
two and into the reservoir:

T3 = 2+32+2/30 ~

We do not consider, however, a direct recombination
from 3 to 1, because in the experiments being discussed
in our present paper, no allowed optical transition be-
tween these states exists nor is there experimental
evidence for a nonradiative transition. An example for
the diferent ways of decay is given in Fig. 3.

(y) The Pumping Process

In the following we wish to derive solutions for the
general case, i.e., that in which all three levels partici-
pating in the cascade are pumped. A completely exact
treatment of this problem would require taking into
account explicitly the set of levels composing the
"reservoir. " In case, the occupation of the cascading
levels one, two, three is considerably smaller than that
of the reservoir, we may circumvent the above pro-
cedure, which would have led to a most lengthy calcula-
tion. Under this assumption the pumping of one level
can be treated as independent of the fate of the other
(laser active) levels, provided the levels are pumped
directly from the reservoir. If the pumping alone brings
level i after a mean pumping time T;„to an equilibrium
occupation number n;(0), the pumping term reads

Ln;(0) p;~](T; ~ for le—vel i.
~e now collect all the terms described under (n) and
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(y), which gives for level three

(n, (0)—p»)/Ts, „—p»/Ts.
Putting

(2.11)

—1+T—1—T —1

simplifies (2.11) to

and ns(0)/Ts, „=ds/Ts (2.12)

(ds —pss)/Ts. (2.13)

In the cases of practical interest T3~-'& T3-'. As follows
from (2.12) a decrease in the pumping time or an in-
crease of ns(0) leads directly to an increase of ds.

In exactly the same way we introduce

Ta '= Ta,„'+TR', na(0)/Ta, „=ds/Ts (2.14)

P$2, 3 Pa—s,s Fp /Asa y

pal, ,=Psa, ,x,'/t41
&

P81,p=0.
(3 1)

Inserting the expressions for the oG-diagonal elements
into the equations for the diagonal elements and into
the equations of motion for the light amplitudes we
obtain:

3. RATE EQUATIONS AND I'ss APPROXIMATION

As can be shown by detailed calculation the results
are not altered significantly if the phase-memory time
between level 1 and 3 is taken to be very short. In this
case, the above expressions can be simpli6ed as follows:

and
Tl '=Tl,„+Tl", nl(0)/Ts, a=dl/Ts. (2.15)

bl =Mlbl +z Q hla, s psl, ski

ba =zvaba+zp has, s psa, , ~

(2.16)

These are now finally the quantities occurring in Eqs.
(2.10) and which were introduced in order to write
(2.10) as concisely as possible.

Finally we have to write down the equations of motion
for the light amplitude

Pla, snlW21, s+(dl Pll, s)ITl+Paa, y/T2 ~

0= —Pas, „naWRR,„+Pla,„nlW21,
„

+(da paa, „)/Ta+—pss, „/Ta',
0= Pas, „naW32,„+(ds—psa „)/Ts,
and

RQsbl' ——uusbs'+z{p f hla,
„ f

'(Pss, „/&21)}bl'

zf4ba' ——zleabs'+z{p f has,
„ f 2(P23,,/&32) }ba',

where we have used the following abbreviations:

(3.2)

(3 3)

bst=e' "'bst(0)

Psa =e ps a(0) pll p 11(0)

pal ——e'" 'pal(0), paa= paa(0)

psl=e' '+ ' 'p31(0), p33=p33(0).

(2.17)

It can be very easily checked that the whole time de-
pendence drops out of the equations, which are now
purely algebraic in nature. From the set of Eqs. (2.9)
we can now immediately eliminate the oG-diagonal
elements for which we obtain the following expressions:

ps2, = (1/D, ) &,"[Pss, (Asl~sl na, ) P12, nl, ],
Psl, s= (1/D„)X„'[Pla,p(+32+$1 nl, s) Pss, dna, 37 (2 Ig)

Psl, v= (1/Dv)+v Fi (P12,3A$2 Pas, vA21) ~

where
A;.=n;„—(.,—.,)—zr;, ;

~;a=01 for i=2, 4= 1

=02 for i=3, k=2
~32~31~21 +1, ~21 ~2, ~32

n, ,„=fX„f; n, ,„=fl „f.

The bt's are now to be understood as expectation values
of the light field, in order to be consistent with the
density-matrix formalism as introduced above. " ~),
possesses an imaginary part a), which describes the finite

lifetime of mode X in the cavity: 1/t&, = 2s&,.
In order to solve the coupled equations (2.9), (2.10)

and (2.16) we make the following hypothesis:

2I';a
W, „= X fh. „f';

[&;3—(3;—3$))2+ r'sa

nl number of photons. (3.3a)

If we identify the diagonal elements of the density
matrix p;;,„with the occupation number E;,„ofenergy
level i at atom p, we immediately find the following
equations

dN1, „/dt=0=(Na„Nl„)n,l—W21,

+(dl Nl, p)/Ts+Na, s/Tl

dNR, „/dt=0=(Ns.s—Na, ,)naWsa, ,
+(Nl,„—Na, „)nlW21,

„

+(da —Na, „)/Ta+Ns,„/Ta', (3.4)

dcV3 „/dt=0=(NR „—Es,„)naW32,~+(ds —Ns, I)I/Ts,

which are in fact equivalent to the well-known rate
equations for the electronic occupation numbers.

After division of (3.3) by bit and bat, respectively, we
obtain for the real part

2sl= p Wal, „(NR,„—Nl, „),
(3.5)

2RR
——Q Wsa, „(N3,„—Na, „),

where R; is inversely proportional to the lifetime of
mode i. Therefore in the large-I'31 approximation the
whole problem is reduced to the usual rate equations.
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I' (u +8 (8 —8 )

I 21+K1

I sws+Ks(88 —&2)
Qg= . (3.6)

I 82+ Ks

Our treatment, however, immediately yields the fre-
quency shifts in case of a homogeneously broadened
line. "If we take the imaginary part of Eq. (3.3) we find
the following expression for the frequencies Qq.

4. SOLID-STATE LASER VGTH A HOMO-
GENEOUSLY BROADENED LINE

From Eq. (3.4) the occupation numbers of the elec-
tronic levels can be easily determined as a function of
the photon numbers. Because we need only the diGer-
ences between the photon numbers, we write down the
corresponding expressions:

-+2,p A l,y= DN [ (dl/Ts)((T2T8) jWss, yn2(T2 +Ts Ts ))+(d2/Ts)((TIT8) (T8Ts )
+Wss, „ns(Ts-'—Ts'-'))+(ds/Ts)((TsT2')-' —(Ts'Ts')-'+Wss, „ns(Ts-'—Ts'—'))], (4.1)

and

&s., &2,,= —Der '[ (ds/'TsT—s) Wss, „ns (ds/Ts)—((TsT8) '+ Wss, ,ns(T8)-')
+(ds/Ts)((TsT2) '(1—Ts/Ts')+Wss, „ns(Ts '+Ts—'—Ts' ' Ts' ')—)], (4.2)

where

D~=(T T2T2)8s+Wss, „nsT8 s(T2 2+Ts '—Ts ~)+Wss, „nsTs s(T2 2+Ts 2 —Ts s)

+Wss, ,nsWss, „ns(Ts '+Ts-'+Ts-' —Ts'—'—Ts' '). (4.3)

In the final step of our analysis we have to insert the expressions (4.1) and (4.2) into (3.5) and to perform the sum
over the atomic positions. As is known from other examples this summation (or integration) represents essential
difhculties if the exact expressions for E~-Sj or lV3-E~ are used. Fortunately, however, the expressions con-
taining the e s are small enough, so that one can expand E2-E& and X3-X& into power series, where only expressions
up to and including the second power in the n; are to be considered for the cascade e6'ect.

The equation for mode one then reads

where

Kg= ( ")
()MAL) 2+ I'222

(4.4)

{ }=gs'pA+(ns/V) p Wss(2')'gs'B+(ns/ V)gs'gs'pW82C

+( ns/V)( ns/i) g'sg' sW» Wss(p-)2' D+ g'sg' sWss( ns/i)'( )2' ~p, ( 5)
where

W»= Wss, ,/Ihss, „l'; Wss= Wss, ,/[1882, ,['. (4.6)

We have used the abbreviation gs= (Gss( and gs
——(Gss( for the G's introduced in (2.5). The W's are defined

in (3.3a) and

A =[—ds+ ds(1 —Ts/Ts')+ds(T2/Ts' —TsT2/Ts'Ts')],
B= (T2+Ts—T2Ts/Ts') [ds—ds(1 —Ts/T 2') —ds(T2/Ts') (1—Ts/Ts')],
C= Ts(1—Ts/Ts') (1—Ts/Ts') [—ds+ds(1 —Ts/Ts')],
D= (1—Ts/Ts')(1 —Ts/Ts') (—dsT2'+ds[TsT2+2T2'(1 —Ts/Ts')]

—ds[T2 (1—Ts/Ts')+ TsT2(1 —Ts/Ts') —2(T2'/Ts') (1—Ts/Ts')]) y

E= (1—Ts/Ts') (Ts+Ts—T2T8/Ts') (dsT2(1 —Ts/Ts')+ ds Ts[(1/Ts') (Ts+ Ts—T2T8/Ts') —1]).

(4.7)

p is the density of the atoms. The factor (-', )' stems from
the assumption that the modes of the two light waves
di6'er not only in axial direction, but also in radial
direction. If the modes differ only in axial direction, but
have the same angular and radial dependence, this
factor is to be replaced by +. As has been shown in a
previous paper" these factors give rise to the coexistence
of modes of a solid-state laser within a linewidth of one

~ C. H. Townes, Second Quantum! Electronics Conference,
edited by R. J. Singer (Columbia University Press, New York,
1961),p. 3.

~ H. Haken and H. Sauermann, Z. Physik 173, 261 (1963).

transition, even if the line is homogeneously broadened. "
This mechanism may also apply at present so that we

expect that if the lower transition oscillates, then the
upper one is pumped so highly that several modes
oscillate simultaneously. In this case our results for the
laser cascade can be generalized simply by taking a
suitable average over the upper modes and n2 now
stands for the average number of photons of these
modes. In gas lasers, on the other hand, this factor ($)
does not occur (in lowest approximation) due to the

~ A similar result has been published by C. L. Tang, H. Statz,
and G. A. de Mars, J. Appl. Phys. 34, 2289 (1963).
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I'21 n2)
Kl= g1'pA+ —~gl'g2'pW32C

(An 1)2+ r212 Vj
(n2'3', ,+gl'gz'W321 —

~

(2)'pE (4.fo
I V/

In it the quantities A, C and E are dined above. For
mode two it is sufhcient to derive the expressions up to

motion of atoms. In fact, the coexistence of modes is
accomplished in gas lasers by the inhomogeneously
broadened line due to Doppler broadening.

The laser condition for mode 1 can be found by
putting nl= 0 which yields

linear terms in nl and n2. We then have

.,=[r„/((an,) +r„)]{"},
where

(4 9)

}=g22pA'+ (n 1/V) pW23glzg22B'

+ (n2/V) pW32C'g2'(2)', (4.10)
and where

A'= dz—+d3(1 T2—/Tz'),
B'= —dlT2+ d2T2(1 —Tl/Tl')

+d3T2'(T2') —'(1—Tl ~T1'), (4.11)
C' =d,(T,+T3—T3(T,/T, '))

d3(1—T2!T2')(T2+T3 T3(T2/T2')) .

S. SOLID-STATE LASER WITH AN INHOMOGENEOUSLY BROADENED LINE

We assume now that there is a spread of transition frequencies e2-el and e3-e2. This requires summing up
in Eqs. (3.5) and (4.4), respectively, not only over the atomic position but also taking a weighted average over
the spread of frequencies. To this end we assume independent Gaussian distributions for &2-el and e3-e2.

Instead of Eq. (4.4) for mode 1 we now obtain

Kl=
d&21d&32 &21 &21 &32 &32

exp — exp
(n,—.„)+r„ (5.1)

where the bracket { } is the same as in Eq. (4.4). The same type of integrals which occur here have been
considered in a previous paper. "One thus obtains readily

~1/2

Kl= gl P.'f
nl n2 27r

exp( —61')+ —p(-,')'gl'Bzr'" exp( —hl )/rzlnl+ —gl gz pC
V V 0,'1&2

exp( —832) exp( —822)

+ — —gl'g2'p &
'D2~ + —gl'g2'p~ exp[ —(biz+ 822)]. (5.2)

The quantities A, B, C, D, I' are the same as defined
in (4.7);

81 is giveii by (nl &21 )/zzi 82 by (n2 &32 )/122 ~

If we consider optical transitions close to resonance, we

may replace the exponential factors by 1. As one may
note, the former factor I'2l ' (for resonance) in front of
the bracket in (4.4) is now replaced by zr'"/nl. DifFerent
factors occur, however, for the n's.

In a completely analogous manner we obtain for
mode 2:

K2 g2 pA (zl /122) eXp( 62 )
+ (nl/ V)pgl g2 B (2zr/Q1122) eXp[ —(81 +~2 )]

+ (nz/ V)pC'gz'(2)'(zr' '/r32122) exp( —bz'), (5.3)

where A', B' and C' are defined in (4.11).

6. DISCUSSION OF RESULTS

Because the coeScients of the n's occurring in Eqs.
(5.2) and (5.3) are rather complicated and since there
are cascades in which only the upper level is pumped

from the reservoir, let us consider this case in more
detail. With dl=d2=0 the constants of Eq. (5.2)
reduce to

.4 = (T,/T, ') (1—Tl/Tl') d3 y

B= dl(T1+ Tz T1T2—/Tl') (Tz/T2'—)(1—Tl/Tl'),
C = T,(1—T,/Tl') (1—T,!T2') (1—Tz!Tz') d3,

E= (1—Tl/Tl') (T2+ T3—T2T3/T2')

X [(1/T2')(T2+T, —T,T,/T, ') —1]d,. (6.1)

(D is not important for what follows. ) As is immediately
seen, all relaxation times which were introduced into the
equations for the diagonal elements (2.10) occur. Ac-
cording to the definitions following Eq. (2.10) we have
for the present case (only level three pumped)

T„l—' ——T„2' ——0;
Tl '= 2y10 ) Tl 2+21~ T2 2+21+2 Y20 y (6 2)

T2'—' ——2y32, T3' '= T3„'+2y32+2y30.

For the following discussion we assume that the y;I, 's

are the radiative half-widths of the atomic lines corre-
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sponding to the spontaneous decay from the state i to
the state k. If k=0, y;I, will mean the sum of the widths
corresponding to transitions to a set of "ground levels. "
For a complete discussion we have to know yio, y2i,
+20 +32 +30 and T». It should be noted that F30
occurs only jointly with T» ' so that we introduce
T3p '+2y30 —= T3p . In the He-Ne gas laser one has
T3p &2y32.

If we choose as an expticit example the pure neon

cascade described above, the following y's are known
experimentally:

10 sec yg~108 sec—1 2-

In the following we neglect y20 as compared to y2i. This
is justified because the lifetime r20 of the 2s2 state with
respect to a decay to the ground state is appreciably
increased due to light-trapping (in the experimental
pressure range of 10 '-10 ' Torr depending on the tube
diameter). On the other hand y32 is not well known,
whereas the total half-width y32+y30 has been recently
measured by Klose, who finds (y»+F30) '= 63.5 nsec, "
so that y32+y3o is about 1, 5 times larger than y2i.
Thus we have an order-of-magnitude estimate of y32.
As we will see below, however, the occurrence of a laser
cascade depends on whether F32&y2~ or y32&y2~. We
can now write down the coefFicients 3, C, E,, which
occur in the threshold condition of the lower mode both
for a homogeneously and an inhomogeneously broadened
line:

/ /l
FIG. 4. Schematic plot of n2 versus nI. The dashed lines represent

Eq, {6.6}, the solid lines Eq. {6.4), for different values of the
inversion parameter dg. The points I, II, III represent situations
where no mode shows laser action, mode 2 shows laser action, and
both modes show laser action in a cascade, respectively.

E)0 and C') 0. Equation (5.3) can be put into the form

(6.4)Kg, !dg+cK =P ni+p n2,

where e', P', y'&0 and do not depend on the pumping
occupation d3. This formula shows that in this case,
where y32)y2~, no cascade can occur. If the inversion

d3 increases, the total output of either n~ or n2 or
both must decrease.

I.et us consider the opposite case: F32(y2~. Then
C)0, A') 0, I'(0 and C'(0. Equation (5.3) then has
the form

4 (Y32 r21)(1 +21/'rlO)d3 y

8= —da(v32 '2y2i') (1—y, i,'bio),

C = (2y~i)-'(1 —v2i'bio)(1+2y32T3, ')—'(1—y~r...'y~i)ds,

1+2T3p'y2i
I.'= 1—

1+2+32T3p
(6.5)

&&(4v»') '(1—v»'v»)( —d3),

3'= (1—yap!y2i)di,

(Y32!2r21 )(1 'r»! Y10)&~3 )1

(6 3) where again a', P', y')0. For not too high an inversion
the photon numbers are small, so that we may drop in
the laser Eq. (5.2) for mode-one terms which are bilinear
or quadratic in n~, n2. The laser equation for mode one
then takes the form

1+2T3p'y2g
C'= —d3 1—— (2v») '

P2l 1+2T3p +32

Since y2i&yio, one has .4, h'&0, 8(0.The sign of C
and E still depends on the relative size of y32 and y2~.
Let us assume first, that y32&y2». Then C&0, 3'&0,

'4 W. R. Bennett, Jr., Second Quantum E/ectronics Conference,
edited by J. R. Singer (Columbia University Press, New York,
1961), p. 28."R. I.adenburg, Rev. Mod. Phys. 5, 243 (1933)."J.Z. Klose, Bull. Am. Phys. Soc. 9, 425 (1964). One of the
authors {R.A.) is indebted to Dr. Klose for communication before
publication of his lifetime measurements concerning some 3p
levels of neon.

n —a j, 'd3 ——nIP- —yn2,

~vith n, P, y&0.
Equations (6.5) and (6.6) can be solved consistently

only if n&) 0 and n»0. Consider for example the case
where we approach n~=0 by lowering the pumping.
This implies that bit=0 In derivin. g (3.5) from (3.3) we
divided both sides of (3.3) by b&i. Therefore (6.6), which
follows from (3.5), is no longer valid and has to be
dropped. The same reasoning applies, mutatis mutandjs,
to n2. This line can be continued also when n;&0 be-
cause the photon number cannot be negative. This
procedure is exactly the same as the one used to demon-
strate the possible coexistence of modes in a homo-
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geneously broadened line. ""A deeper foundation of
this procedure has been indicated recently. "

We shall now discuss Eqs. (6.5) and (6.6) by a graphi-
cal plot (Fig. 4). Figure 4 demonstrates three typical
situations, according to three diGerent pump rates. The
dashed lines represent Eq. (6.6), the solid lines Eq. (6.5).
For low pumping we obtain the lines I. Their inter-
section lies in the third quadrant, i.e., both n's are
negative and no laser cascade occurs. Therefore we
check, if single-mode action may occur, by dropping one
of the Eqs. (6.5), (6.6). In the representation of Fig. 4
this means, that we have to see if the dashed line allows
for n~&0, n2=0 or the solid line for n2&0, ni= 0, which
is, in the present example, not the case. Therefore no
laser action occurs at all. Consider now the lines II,
where a somewhat increased pumping rate is assumed.
The intersection still implies n~&0 and no cascade can
occur. However, the solid line cuts the n2 axis at a
positive value (II') which indicates that we are now
(slightly) above threshold for the upper laser transition.
For still higher pumping we obtain finally the lines III,
having a crossing point for n~&0, n2&0. Here the full
cascade occurs. Figure 4 allows a condition for the
occurrence of a cascade to be deduced. The crossing
point shifts with increasing dz (pumping) from the third
to the 6rst quadrant only, if the slope of the dashed lines
is steeper than that of the solid lines or, if

(6.7)

For the cascade described in the beginning of and
treated throughout this paragraph, condition (6.7)
reads, after insertion of the explicit expressions for
P P' v, v'

ClgG2 +21
(2)'(1+2T3,'vn)

I'2&I"322~ y&0

(inhomogeneously broadened line) (6.8)

which is automatically fulfilled since n&& F» and
0.2& I'». For comparison we quote the explicit form of
(6.7) for a homogeneously broadened line:

(-')'(1+ 2T»''r») )(1—r»/», ), (6.9)

which is again always fu1611ed.
It is a remarkable feature of Eqs. (6.5) and (6.6) that

n j and ~2 play a completely symmetrical role. Thus, not
only laser action of the upper transition can cause laser
action of the lower one, but also the inverse can happen.
Therefore the question arises, which of both transitions
occurs 6rst and may, at higher pumping, trigger the
other transition. Inspection of Eqs. (6.5), (6.6) shows,
that the line which lases 6rst is the one„for which the
corresponding Eq. (6.5) or (6.6) has an inhomogeneous
term which is bigger than that of the remaining equa-
tion. Let us assume, that we have, as usual, to deal with

~7 H. Haken, Z. Physik 181, 96 {1964);182, 346 (1965).

longitudinal modes, for which the losses are equal ~y= K2.

We thus are left to discuss a/n'.
Provided the upper and lower transition have the

same inhomogeneous broadening (which is, of course,
the case for Doppler-broadening), we 6nd by insertion
of the expressions for n and e'.

/ '=(g '/g ')(7 /7 )(1—7 /7 o)/(1 ~ /~ ) (610)

Because the radiative half-width y is proportional to the
absolute square of the optical matrix element g' and to
the density of light-6eld states at that specific fre-

quency p(co), i.e., y g'p (6.10) can be reduced to

~/a =p(~2)/p(~r)(1 'r»/7Ã)/(1 732/v») (6 11)

For the two-step cascade in pure neon, as described in
the introduction and considered in this chapter, we have

~/~'= ~(1—v32/v2~) '. (6.12)

Experimentally it is found, that with wide-band mirrors
the upper transition starts laser action first, so that we

conclude a(a' (6.13) or, from (6.12) y32(34y2q (6.14)
which puts a new limit on y3~. Once the assignment
(6.14) is made Eqs. (6.5) and (6.6) also readily describe
the following experimental findings:

If one takes dielectric (narrow-band) mirrors, two
cases can be distinguished:

(1) If the maximum reflectivity of the mirrors is
centered around the upper transition we observe that
the gain of the upper transition is not changed as com-

pared to the case of wide-band mirrors. Laser action
occurs only in the upper transition.

(2) If the maximum reflectivity is centered around
the lower transition, the gain of the lower transition is
reduced compared to the wide-band mirror case."
It is obvious that the treatment outlined above can also
be applied to the general case of an arbitrary pumping
of all three levels, thus allowing to check quickly, if, in
a given system, a laser cascade can occur or not.

Ke conclude with a general remark about the ques-
tion of whether, in the cascading process, phase informa-
tion is transferred from the upper to the lower mode. By
this we understand the following: As has been derived
theoretically, ""and is now also well established experi-
mentally"'0 the complex amplitude of a laser-light
mode above threshold can be written in the form
exp[us/+i p(t) j(ra+ s) where y(t) is the fluctuating
phase, ro a stable (real) amplitude and s represents
small amplitude fluctuations. For the laser cascade one
may ask if a systematic phase modulation by external
means or also noisy phase fluctuations of the mode be-
longing to the upper (lower) transition causes changes
in the phase of that belonging to the lower (upper)
transition. This question can be answered in the follow-

~' H. Haken, Phys. Rev. Letters 13, 329 (1964).
~ J. A. Armstrong and A. %'. Smith, Phys. Rev. Letters 14, 68

(1965).
~ Ch. Freed and H. A. Haus, Appl. Phys. Letters 6, 85 (1965).
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ing way: As can be seen from (2.9), (2.10) and (2.16) the
(complex) light amplitude can be eliminated from these
equations which are still exact within the framework
of a density matrix treatment (neglecting antiresonant
terms). Therefore only the photon numbers (or light
intensities) are coupled to each other. This result is well

known from other problems, for instance spontaneous
Raman scattering: using an intermediate leve1 under
resonance conditions destroys the conservation of phase.

It follows that a phase modulation of the lower

transition by the upper one (or vice versa) via a cascade
is not possible. Equivalently the linewidth of the lower

or upper transition should be the same, whether or not
the other complementary mode lases (provided the net
gain for the single mode remains the same). On the other

hand, the amplitude fluctuations s1, s2 inhuence each
other. The detailed results of this analysis will be
published elsewhere.
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The atomic-beam magnetic-resonance technique was used to measure the electronic g factors of 11 low-

lying levels in Fe r, Cr r, and Mn r. Both odd-A isotopes (which show hfs) and even-A isotopes were used for
the study. The theoretical implications of the results are discussed.

IlWTRODUCTION

~ 'HE measurement of electronic g factors of the
ground state and excited atomic levels is impor-

tant for both theoretical and practical reasons. The
values obtained, if of sufBciently high precision, give
immediate and quantitative evidence of the presence
of any admixture in the atomic wave functions, and
constitute a useful'guide to theoretical investigation of
the states and their interactions. In addition, knowledge
of the g factor of a particular level is of great value
to the experimentalist making hfs studies.

In this paper, we report g values for most J~O levels
below 11 000 cm ' in Fe r, Cr z, and Mn z. No meas-
urement was made for the 'FI level in Fe at 8155 cm ',
for which go=0, or for the '$2 level in Cr at 7593 cm ',
which could not be distinguished from the much more
intense 7S3 ground state. In addition, the four J&0
states of the 'D term in Cr at 8000 cm—' were not
resolved into separate components.

PROCEDURE

The experiment was conducted with a conventional
atomic-beam magnetic-resonance apparatus. Since the
technique is now classic, ' no description of the general
principles will be given here.

The particular apparatus used has been described
in detail by Childs eg al. ' Ovens of ZrO were used
for the Fe and Cr measurements, and graphite ovens
were employed for the Mn. The intensity of the
homogeneous magnetic Geld in which the radiofre-

f Work performed under the auspices of the U. S. Atomic
Energy Commission.

quency transitions were induced was measured by ob-
serving resonances in an independent beam of K", in
which the (F, m~~F', m~')= (2, —1~2, —2) transi-
tion was used. The atomic beam was detected with an
electron-bombardment universal detector incorporating
a mass spectrometer. Details of the add-subtract scaling
technique used have been published by Childs et al. '
Many of the observations would not have been possible
without such a system.

The most abundant isotope in the Fe beam was the
even-even isotope Fe" (92%). For such an atom with
I=O, one resonance may be observed for each J/0
state of the atom that (1) lives long enough to traverse
the apparatus, (2) is suKciently populated in the
atomic beam, and (3) has a large enough electronic
gyromagnetic ratio gg. The transition observed in the
state J is that between the magnetic substates with
m+=+1 and mJ= —1, and its relative intensity is
therefore given by the Boltzmann factor. ' The reso-
nance frequency v of this double-quantum transition
is proportional to the magnetic Geld H if the Geld is not
too strong. Thus,

up= pE(my=+1) —E(m g = —1)j/2h = ggIIOH/h,

where po is the Bohr magneton and h is Planck's con-

I J. R. Zacharias, Phys. Rev. 61, 270 (1942); %. J. Childs,
L. S. Goodman, and D. von Ehrenstein, i'. 132, 2128 (1963).

I The relative intensities may not be given simply by the
Boltzmann factors if higher order multiple-quantum transitions
of the type (J, mq)1~ J, —mq) are induced by overpowering
the line.


