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Rearrangement Collisions —Electron Excitation of He (2's) t
CHARLEs J. JoACHAIN*

Department of Physics, University of California, Berkeley, California

MARVIN H. MITTLEMAN

Lawrence Radiation Laboratory, University of California, Livermore, California

{Received 5 April 1965; revised manuscript received 21 June 1965)

There are many formal expressions for the T matrix for a rearrangement collision. First-order approxi-
mations to the exact wave functions in the different expressions yield different numerical results for the
cross section. We have chosen eight forms of the T matrix and have evaluated the eight cross sections for
electron excitation of He(2's}, which is a pure rearrangement collision when spin-dependent forces are
neglected. The projection-operator formalism for T yields good agreement with experiment.

trons from atomic hydrogen with spin Hip, there exist
very reliable theoretical calculations' and recent con-
firmatory experiments. ' These have been analyzed with
regard to the dynamical problem4 with the remarkable
result that a "Born approximation" in one of the
T-matrix formulations gives the observed resonance
exactly.

Our principal aim here is to investigate the ambigui-
ties associated with the dynamical problem. By this we

mean the following: The T matrix for a rearrangement
collision can be written in a variety of ways, all of which
are exact and all of which contain wave functions or
operators which we are unable to obtain exactly. When
approximations are made on these wave functions or
operators, different results are obtained from each of the
formulations of the T matrix. Our approximations, in
each case, will be to replace a wave function by its
unperturbed value, the first Born approximation. We
have investigated these differences for the problem of
electron excitation of the 2's state of helium. This proc-
ess is a rearrangement collision provided spin-dependent
forces are neglected. In that case, the electron spins are
individually good. quantum numbers and the excitation
of a triplet state can come about only by the incident
electron replacing one of the bound ones (the one with

opposite spin).
There are several experiments' giving the 2's excita-

tion of helium by electrons which include excitation to
higher states with subsequent cascade to 2's. These are
not easily amenable to analysis. Recently, Schulz and
Philbrick' have obtained the direct 2's population by
electron excitation up to about 3 eV above threshold. It
is unlikely that any first Born approximation could give
a good result at such a low energy. Gabriel and Heddle'
have obtained the 2's excitation cross section after cor-
rection for cascade from higher states. They obtained

I. INTRODUCTION

'HE process of rearrangement collision is probably
the least understood of any nonrelativistic scat-

tering interaction. This is not surprising in that a re-
arrangement collision is intrinsically at least a three-
body problem. One of the reasons for this lack of un-

derstanding is the absence of reliable theoretical solu-
tions of meaningful problems and the absence of un-
ambiguously interpretable experiments. Recently, am-
bitious attempts' have been made at a fundamental un-

derstanding of the transition matrix elements. We shall
not pursue this course here. Instead, we shall be con-
cerned with the practical aspects of getting results from
various formulations and testing the assumptions in-
volved against experiments.

Ke feel that the practical difhculties in obtaining re-
liable results may be broken into three categories. The
first is the ambiguities associated with the different
formulations of the T matrix. This will be referred to as
the dynamical problem and will be discussed. more fully
below. The second, which is our ignorance of the exact
bound-state wave functions in almost all cases, we shall
call the boitnd state problem -Finally, the. third is the
ignorance of the two-particle interaction in some cases
which we call the interaction problem

There exist remarkably thorough and reliable ex-
periments on nuclear rearrangement collisions, but
nuclear physics is plagued by real ambiguities in the
bound state and the interaction problem —in particular,
the latter. These preclude simple comparisons with ex-
periment so that information cannot easily be obtained
on the dynamical problem, which is our object here.

Atomic physics is not as badly plagued by the bound-
state problem and not at all by the interaction problem.
On the other hand, reliable experiments are not as
plentiful. In the one reliable electron-scattering situa-
tion of which we are aware, elastic scattering of ele
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an absolute measurement at 108 eV where their results
agree well with our improved calculation. Maier-
Liebnitz' has measured the cross section in a lower
energy region then Gabriel and Heddle. If the two sets of
data are taken at face value then there is a pronounced
dip in the cross section at about 5 eV above threshold
which is roughly described by one of our forms.

In the next section we shall briefly describe the deriva-
tions which yield eight di6'erent exact formulations of
the T matrix. In each case we shall make erst Born
approximations for the unknown wave functions thereby
obtaining eight different approximate expressions for
the T matrix and the cross section. We have used simple
variational approximations for the bound state of
helium. These could easily be improved and our results
indicate that an improvement of the 2's wave function
is probably worthwhile.

In Sec. III we have presented the results of the eight
calculations and compared them with previous calcula-
tions and experiments.

but it is clear that this would lead to two other con-
tributing states in Eq. (4) which would give the same
contribution to the cross section as the ones we have
chosen. We may therefore consider only those in Eq. (1)
and Eq. (4).

The Lippmann-Schwinger equation in which (1) acts
as the initial state is

P*'+'(0)=X'(0)+$1/a'(0) jV'(0)P"+'(0)

where
o,(0)=L+ i& H+—- V,(0)

and
V;(0)= —2e'/ra+ e'/rqo+ e'/r20 (g)

is the interaction of electron "0"with the atom. Here II
is the full Hamiltonian and 8 the total energy. The fully
antisymmetrized function is P +'=Agk, &+'(0) which

may be written as

f;&+&= Lip/ar(1) jAOX;(0)+L1/of(1)) Vf(1)p,'+&, (9)

where

II. THEORY
and

ag(1)=E+ig H+ Vf(1), — (10)

X,(0)= e'~""po(r~, r2), (2)

and pp is the spatial part of the ground-state wave
function of helium. n(n) (P(e)) is the spin-up (down)
function for the nth electron quantized along some direc-
tion in space. The notation X,(0) and I;(0) indicate that
the particle with coordinate rp is singled out as the in-

coming one while the other two are bound. Since pp is
symmetric, a completely antisymmetrized wave func-
tion can be obtained by applying the operator

c4p= 1—Pyp —P2p,

where the P's are operators exchanging the indicated
space and spin coordinates. The Anal state with par-
ticle r~, singled out as the scattering one is

P(1)o(0)o(2)
Xf(1)= Xf(1) , (4)

a(1)(1/&2) Ln(0)P(2)+P(0)a(2)]
where

XI(1)= e'&I ' "p~(ro, r2)

and p~ is the spatial part of. the 2's state of helium. In
Eq. (4) we have written the two possible final spin states
which give a nonzero contribution. In Eq. (1) we could
also have the state obtained by replacing n(0) by P(0)

' H. Maier-Liebnitz, Z. Phys. 95, 499 (1936).
9M. L. Goldberger and K. M. Watson, in Col&sion Theory

(John Wiley R Sons, Inc. , New York, 1964).

The derivation' of the usual T matrix is too common
to be repeated in detail here. It will be outlined here only
for the purpose of establishing notation. The (unsym-
metrized) initial state will be written

4(0)= x'(o) (0)(1/~2)L (1)P(2)—(2)P(1)j
where

V~(1)= 2e'/r&+—e2/r~p+e'/r~& (11)

is the interaction of electron (1) with the atom. The T
matrix for the reaction may be obtained by projecting
Xf(1) on f;&+' and looking for outgoing waves of elec-
tron 1. The form, Eq. (9), is particularly suitable for
this. The first term contributes nothing ' (in the physi-
cal limit g~0) while the second term yields the
standard result

2'f'= 0 r(1)Vr(1)0'"') (12)

This may be simplified by using P,'+'=Aof +'(0) and
performing all the spin algebra. The result is

—K2
Tf,= (Xf(1)Vr(1)g +'(0)) (13)

1

where the two results correspond to the two possible
final states in Eq. (4).P+'(0) is just the function/;&+'(0)
with the spin dependence removed. It satisfies (6) with
X,(0) replaced by X,(0). The cross section is obtained
from T by

«/«=(~//2~f')'(pr//p, )Z f ~

+f
= 3(m/2wh')'(p, /p;)

X
~ Xj($)VI'(1)g, ~+& (0))

~

' (14)

Henceforth we shall make no more reference to spins
and use the reduced T matrix (without spins) in Eq.
(14) to obtain the cross section.

We are, of course, unable to obtain g,'+'(0) exactly.
The simplest approximation is to replace it by its un-

perturbed value &,(0) yielding the first Born approxima-
tion for T

Tg ——(x~(1)Vf(1)x;(0)) .

I M. H. MittleInan, Phys. Rev. 126, 373 (1962).
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where

T'= (xf' '(1)(Vf(1)—Ur(1))A'+'(0)) (19)

Xf&
—

&(1)= Xf(1)+Xr&

—&(1)'Uf(1)/af(1). (20)

If we define 'Uf(1) = —2e'/ri, the interaction with the
nucleus and

Py(1) = Vr(1)+ 2e /ri= e'/rio+ e'/rim, (21)

then Xf& ' is a Coulomb wave and the effective inter-
action has a long-range (1/ri) part. If we again make the
approximation f;&+&(0)~ X,(0) the result is a matrix
element which gives significant exchange contributions
from large distances and is probably in error. Ke con-
clude that the exact form, Eq. (19) with the definition
of Eq. (21), is probably a poor one upon which to make
approximations. At high energies Xr& '(1) may be re-

placed by Xf(1), its Born approximation. Therefore, we
make this further approximation in Eq. (19).The result
is

T3= (x&(1)~f(1)x*(0)&. (22)

Again we may make the analogous approximations in
the prior form. If we chose the distortion potential
'U;(0) = 2e'/ro, the interaction —with the nucleus, and

i7;(0)= V;(0)—'U;(0) = s /roi+@7/r02, (23)

the result is
T4= (xr(1) 1 '(0)x'(o)). (24)

A variety of distortion potentials could be chosen here
but rather than pursue the matter further in this way
we turn to another approach.

If the distortion potential is chosen to be the exact
equivalent potential then T may be written"

T=(gr& &(1)L7rr(1),Vr(1)jg;&+&), (25)

"B.A. Lippmann, Phys. Rev. 102, 264 {1956).
~ M. H. Mittleman, Phys. Rev. 122, 1930 {1961).

The forms, Eqs. (14) ard (15), are the "post" forms.
The analogous "prior" forms are

7'=(& ' '(1)V'(0)&t'(0)&, (16)
where

P~&
—

&(1)= xg(1)+fr&-&(1)Vf(1)/ar(1) . (17)

Again gr~ &(1) must be approximated. The leading
term yields

T7= (&t/(I) V'(0)&~f(0)&. (18)

Equation (15) and (18) yield identical results provided
the exact functions &0 and P~ are available. "The actual
difference between T& and T2 is usually considered to be
a measure of the effect of our ignorance of these
functions.

An alternative form of T can be obtained by using a
distorted wave rather than the plane wave in the final
state. The potential which is absorbed into this dis-
tortion is then removed from the interaction appearing
n T. The result is

where the projection operator onto the final state is
given by

7rr(1) = b(ri —ri')pi(ro, rm) 4;*(ro,r»') ~ (26)

The analogous exact prior form is

T= (ttfL I'(o) ~'(0) jA"'(0)& (29)

where the projection operator on the initial state is

77,(0)= 8(ro —ro )po(ri, r2)po*(ri', rm') . (30)

Again the first-order approximation yields

2'6=(xf(1)LV'(0),~'(0) jx'(0)& (31)

We may obtain two additional forms from Eqs. (25)
and (29) by noting that in both forms the unperturbed
Hamiltonian commutes with the projection operator,
Then

L7rf(1) Vf(1)]=L7rf(1) Hj (32a)
and

LV;(0)p.;(0)j=LHp. ,(0)j. (32b)

These forms may be more useful in situations where it
is diKcult to define the perturbation. "These result in

T7 —(Xf(1) ~
L7rg(1),Hj ~

x,(0))
and

Ts= &xi(1) ILH, ~'(0)jI x'(0)) (34)

These will of course yield the same results as Eqs. (28)
and (31) if the exact bound states are known, but since
they are not, the results are expected to be different
and will give another measure of the importance of the
bound state problem. The first four forms suffer from
the difhculty that the initial and final states are not
orthogonal, so that a poor choice of the approximation
can yield spurious results. The commutators in the last
four forms of T eliminate this difficulty. "Additional
exact forms of T can be obtained by generalizing the
projection operators to project onto additional bound
states. In the one case where this has been tried, spin
exchange in electron hydrogen scattering, 4 the method
gave results which were worse than those of Eqs. (28)
and (31). Moreover, the excited-state wave functions
of helium are not known so the method will not be
pursued here.

"K.Bauer and T. Y. %'u, Can. I. Phys. 34, 1436 {1956).

Removal of the spin dependence yields

T=gr ( )L f( ) /( )$P;'+ (o)). (27)

In this form there is no longer any mention of the
"distortion potentials. " Indeed, the identity of Eqs.
(25) and (12) (in the physical limit &7~0) may be
established without any recourse to "distortion po-
tentials. " The Born approximation here results from
the two replacements g;&+&(0) ~ x;(0) and Pf&

—&(1}—+

Xf(1).The result is

7=( g( )L r( ), &(1)j&,(0)).
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TssLE I.Notation for matrix elements of certain operators.

4 ~sIo')

10—

I
h. ),

As
~s
h.4
h.s
h.p

A.7

~s

2/r1p
2/res —4/rg
2/rps —4/rp
2/res
2/rps
2/r —'Uy(r )
2/rps- v;(rp)
0.096+2m/r1+ (2a —4)/rs —4/rp+2/r1s+2/rps —'Uf (r1}
{20.—4) (1/r~+1/rs)+2/rps+2/res —'U; {rp)

10—
and x;(0) of the operators given in Table I and where

'U;(rp) =4 d'x&d'2:~p'(x&, x2)
Xm

—ro
(39)

0.1—
'Ug(r&) =4 d22:pdpx+22(xp, xp)

x2—ry
(40)

O.O1
o 6 8

p' (Rv)

10
I I I

12

III. RESULTS AND DISCUSSION

FIG. 1. Four times the s-wave contribution to the
section (units u'} versus energy (units 13.6 eV).

The A; integrals can all be performed analytically. It
proved to be simpler to do I numerically after reducing
it to a one-dimensional integral.

XVe have obtained the differential cross section

d~&'&/da=(3/16~')L(p' —2)/p'O'I'LI(& )+A,jp, (41)

the total cross section

a r &'& = (3/82r) $(p2 2)/p2 j&"—[I2+2I2g+2I2ip] (42)

and the s-wave part of the total cross section

%e have evaluated the forms T;, i =1. 8 by using
the following simple variational forms for the helium
wave functions. The ground state is a product of two is
wave functions

p (i& (3/42r) L(P2 2)/P2 j&12PI+g.]2 (43)

ep(r&rp) = (~/~)e (35)

where a is a variational parameter given by y= 27/16."
The 2's state is assumed to be an antisymmetrized pro-
duct of a 1s and a 2s state

IO—
3

EXPERIMENTAL POINTS,
AND HEDDLE

POINTS,
EI 8NI TZ

e&(«rp) = L(PV)'"/~»j(1 —I'pp) p ' ""'(2Vrp —1), (36)

with
g(Pv)'b P)'-

S'= 1—
(P+'v)'-

The parameters are determined variationally, "P=2.01,
y = 1.53, and the initial and final momenta are related by

IO—

O.I—

4
2 IMER

N,
MOISE I W ITSCH

E,
OI SE I WI TSCH

pr2= p '—1.457. (37)

The eight different T-matrix approximations are
then obtained as

O.OI—

(3g)

where I and the A; are matrix elements between x~(1) O.OOI
0

I

2
I

4 6 8
ps (Ryd)

6

t

IO l2 l4

'4 H. Bethe and E. Salpeter, in Qeuntgm Mechanics of One end
Two Electron Atoms (Academic Press Inc., New York, 1957). Pro. 2. Total cross section versus energy.
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10--
I I I I I I I I I I I I

4 cr(72') —
3

1.0—

0.1—

0.01—

3, 4

0.001
t2 6 8

p' (Ry)

1, 2

I I

1210 14

FIG. 3. Four times the cross section at 72' versus energy.

all in units of a'=0.28X10—"cm'. Here p js the cosine

of the angle betvreen the initial and final momenta and

a bar over a function indicates the integral over p,

over its entire range, —1 to +i.
We note that the A.; are all independent of the scat-

tering angle so that the eight cross sections vrill differ

only in their s-wave part. In Fig. i vre have displayed
four times the s-wave part of the total cross section in

units of a' versus incident energy in rydbergs. As is ex-

pected, curves 3 and 4 lie above the Born approxima-

tions. The post-prior discrepancy, the difference be-

tween the Born forms 1 and 2 due to the errors in the
bound-state wave functions, is small at high energies

growing slightly larger with decreasing energy. This

might be interpreted as an indication of good bound-

state wave functions. This is not the case as we shall see

belovr. a, ' goes through zero at about 2.7 eV above

threshold. A similar effect was noticed in the analogous

form for spin exchange in electron-hydrogen elastic

scattering. ' In that case it was due to a resonance in the

singlet scattering. A similar explanation may apply
here. Curves 6, 7, and 8 also each have a zero but at
higher energies. Figure 2 shows the total cross section.

It is evident by comparison of fr, with 0-z that the higher

partial waves start to be important at about p'=3, 21 eV

above threshold. In Fig. 2 we have shown two points of

the Born-Oppenheimer-approximation calculation of

Massey and Moisewitsch. "This is identical with our

"H. S. 4V. Massey and B. L. Moisewitsch, Proc. Roy. Soc.
(London) A227, 38 (1950}.

curve 1 or 2 except that they used a slightly more general
vrave function for the 2's state of He. The difference
between curves 5 and 7 is due solely to inaccuracies in

the vrave function of the excited state. The errors are
sizeable indicating that this wave function is a poor one.
Thus we feel that the smallness of the post-prior dis-

crepancy between 1 and 2 is not evidence of good wave

functions. That is, a large post-prior discrepancy is
evidence of poor wavefunctions, but the converse is not
necessarily true. The difference between 6 and 8 is due

solely to inaccuracies of the ground-state wave function.
It is seen that these are not serious. Given no other
criteria, vre feel that 5 and 6 are probably more trust-
worthy than 7 and 8. The reason for this is the appear-
ance of the kinetic-energy operators in H which probably
emphasize the errors in the approximate wave functions.
We have also shown some experimental points of Gabriel
and Heddle~ and Maier-Liebnitz. ' The Gabriel and
Heddle curve is normalized at 108 eV, p' 8, where an
absolute measurement was performed. Curve 5 is about
the same amount too high. The general shape of the ex-
perimental curve at lower energies seems to favor 5. If
the Maier-Liebnitz and the Gabriel and Heddle ex-
periments are taken at face value there is an indication
of a sharp dip in 0~ as in curve 5. Further experiments
in this energy range are clearly desirable. We have also
shown several points of the extremely elaborate
exchange-distorted wave calculation of Massey and
Moisevritsch. "

We feel that there is some u priori reason for favoring
5 over 6. If we vievr them as "distorted-wave" calcula-
tions then 5 accounts for the distortion in the final
channel vrhile 6 accounts for the distortion in the initial
channel. The final state is more loosely bound t;ban the
initial one and so we might expect that its interaction
with the free electron would be more important.

In Fig. 3 we have shown four times the cross section
at 72' versus energy. Schulz and Philbrick' have meas-
ured this cross section up to about 3 eV above threshold
(i.e., up to about p'=1.7). Their cross section exhibits
complex structure but there is one pronounced dip
which might be associated with the low-energy dip in
our curve 5.

In summary it is clear that the commutator forms are
much preferable to the forms 1—4 and they involve
little extra effort. We think that the diGerence between
the forms with H and V is a better indication of errors
due to bound-state inaccuracies than the usual post-
prior discrepancies. Finally, we feel that at least in this
case, there are physical reasons for selecting either the
post or prior commutator forms vrhen they differ.
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