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The minimum-principle (MP) formulation of scattering theory is applied to the study of the scattering of
positrons by atomic hydrogen for a number of incident energies between 0 and 6.8 eV, the threshold for
pickup. Rigorous lower bounds, 71 (MP) and 7, (MP), are obtained on the p-wave (L=1) and d-wave (L=2)
phase shifts, n; and ns. The method requires the exact numerical solution of the scattering wave function
and of the Green’s function of the static (one-body) equation, and the orthogonalization of the trial func-
tion Q¥, to the ground-state wave function; at that stage the method proceeds as in a standard variational
calculation. Q¥ includes contributions from hydrogenic states with angular momenta /,=0,1,2, and 3 for
L=1,and /;=0,1, and 2 for L=2; the associated radial functions contain arbitrary variational parameters,
as do the radial functions associated with the positron. Contributions from each /; to the total n, (MP),
and the effects of the coupling of different J,, are studied, and extrapolation estimates of n; and »; are ob-
tained. The rigorous (variational) bounds and the estimates based on extrapolation are compared with
close-coupling and other previous estimates and, at very low energies, with predictions based on long-range
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polarization effects.

1. INTRODUCTION

T is relatively simple to apply the zero-energy form
of the minimum principle (MP) or variational bound
formalism of scattering theory! to the determination of
the (L=0) scattering length 4 for the (zero-energy)
scattering of positrons by atomic hydrogen.?:? The de-
termination of 4 for e*H gives us not only the L=0
scattering at the incident energy E'=0 but also the
scattering for very small E’, for the next two terms in
the expansion kao cotn are known exactly* if one knows
A and the electric-dipole polarizability a; of the H
atom. Furthermore, the leading terms in the expansion
of tany for L>1 follow from a knowledge of «;.5:¢ For
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L>1, we will not therefore be concerned with E'=0
since the quantity that plays the role of the scattering
length is known exactly.

For E'>0, the form of the MP is somewhat more
complicated,” but it has been applied®® to etH L=0
scattering for 0< E’<6.8 eV, where the upper limit is
the threshold for pickup. The present paper is an
application of the MP to the L=1 and L=2 scattering
of positrons by atomic hydrogen.

2. PROCEDURE FOR CALCULATING WITH
THE IMPROVED MINIMUM PRINCIPLE

In this section we use the improved minimum prin-
ciple’ for single-channel scattering to formulate a
method for obtaining a variational lower bound on the
phase shift n for an arbitrary total angular momentum
L. Although the formulation is given for e*H scattering
it is also applicable, with modifications which are re-

7Y. Hahn, T. F. Q’Malley, and L. Spruch, Phys. Rev. 130, 381
(1963). This formulation will be referred to as the improved
minimum principle to distinguish it from an earlier crude version
given by L. Rosenberg and L. Spruch, Phys. Rev. 121, 1720
(1961).

8Y. Hahn and L. Spruch, Phys. Rev. 140, A18 (1965).

9 Preliminary results for L=0 ¢*H scattering were reported on
by Y. Hahn, T. F. O’Malley, and L. Spruch, in Proceedings of the
Third International Conference on the Physics of Electronic and
Atomic Collisions, London, July 1963, edited by M. R. C.
McDowell (North-Holland Publishing Company, Amsterdam,
1964), p. 312.
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quired to account for the effects of the Pauli principle, to
¢ H scattering.

We are interested in energies too low for positronium
formation and therefore a fortiori too low for excitation
of the hydrogen atom. Virtual positronium formation?
and virtual excitation'® can nevertheless play significant
roles in the description of the H atom during the course
of the scattering. It is however somewhat difficult to
take both effects into account and some decision has to
be made as to which effect will be concentrated on. The
decision is not simply a matter of which effect is more
important but depends upon the ease with which the
calculation can be performed. We will now examine this
point.

The coordinates of the electron and positron are
denoted by r; and r,, respectively, where

ti=(rifyed) = (ryf)=(ryQ), i=1,2, (2.1a)
or almost equivalently,
71, 72, 012, and 3 Eulerian angles, (2.1b)

where 6y, is the angle between r; and r;. Another possible
set of coordinates is

(2.2)

The latter set of coordinates has the advantage that it
takes into account correlation in position which involves
contributions from states with high /; values, but we
preferred the set given by (2.1) for three reasons.

(1) We require a trial function Q¥, which is or-
thogonal to the hydrogen ground state, and it is simpler
to choose such trial functions if one uses the set given
by (2.1).

(2) For a total angular momentum L=0, the trial
function will be independent of the Eulerian angles, and
the set given by (2.1b) reduces to 7y, 75, and 6y, while
the set given by (2.2) reduces to 71, 72 and rys. The
Hamiltonian H is somewhat more complicated for the
latter set and the orthogonalization condition is more
difficult to satisfy, but the calculation is manageable.
However, for L>0 the Hamiltonian and orthogonaliza-
tion become very much more complicated for the coordi-
nate set given by (2.2) and the calculation may be too
cumbersome to handle.* (It should be noted that a
calculation using a Kohn variational scheme similar to
the one described in Ref. 3 is being applied!? to the etH
and ¢H scattering problem for L=1.)

(3) With the set (2.2) it is easier to include the ground
and excited states of positronium, while with the set
(2.1) it is possible to study the effect of inclusion of each
excited state of the target in the trial function Q¥ ,. The
latter provides us with a useful check on our program
for it enables us to compare our results with those

11, 72, 712, and 3 Eulerian angles.

10 S, Geltman, Phys. Rev. 119, 1283 (1960); K. Smith, R. P.
McEachran, and P. A. Fraser, ibsd. 125, 553 (1962).
( u C, L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057
1962).
2 R. L. Armstead and C. Schwartz (private communication).
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obtained from a close-coupling approximation calcu-
lation.

The starting point of our formulation is the MP, with
the subtraction terms deleted, for a total angular mo-
mentum L and a total angular momentum projection
M, which is given by

(kH?/2m)[ cot(nz—8)— cot (n P —6)]
<2 (P\I'LP,PHQ\PL,)-i- (Q\I'u,Q[SC— E|QVLy). (2.3)

We have dropped the index M on the wave functions
since the scattering is independent of the orientation of
the system in space. For notational convenience, the
index L will also often be deleted. n and »F are the exact
and the static phase shifts, respectively, and the
normalization constant 8 satisfies 0<6<w. k is defined
by #%k?/2m=E'=E— Erp, where Erp, is the ground-
state energy of the target. P¥F is the exact static ap-
proximation scattering wave function given by

PYP=Ryo(r))ur? (r2) Yror™ (Q12) /12, (2:4)
where the projection operator P is given by
P=Rio(r1)Yror)(Rio(r)YroL, (2.5)

and where Ry, is the radial part of the ground-state
wave function of the hydrogen atom given by

Rio(r1)=2ag32¢1/%0 (2.6)
with ao the Bohr radius. Yoz is defined by
YounM @)= X Cuyy(L,M;mms)
T XV um @)V am(@), Q1)

where the Cy,1,(L,M ; mi,ms) are the Clebsch-Gordan
coefficients. %P (r5), which is regular at the origin and
subject to the boundary condition

urP(rs) — —kro[sinn Pny(krs)
~ 30
—cosnrPjr(kr2))/sin(n.F—6),
(where jp and ng are spherical Bessel and spherical

Neumann functions, respectively) is a solution to the
one-particle equation

I:— d2/dfz2+L(L+ 1)/1’22+ Voo(fz)—kz:]uLP (1’2) =0 , (2.9)
where

Voo(rz)= (2/a0) (1/ao+1/rs) exp(—2r2/ao). (2.10)

(#/2m)V po(rz) is the static potential. Thus, the de-
termination of the static approximation phase shift n?
is a simple matter with the use of a computer. In terms
of the projection operator Q=1—P, the operator 3C
appearing in (2.3) is defined by

(2.8)

=Q[H+HGLPH]Q, (2.11)
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where the Hamiltonian H is given by
H=— #2/2m)(V:2+V.2)
—e(1/ri—1/re+1/r12), (2.12)

and where the static Green’s function G 7 is constructed
from the regular and irregular solution of Eq. (2.9) and
is given by

GP(r1,r2,Q2; 11,79 ,212") = Rio(r1) Yo (Q12) Rio(r1)

X (Yoo (Q2)g(rars), (2.13)
where

2m
4 (f 2,7 2') =— E[urezp (’ 2<)uirregP (r 2>) —cot (ﬂP— 6)

1
Xttreg? (r2)treg” (’2’)]——, .
Tore

(2.14)

The second term in (2.14) is included to make it
asymptotically proportional to sin(krs—3Lx+-0) as is
required, and #,¢;* and %" are subject to the bound-
ary conditions that as 7, —

Ureg? (r2) — —kro[ny (krs)

—cot(n.P)jr(krs)] sing?, (2.15a)

uirregp(rZ) —_ — kr2[jL (kfg)

—cot(nP)ny(krs)] singr?. (2.15b)

Before giving the form of the trial function we note
that for L>0 and for /;>0, where /; is the orbital angu-
lar momentum of the atomic electron, more than one
value of I/, is allowed by the usual vector additions,
subject to parity and other selection rules, to combine
with /5 to give L. In Table I we designate a pair of values
of Uy, Iz by . We take a trial function of the following
form

QW ((r1,Q1; 72,22)

= Z CiyWiy (*17a0) Xiy (72/a0)
iy

XYLy, 1(Q2)/ (117200 =3 c,Q¥ 1, (2.16)

where the summation over ¢ indicates that for any fixed
L, i can vary from one up to some arbitrary value which
can depend on v, and where in the latter sum we let the
index p stand for both indices 7 and v. The ¢, are the
linear variational parameters, while

wp(21) =211 exp(— bpx1)
- [8 (1+bi0)_3]x1 €xp (— x1)5011 (2.17a)
and

Xp(%2) =2212%1 exp(—dp%2) , (2.17p)

where x;=7;/a, and where 8;, is the Kronecker delta.
The distinction between /;=0 and /;#0 is a consequence
of the fact that for /;%0 the requirement that the trial
function Q¥, be orthogonal to Ry is automatically ac-
complished by the presence of the Y1, while for /;=0
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TaBLE I. Values for the labeling index y for the possible sets of
values of J; and I, for the limited range of values of /, considered.

v

L=1 L=2

h I h 123
0 1 0 0 2
1 0 1 1 1
1 2 2 1 3
2 1 3 2 0
2 3 4 2 2
3 2 5 2 4
3 4 6

one must choose the radial function w,(r;) to be orthogo-
nal to Ryo. The b, and d, are nonlinear parameters.

The 1/r12 term is expanded in terms of Legendre
polynominals as

1/r12= i (rMrsMPa(Pr-P2) =3 S\Py,  (2.18)
A0

where r< and 7., are the smaller and larger, respectively,
of r1 and 7,, and since 1/, does not couple states of
different L or M, one has the requirements,

Y] (—1)hth= (= 1)+, (2.19)
2) (—1)ktwr=1, 4=1or2 (2.20)

and
3) L+a>l/>|li—\|, i=1o0r2, (2.21)

where Iy, l5, and Iy, 1’ refer to the initial state and to the
final state, respectively. The total angular momentum L
is restricted by

h4+b>L> [h—1|. (2.22)

The integrals occurring in the MP involve the f)
defined by

A=Ayl b5 L) = (Y™, PrxYry 1™);

the f\ are tabulated by Percival and Seaton® for all
transitions for which /,<2, I’ <2. Explicitly, we have®

f)‘ (l],lg,h’,lz’ ) L)
= (—=1) bt 4+1)"1Cy,1,: (1,03 0,0)C 1,1, (2,05 0,0)
X[ (20+1) (20+1) 20/ +1) 20+ 1) ]

X W(l1,lz,ll',lz’ ’ L,)\) .

(2.23)

(2.24)

An extensive tabulation of the C’s and of the Racah
coefficients, the W’s, is given by Rotenberg et al.!* The
Y111, are orthonormal, and as a consequence we have

Solyla ' by’ 5 L)=81,1,81,1, - (2.25)

1], C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 655 (1957).

14 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3—j and 6—j Symbols (The Technology Press, Massa-
chgst):tts Institute of Technology, Cambridge, Massachusetts,
1959).
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Fic. 1. An illustration of the spurious jump in Ag when 6 is
chosen to lie between P and . For an explanation of this illustra-
tion see the discussion following Eq. (2.32).

The fj also satisfy the symmetry relation

Al b s L)y= Al e Jole; L) (2.26)
and the relationship
iule0,L; L)=0 if LFA. (2.27)
Using PHQ= P(—¢*/r12)Q and introducing
N,=(Q¥ 1,0 — /112 ]P¥T) (2mao/1?)  (2.28)
and
K pq= (Q¥ 1, Q[ H— E+ (¢*/712)G (¢¢/712) JO¥ 1)
X (2mao/%%), (2.29)
Equation (2.3) can be written as
kao[cot(n—8)—cot(9P—0)]1<2¢c-N+c-Ke, (2.30)

where ¢ and N are vectors and K is a real symmetric
matrix whose order is equal to the number of trial
functions, with the possible values of the index p, which
comprises the indices ¥ and ¢, having been given some
definite ordering. The elements of ¢, the linear varia-
tional parameters, are determined for a given choice of
the nonlinear parameters by minimizing the r.h.s. of
Eq. (2.30). One immediately finds

c=—N-K-! (2.31)

so that
kao[cot(n,—8)—cot(n.F—6)]< —N-K-'N=4,. (2.32)

Note that A, is independent of the normalization of
the trial function, since Q¥ ,, enters quadratically in the
numerator and in the denominator of A,.

Before giving the form of the integrals we discuss
briefly the normalization constant 6. If 4 is chosen to be
such that

nP<6<n, (2.33)

then one has in principle one subtraction term on the
right-hand side of Eq. (2.32), since the bound on #,
which equals #? when Q¥,=0, will increase as more
terms are included in the trial function Q¥, thus
causing a sudden jump of cot(n—6) when n=6. This
spurious subtraction should not be confused with one
due to the presence of a bound state. In practice a
sufficiently accurate wave function could easily take

KLEINMAN, HAHN, AND SPRUCH

into account this subtraction!® (or any finite number of
subtractions). To avoid this, one can conveniently
choose any @ outside the range given above. If, for
example, 6 is chosen as

={r+n", (2.34)

the inequality given by Eq. (2.32) reduces to the simple
form

kao tan(n—9F)>—A>0, (2.35)

where A= Ag_jrq,#. The above choice of § was motivated
by the estimate that % is smaller than =49,

The illustration of the spurious jump when 6 is chosen
to lie between 5P and 7 is shown in Fig. 1. For kao=:0.3
and L=1, = —0.00555. To simplify the calculation
we set b;,=b11=0.5 and allow d;,=d1; to assume values
from 0.05 through 6.0. With ,=0.5 and d1;=0.2 the
best value of the phase shift is obtained as #.(MP)
=0.00168, and if g is chosen as §= —0.004 the jump in A
occurs when

0.62<d;1<0.64. (2.36)

However, when @ is chosen outside the bound (2.33), say
§=2%r+mP, and the above calculation is repeated, no
such jump occurs; see Fig. 2. It should be mentioned
that it is essential to have only one term in the trial
function in order to see the jump.

This jump is not indicative of a real bound state; it is
rather a spurious bound state of 3¢(E,§) introduced by
the particular choice of = —0.004 for this particular
problem. It should be emphasized that whether one
uses this latter value of 8 or uses §=3r+m 7%, the value
of 71(MP) in both cases converges to the true value of
m as the trial function is improved. Thus, one may
choose any convenient 4 in a particular problem for
kdo> 0.

While in our problem we artifically introduced one
“bound state” of JC(E,f), in a variational calculation!®
one has an infinite number of eigenstates of H. It has

A x10°3

2.0

0.8

04

e |

0.2 04 06 0.8 10 1.2

Figure 2

F1G. 2. A study of A when 6 is chosen outside the range n” to .
There is now no jump.

18 T, Ohmura, Phys. Rev. 124, 130 (1961); L. Spruch, in Lec-
tures in Theoretical Physics, Boulder 1961, edited by W. E.
Brittin, W. B. Downs, and] Downs (Intersc1ence Publishers,
Inc., New York, 1962), Vol. 4

6C, Schwartz Ann. Phys. (N Y) 16 36 (1961).
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TasLE II. The phase shifts in various approximations for L=1 and L=2. The B.S. and F.Mc results represent numerical solutions of
the coupled equations by Burke and Smith,® and by Fraser and McEachran,? respectively; slightly different numerical procedures were
used. The minimum principle (MP) results are in all cases either equal to or below the exact results and are generally rather close to
them. The results labeled with an “all” preceding the state were obtained by using trial functions of the form given by Egs. (2.17a) and
(2.17b) in Eq. (2.16), and should be compared with the values immediately above them which were obtained by using exact hydrogenic
wave functions in Eq. (2.16). The differences between these results are by no means negligible and show the inadequacy of the close-
coupling approximation in the present problem. The dash on top of the numbers indicates the numbers in which there exists an un-
certainty, and the numbers in parentheses give the uncertainty in the last digits.

L States Method kao=0.1 kao=0.2 kao=0.3 kay=0.4 kao=0.5 ka9=0.6  kao=0.7
1 1s —0.00023 —0.00176 —0.00555 —0.01200 —0.02102 —0.03215 —0.04478
1 1s4-2p B.S.» 0.00465 0.01328 0.01995 0.02161 0.01768 0.00904 —0.00283
F.Mch 0.00462¢ 0.01325 0.01993 0.02159 0.01765 0.00900 —0.00289
MP 0.00458 0.01316 0.01984 0.02146 0.01761 0.00868 —0.00314
1 1s+all p MP B © 004103 K 0.06281 i
1 1s4-3d F.Mc —0.000198 —0.00161 —0.00526 —0.01161 —0.02060 —0.04441
MP —0.000198 —0.00161 —0.00526 —0.01161 —0.02060 —0.04441
1 1s4-all d MP —0.00134 —0.01122
1 1s+4f MP —0.00555 —0.02102
1 1s+all f MP ) —0.00464 _ —0.01869
1 1s+2p+4-3d F.Mc 0.00472 0.02093 0.02294 0.01912
MP 0.00468(5) 0.02082(5) 0.02280(5) 0.01882(5)
1 1s+all p+alld 0.05099 0.08809
1 1s+42p+3d+4f MP 0.02120 0.0200
1 1s+all ptall d4all f MP 0.05446 0.09796
2 1s —0.00000 —0.00002 —0.00014 —0.00051 —0.00134 —0.00282 —0.00507
2 1s4-2p F.Mc 0.00084¢ 0.00331 0.00698 0.01114 0.01504 0.01806 0.01991
MP 0.00082 0.00324 0.00693 0.01106 0.01498 0.01782 0.01963
2 1s5+all p MP ) 0.01081 i 0.02589
2 1s+3d F.Mc 1.26X10-¢ —6.75X10*  —0.000371  —0.00113
MP 1.25X10-¢ —6.75X10"% —0.000371 —0.00113
2 1s+all d i 0.00040 ) 0.00109
2 1s+2p+3d I"Mc 0.000867 0.00720 0.01160 0.01577
MP 0.000844(10) 0.00716(2) 0.01150(2) 0.01545(2)
2 1s+all ptalld MP 0.01180 0.03124
s See Ref. 17. b See Ref. 18. ¢ This result is an estimate obtained from the 1s+2p +3d result of F.Mc.
been shown by Schwartz!® in the course of a variational K, pq= (Q¥ t5,[ — €*/712]0¥ ¢o) (2mmao/#2) , (2.40)
calculation of elastic e"H scattering for 2¢,>0 and L=0 d
that as one increases the number of terms in the trial 2™
T 43 ; » :
function, the “stationary” value of the phase shift does Ko pa= (O 1p,[ (¢2/715)GP(e%/712) JO¥ 1)
not converge smoothly, but may on occasion turn out to % (2 ). (2.41)
be grossly inaccurate, though normally, by proper (2mao/#). )
interpretation of the calculations no difficulties will Using (2.25), K,.,, can be written as
. . oy . . . * ) a,pq
arise. However, with the MP it is possible to avoid this
phenomenon altogether by eliminating the part of the 2m
continuous spectrum below E, and have the phase shift & ﬂ-M=; dry wp(x1)wq(%1) | dra Xp(x2)
monotonically approach the true value.
Using Egs. (2.4), (2.16), (2.18), and (2.27), N, as X [t(Ie,re)+€/ra— E]X o (%2)
defined by Eq. (2.28) can be written as
2m
} +— /dfg X,,(xg)xq(xz) /dfl w,,(xl)
Np=(=1/ad™% fu(1,12,0,L; L) | dre X, (x2)u? (r2) i %
12
X[tr)—e/rde (), (242)
X | drirw,(@)SyRi0(r1), (2.37)  where
tlirs)= (—#/2m)[d*/dr2—1.(0i+1)/r %],
where as before x;=r;/a,. K,, as defined by Eq. (2.29) i=lor2. (243)

can be written as

Kpe=KapetKspetKepg, (2.38)
where

Ka,po= (Q¥ tp,[ — (#/2m) (V>4 V.
—(1/r1—1/r)) — EJOY¥ ) (2mao/#2), (2.39)

K ,»o may also be written as

Ksope= (= 1/a) S fr(ulalils's L) / o (62) X (x2)
A

X /drlw,,(xl)wa,,(xl) .

(2.44)
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Using Egs. (2.13) and (2.27), K., may be written as

Kepe=(¢/a0) 2. fu(l,12,0,L; L) fy' (' ,12',0,L; L)

l2, 12’

X / drareX,(xs) / arwp(21)S,71R10(r1)

X/dlerglxq(xgl)/df1'71’R10 (1'1')

XSlllwq(xll)g (72)72’) )
where g(re,rs) is defined by (2.14).

(2.45)

3. RESULTS OF THE CALCULATION
A. Close-Coupling Approximation

If the total wave function is expanded in eigenstates
of the hydrogen atom and if only a few low-lying states
are retained, the exact phase shifts are available from
various close-coupling approximation (C.C.A.) calcula-
tions.'”!® In order to check our program and also to
obtain an indication of how easily the MP can reproduce
the known results, we obtained bounds on the phase
shifts for a few cases for which we have a single excited
state of the hydrogen atom with principal quantum
number » and orbital angular momentum /;=#—1. In
particular, we obtained bounds on the 1s+2p, 15434,
and 1544 f phase shifts for L=1 and on the 1s+42p and
15+ 3d phase shifts for L= 2. These states can be handled
by our trial function (2.16) by simply setting b,=n"1,
for each v that corresponds to a definite /;, in the trial
function (2.16).

The form (2.16) cannot as it stands handle eigenstates
with n#/;+1, since these contain polynominals in x;
with more than one term.

As shown in Table II the agreement between the
1s+2p phase shift obtained with the MP and the
C.C.A. results of Burke and Smith, and of Fraser and
McEachran is satisfactory in spite of the fact that no
attempt was made to search for a better set of nonlinear
parameters. The perfect agreement between the MP
15+ 3d phase shifts and the phase shifts available from
the C.C.A. for L=1 and L=2 provides a further check
on the code. The agreement for 1s+42p+-3d is also good.
An important point to note here is that the phase shifts
obtained with the MP are consistently either the same
as or lower than and rather close to the values derived
from the C.C.A,, as expected. For the 1s+4fand 1s+2p
+3d+4f phase shifts we do not have close-coupling
results to make a comparison. The results in Table II
labeled with an “all” preceding the state (e.g., 1s-+all p,
1s+all 4, etc.) were obtained by using trial functions of
the form given by Egs. (2.17a) and (2.17b) in Eq.
(2.16), and should be compared with the values im-

17 P, G. Burke and K. Smith (private communication).
18 P. A. Fraser and R. P. McEachran (private communication).
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mediately above them (e.g., 1s+2p, 1s43d, etc.) which
were obtained by using exact hydrogenic wave functions
in Eq. (2.16). The differences between these results are
by no means negligible and show the inadequacy of the
C.C.A. in the present problem.

It is worth noting that while for kao>0.1 the con-
vergence of n(MP) occurred when the integration of N,
and K, ,, was carried out to 30a,, (K4,pq and K, 4 are
integrated analytically out to infinity) it was necessary
to integrate out to 60a, and 80a, for L=1 and for L=2,
respectively, for k2o=0.1. In the C.C.A. calculations,®
it was found necessary to retain the contribution to the
phase shift up to r=60a, for L=1 and L=2, for
kao=0.1, while for ka,>0.1 it was sufficient to retain
contributions only up to r=40a,. However, this phe-
nomenon did not occur for L=0 either in the MP
calculations?® or in the C.C.A. calculations.!® This points
out that the major contribution to the phase shift for
kao=0.1 comes from the long range contribution. This
can be calculated after we have gone over to an equiva-
lent one-body problem with a long-range 1/7¢ potential
in the Born approximation. In this approximation we
have

k tann(Born)= —/

0

00

[krjL(kr) B(—ay/rHdr. (3.1)

Now j(kr) does not reach its maximum until r=~L/k,
i.e., r=10La, for kay=0.1, and even in the presence of
the 1/74 factor there will be significant contributions
from large . As L increases, not only does the contribu-
tion from large » play a significant role, but the contri-
bution from small » decreases due to the r“+! dependence
of krjy(kr). It was found'8 that the contribution from
r=40ay to r==060a, is 0.6 and 10.29, of the total phase
shift for L=1 and L=2, respectively, for ka,=0.1.
From a physical point of view the necessity of having to
integrate out further for L>1 and kao=0.1 is due to the
effect of the centrifugal barrier. The repulsive nature of
this barrier increases with L, and for small ka, the
probability of the incident particle coming close to the
scattering center is small so that one has to go out far in
the integration to obtain the phase shift.

B. Threshold Energy Dependence of Phase Shifts

For scattering of charged particles by neutral polar-
izable systems, the usual form of effective range theory
is not correct.4=8 For L> 1 even the usual 224! threshold
energy dependence of Wigner is not correct. One has
instead

tanny=n[ (2L+3) 2L+1) 2L—1)ao ok +- - -,

L>1, (3.2)

where the correction is of order 42 for L=1 and of higher
order for L>1. Since the electric polarizability a; of the
hydrogen atom is given by a;=4.5a¢, we have

tang=J (L) (kao)?, (3.3)
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TaBLE III. Comparison between 1s+all p phase shifts obtained
with the MP, and those obtained from Eqgs. (3.3) and (3.4), the
Born approximation for the long-range polarization potential
which becomes exact as kao — 0.

\%ethod MP long MP long

kao L=1 L=1 L=2 L=2
0.05 0.0020 0.0024 0.00031 0.000338
0.10 0.0075 0.0094 0.0012 0.00135

where

J(1)=0.942, J(2)=0.135, J(3)=0.045,

and J(4)=0.020. (3.4)

The values for the phase shifts for £2,=0.05 and 0.1
obtained with (3.3) and (3.4) are compared in Table ITI
with the values obtained with the MP. As expected, the
agreement between the MP and the expressions (3.3)
and (3.4) become better as one goes to lower ka, and to
higher L. It is seen from Table III that the values for
the phase shifts obtained with the MP are lower than
the values obtained with the expressions (3.3) and (3.4),
which is probably due to the choice of the particular
form of the trial function given by (2.16) which does not
easily take into account long-range effects since the
individual terms do not have the correct asymptotic
form.

C. The Ratio of Virtual Excitations

As seen from Table I, to each A®, ['the superscript /;
indicates the /; term contribution to A in (2.35) without
coupling to other /; values] for /;>0 and L>0, there
corresponds more than one A, [the subscript v indicates
the v term contribution to A in (2.35)]. The theoretical
ratios obtained in Appendix A and the ratios obtained
with the MP are given in Table IV. As seen from this
table the difference between the values obtained from
the MP and the theoretical predictions is a function of
both the energy and the /; in question. Since the theory
applies only to low scattering energies the dependence
of the agreement between the theoretical ratios and the
ratios obtained with the MP on the scattering energy is
reasonable. Short-range forces become more important

TasLE IV. Comparison of the ratios of the contributions to
A® due to virtual excitation with L and /, fixed and /, taking on
its different possible values, as obtained from the long-range
approximation, Egs. (A13) and (Al4), and from the MP at very
low energies. The agreement should improve as kao decreases and
as L increases.

Ratios of contributions

Long range MP MP
L ll lz kaon kao=0.05 kao=0.1
1 1 0,2 1:2 1:1.93 1:1.86
2 1 1,3 1:1.5 1:1.45 1:1.43
2 2 0,2,4 1:1.43:2.57 1:1.40:2.43 1:1.37:2.29
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Fi6. 3. The L=1 phase shift, in radians, in various approxima-
tions, versus kao. m* is the static approximation result. 7, (/1; MP),
the L =1 phase shift in the approximation in which the virtually
excited hydrogenic states are restricted to angular momenta up
to and including 4, is a rigorous lower bound on #,, the true L=1
phase shift. 7, 1s our (still crude) estimate of #:. It includes cor-
rections to account for the inaccuracy of the trial function for the
values of /,(0, 1, 2, and 3) that were included and estimates of
the contribution from J,>3.

as I; becomes larger because the long-range forces as-
sociated with that /; then fall off faster and barrier
effects for different /;’s may also contribute to the
disagreement between the two ratios. In general, one
expects that the agreement between the calculated and
predicted ratios would improve as kao decreases, as L
becomes larger, and as /; becomes smaller. It may be
worth noting that the ratios are expected to be more
reliable than Eq. (3.2), since there will probably be some
cancellation of errors and the ratios therefore serve as a
much more stringent test on the code and on the
powers of the MP.

D. Rigorous Bound

For the limited form of the trial function (2.16)
chosen, there occur two nonlinear parameters &, and d,

TaBLE V. The rigorous lower bounds nz(/1; MP) on 7z in the
approximation in which the virtually excited hydrogenic states are
restricted to angular momenta up to and including /. The last
column represents our best estimate # obtained by extrapolation,
of the exact phase shift n. The phase shifts are given in units of
1072 rad. The number in parentheses gives the uncertainty in the
last digit.

Rigorous lower bounds 7

kdo L 11=0 ll=1 ll=2 11=3

0.1 1 —0.021 0.743 0.805 0.823 0.86(1)
0.2 1 —0.163 2370 2.764 2.892 32 (1)
0.3 1 —0.512 4.128 5.124 5475 6.6 (4)
0.4 1 —1.100 5.555 7.341 8.008 11 (1)
0.5 1 —1918 6.403 8939 9.938 14 (1)
0.6 1 —2917 6.700 9.876 11.162 17 (2)
0.7 1 —4.035 6.833 10.350 11.890 19 (2)
0.1 2 —0.000 0.121 0.123 0.13(0)
03 2 —0.013 1081 1.181 1.4 (1)
0.5 2 —0.126 2.742 3.134 4.6 (5)
0.7 2 —0471 4240 5.700 10 (1)
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Figure 4
_ F16. 4. The L=2 phase shift, in radians, in various approxima-
tions, versus kao. See caption for Fig. 3. (The values of /; con-

sidered in the trial function were 0, 1, and 2.) #5F and %:(0; MP)
are indistinguishable on the graph.

for each linear parameter ¢,. These nonlinear parameters
were searched for by trying out different sets which
were obtained by systematic variation of a particular &
and d, and choosing that set which gives the largest
value of the phase shift. As additional trial functions are
introduced the old parameters are kept fixed while the
new parameters are varied, and then the new parameters
are kept fixed while the old parameters are researched.

Using these 4’s and d’s and the ¢’s as determined from
Eq. (2.31) we obtained the values for #;(/;; MP) and
n2(l1; MP) given in Table V and in Figs. 3 and 4. These
phase shifts, the main results of the present paper, are
rigorous lower bounds on the phase shifts for the artificial
problems in which the hydrogen atom can only be
virtually excited to states with a maximum value of /4
and also on the true phase shift involving (virtual)
excitation to all /; states.

E. Error Estimation for 1,<2, 3 and Extrapolation
to Higher l’s

Our choice of coordinates simplifies the problem of
satisfying the orthogonality requirement, but it has the
drawback that n(J;; MP) as a function of /; does not
converge very rapidly. Many /, states are required be-

TaBLE VI. The partial cross sections gy, a1, 02, and a3
in units of 7a¢.

gL
kay ao® P o9? a3®
0.1 9.000 0.077 0.002 0.001
0.2 3.497 0.307 0.002
0.3 1.239 0.581 0.044 0.005
0.4 0.360 0.843 0.009
0.5 0.062 0.901 0.169 0.014
0.6 0.001 0.941 0.021
0.7 0.002 0.847 0.368 0.028

s Obtained from Schwartz's phase shifts. (See Ref. 3.)
b Obtained from the phase shifts % of Table V.
o The values for o3 were obtained from Eqs. (3.3) and (3.4).
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fore one obtains a good representation of Q¥ .. However,
before extrapolating to higher /;’s one must first obtain
the magnitude of error in 55 (/1; MP) for each /; due to
the incorrectness of Q¥,. It should be stressed that it is
completely misleading to extrapolate to higher J,’s be-
fore correcting Q¥, for the /i’s included in Q¥,. The
crude estimate of % is designated by 4 and is given in
Table V and in Figs. 3 and 4. (For further details see
Appendix B of Ref. 8.)

F. Partial and Total Cross Sections

The partial and total cross sections are given in terms
of the phase shifts by

or= (4r/k?) (2L+1) sin*yy, (3.5)
o= ?:o oL. (3.6)

It is very difficult to extrapolate to o for L>2 from a
knowledge of o, for L=0, 1, and 2, especially when these
are not all that accurate, but the indications are that
oz, for L>2 will be quite small (Table VI). The differ-
ential cross sections ¢(8) would of course be more
sensitive to the contributions from higher L, but we
will not consider ¢ (6).

We might note that as one goes to higher L the range
of k over which Eq. (3.2) will be accurate will increase,
since the long-range contribution to o vanishes for &
small as k2, while the short-range contribution to o,
vanishes for & small as k4f, It must be remembered,
however, that the long-range contribution to oz van-
ishes for large L as 1/L8.

4. SUMMARY AND DISCUSSION

Rigorous lower bounds on #; and 7. as well as esti-
mates of these phase shifts (7: and 72) which include
various corrections are given in Table V and also in
Figs. 3 and 4 for L=1 and L=2, respectively. As dis-
cussed in Ref. 8 the estimation was a difficult task and at
best only a crude one. However, the fact that the esti-
mated values with the MP for L=0 and the presumably
reliable results of Schwartz are in close agreement
suggests that our treatment of higher angular momenta
using (2.16) is fairly reliable.

The present study clarifies several interesting aspects
of the applicability of the MP as well as of the ¢e*H
scattering problem. As found in the case of zero-incident
energy,? the effect of the target distortion during the
collision is very important, presumably due to the
virtual formation of positronium. This manifests itself
through the extremely slow convergence in /;. Because
of this slow convergence in /;, and furthermore because
of the slow convergence in #(>!/;) as indicated in
Table II, the C.C.A. will in the present problem be
relatively ineffective, except as a preliminary orienta-
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tion. Moreover, the convergence in /; should be carefully
studied.

The contribution from the state /;=1 to 9(/;; MP), as
seen from Table V, is by far the most important one, as
expected, since the induced dipole potential which
varies as 1/ is the leading term in the effective long-
range interaction. This table also points out, in agree-
ment with the prediction of Ref. 4, that the relative
importance of the /; state is energy-dependent. The
contribution from the /;=1 state is about 909, of the
total for L=1 and even higher for L=2 for £a,=0.1, but
drops to about 509, for ka,=0.7.

It is seen from Table VI that in order to obtain an
estimate of the total cross section it is necessary to have
the phase shifts for at least L=1 and L=2.

The MP gives a bound on A, and a bound on 7% is
obtained by solving (2.35) for 5. The fractional error in 7
is related to the fractional error in A by

A 19—
on/n~— XE—WP .
A ]

(4.1)

If |9P|>>|n| one may therefore obtain a large error in g
even if the error in A is small.

For example, if one compares the values of 7;(MP)
with 91 (F.Mc) for ka¢=0.2 given in Table II, one finds
that the former value differs from the latter by less
than 19, while if the comparison is made for ka,=0.7,
the difference is nearly 8%,. However, if one compares
the value of A obtained from

A= —Fkaq tan (n (MP)— %) 4.2)
with

A= —Fkap tan (9, (F.Mc)—n:F), 4.3)

one finds that for both %2,=0.2 and %a,=0.7 the A
value thus obtained differs by less than 19. This ex-
ample illustrates the statement made in the preceding
paragraph.

The ¢*H problem represents a rather unfavorable
case. It should be much easier to obtain a reasonably
accurate estimate of 5 in the e H problem, since 5 is
rather close to n¥. However, in the e"H problem one is
beset by initial difficulties, of formulation and of the
calculation of the various static quantities, which have
their origin in the Pauli principle.!®s

We now compare our values for the phase shifts with
those estimated by different methods.!?+2° Estimates for
the phase shift for L=1 have been obtained by Temkin!®
and by Bransden.?* There does not appear in the
literature, to the best of our knowledge, any estimate of
the phase shifts for L=2 for us to be able to compare
with our final results.

188 Note added in proof. As expected, the e H calculations do
give much more accurate results for a given number of parameters
than do the etH calculations. Results obtained by Aronson,
Henry, Kleinman, Hahn, and Spruch (to be published) agree with
those of Schwartz? to four significant figures.

1 A, Temkin, Proc. Phys. Soc. (London) A80, 1297 (1962).

% B, H. Bransden, Proc. Phys. Soc. (London) 79, 190 (1962).
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FiG. 5. m; in radians, in various approximations, including the
nonadiabatic approximation of Ref. 19, 7:(NA), and the perturba-
tion approximation of Ref. 20, 9:(Pert.). ;1 (1; MP) and 7, are
defined in the caption for Fig. 3. #1(NA) includes only /;=0 and
h=1 contributions and should therefore be compared with
m(1; MP). g1 (Pert.) should be compared with 7;.

Bransden, who uses a perturbation method and allows
for the effect of the ground state of virtual positronium
in his function, obtains values for the phase shifts for
L=0 which are off by a factor of 2 and 3, and even have
the wrong sign as compared with the best known values
obtained with the MP® and by Schwartz,? as shown in
Table VII, who also allows for the effect of virtual
positronium in his trial function. This indicates that at
least for L=0 Bransden’s method is somewhat unre-
liable, unless one assumes that the disagreement is due
to the fact that Bransden did not use higher positronium
states in his perturbation method. The nonadiabatic
method used by Temkin is roughly analogous to our
inclusion in the trial function of ;=0 and /;=1. It is
seen from Table VIII and Fig. 5 that the phase shifts
with the nonadiabatic method for L=1 are much smaller
than the results obtained with the MP. Since the phase
shifts obtained with the MP are rigorous lower bounds
on the true phase shift the nonadiabatic method does
not seem to give useful results, unless one assumes that
the disagreement is due to the fact that the latter
method did not include a sufficient number of linear
parameters. The phase shifts obtained by Bransden for
L=1 are much higher than those obtained by Temkin,
but for kao=0.2 it is lower than our rigorous lower

_ TasLE VII. Estimates of the L=0 phase shift obtained varia-
tionally (Var.), by extrapolation of the minimum principle (MP)
results, and by perturbation (Pert.) theory.

kao Var.s Mp? Pert.c

0.1 0.151 0.044
0.2 0.188 0.182(11) 0.057
0.3 0.168 0.022
0.4 0.120 0.119(13) —0.051
0.5 0.062 —0.144
0.6 0.007 0.009(12) —0.236
0.7 —0.054 —0.299

—_: See Ref. 3. b See Ref. 8. ¢ See Ref, 20.
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TaBLE VIII. Estimates of 7, in various approximations. The
second and third columns represent the all s4-all p phase shift as
calculated by the nonadiabatic (NA) approach and by the MP.
The last three columns are estimates of the full L=1 phase shift »,
as calculated by perturbation (Pert.) theory, variationally (Var.),
and from the MP. The numbers in parentheses give the uncer-
tainty in the last digits.

all s+all p Full phase shift
kag NA» MP?® Pert.c Var.d mne
0.1 0.002  0.004 0.009(1) 0.009(0)
0.2 0.009 0.024 0.016 0.033(1) 0.032(1)
0.3 0.018  0.041 0.065(1) 0.066(4)
0.4 0.028  0.056 0.104 0.102(1) 0.106(8)
0.5 0.037  0.064 0.132(1) 0.137(12)
0.6 0.046  0.067 0.167 0.156(2) 0.168(17)
0.7 0.053  0.068 0.178(3) 0.186(20)
s See Ref. 19,
b Present rigorous lower bounds.
o See Ref, 20.
d See Ref. 12.

¢ Estimate based on present rigorous lower bounds.

bounds and is therefore wrong. Bransden’s values can be
expected to be more reliable for higher energies and for
higher values of L, since perturbation theory is then
more trustworthy. In particular, since he includes a
positronium wave-function component in his trial func-
tion, his results might be expected to be reliable for
L=1 and even more so for L=2 for energies near the
pickup threshold, and his results for k2o=0.4 and 0.6
are in fact very close to our estimated values. (See
Fig. 5 and Table VIII.)

The very recent L=1 calculation by Armstead?
is based on Schwartz’s modification of the Kohn varia-
tional scheme and gives results for the phase shift after
regions of good convergence have been obtained which
are rather close to our results as shown in Table VIII.

We have used the MP to calculate the phase shifts for
the single channel ¢*H scattering for higher partial
waves. The purpose has been not merely to obtain ac-
curate results, but to study the validity as well as the
applicability of the principle. From this study we have
reached the following general conclusions:

(1) The MP is very helpful in evaluating the results
obtained by various approximation methods, especially
when the results obtained with them lie below the
rigorous lower bounds.

(2) We have found no anomalies and infinities's
occurring in kag cot(n,—8), contrary to the usual varia-
tional principles of the Kohn, Hulthén, or Schwinger
type. The value of kao cot(n.—6) converges, as the trial
function is improved, monotonically, and thus enables
us, for example, to search for better parameters.

(3) For this particular problem, the expansion of the
function in terms of eigenfunctions of the total angular
momenta does not converge very rapidly and it is very
difficult to obtain better than perhaps 59, accuracy
with the form of the trial function given by (2.16) when
only up to 60 linear parameters are used. It should be
stressed that the poor accuracy is not the fault of the
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method but is due to the particular expansion we used
for convenience of numerical calculation.

(4) It would be extremely desirable to have a method
that would enable one to calculate the opposite bound,?
even if only crudely, so that one gets a rough idea of
how far the lower bound is from the true value. This is,
of course, true for the bound-state problem as well.

(5) There are various possibilities for eliminating the
need for obtaining G? explicitly. The progress that has
been made along these lines, and the associated advan-
tages and disadvantages, are reviewed briefly in Ref. 8.
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APPENDIX A: THE RATIOS OF THE CONTRI-
BUTIONS OF DIFFERENT VIRTUAL
EXCITATIONS

For the low-energy scattering of a positron by a H
atom—more generally, of a charged particle by a
neutral polarizable system with zero-orbital angular
momentum—the H atom will be virtually excited and
will thereby acquire various multipole moments. We
will be concerned here with the long-range effects of
these induced multipole moments. The most significant
effect will be that due to the virtually excited p states
of the atom (/;=1), which give rise to an induced dipole
moment. The p states can be excited because the
interaction with the uniform component of the electric
field generated by the positron contains a cosf factor.
The uniform component and therefore the amplitude of
the p-state excitation is proportional to 1/r5%. Since the
potential of a point charge in the field of a dipole falls off
as 1/r2%, we obtain as is well known a long-range inter-
action which is proportional to —ay/7s*, where a; is the
electric dipole polarizability of the H atom. In precisely
the same way, the excitation of electronic d states by the
inhomogeneous field generated by the positron will be
found to fall off as —ay/r.%, where a2 is the electric-
quadrupole polarizability of the H atom. We will always
be concerned only with the leading term.

The electron and the positron have initial angular
momentum values of 0 and L, respectively. During the

2 1. Spruch, in Ninth Yugoslav Meeting of Physicists on the
Few Nucleon Problem, Hercegnovi, July 1964, Yugoslavian
Atomic Energy Commission, edited by M. Cerineo (to be pub-

lished); R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472
(1964); Y. Hahn, Phys. Rev. 139, B212 (1965).
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interaction, while exciting the electron to a state of
angular momentum /,, the positron will itself be excited
to a state of angular momentum ;. For fixed values of L
and of /;, there are N (/1,L) values of /z, where

NQ@,L)y=L+1 for L>L

=h+1 for L<ZL. (A1)

For the long-range effects under consideration, the
quantity A which is the primary concern of the present
article can be decomposed as

A= i A .

h1=1

where AU represents the contribution due to virtual
excitation of electron states of angular momentum /.
(s states only arise due to short-range effects, since
1/rs—1/r12 has no long range /;=0 component.) AUD
can in turn be decomposed into N (/;,L) components
associated with the different possible values of l,. Our
objective here is to calculate the ratios of these N (I3,L)
contributions. Aside from its intrinsic theoretical in-
terest, these ratios will serve as a partial check on our
MP computation for L>0.

The point is that phase shifts behave as 5, « k2! for
short-range potentials, as 7« k? for potentials which
behave asymptotically as 1/74, and as 5« k* for po-
tentials which behave asymptotically as 1/7%. For suffi-
ciently low energies, therefore, there are values of L, I,
and /, for which short-range effects are irrelevant. This
is never the case for L=0. For L>1, the /;=1 contribu-
tion dominates and can be predicted from a knowledge
of oy ; even more reliably, since errors will probably tend
to cancel, and without a knowledge of a;, we can predict
the ratio of the /y=1, ly=L—1 to the j=1, l,=L+1
contribution. If we restrict ourselves to L>2, the ;=1
contribution must of course continue to dominate, but
now even the /;=2 contribution has a lower energy
dependence than, and is therefore dominant over, the
short-range effects. Thus, even though the contribution
is smaller than that from /;=1, we can for L>2 predict
the /;=2 contribution from a knowledge of a», and more
reliably and without a knowledge of as, we can predict
the ratio of the /y=2, l,=L—2 to the /=2, l,=L to the
ly=2, ly=L+2 contributions.

The ratio of virtual excitations will be obtained from
an analysis of the expression’

A= (Zmdo/ﬁ2) (P\I’P’PHQ\I,) ’
where PP is given by (2.4) and Q¥ is given by’
Q¥={Q(E—H—HP[P(E—H)P]'PH)Q}'QHP¥®.

(A2)

(A3)
Substituting (A3) into (A2) we have
A= (2mao/#*) (PYP,PHQOIQ(E—H
—HP[P(E—H)PT'PH)QI"'QHP¥P). (A4)
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We are interested in those contributions in the inte-
gral in (A4) which come from very large values of 7s.
Since the term containing [P(E— H)P] is a potential
term which vanishes for large separation as 1/7,%, and
thus gives contributions to the optical potential which
vanish as 1/7,%, we neglect it in the following considera-
tion; then (A4) may be approximated for present
purposes by

A= (2mao/1?) (P¥?,PHQ[Q(E—H)QT'QHPY¥T). (AS)

While the inverse operator given in (AS3) is perfectly
well defined, it is not yet in a useful form. Using the
standard relation 1/4=1/B+ (1/B)(B—4)(1/4),

[QE-H)QT
=[Q(Er0— Hr)Q]*+[Q(Eri— Hr)QT™
XQ(T+V—EQ[Q(E-H)QT™
=[Q(Ero— Hr)QT*+[Q(Ere— Hr)QT™
XQ(T+V—ENQ[Q(Eze— Fr)QT +- -
=G G- - -,
and note that the asymptotic contribution to (AS5) in-
volving the G;9 term has been shown?2® to fall off
faster for any /; than the G,? term contribution. Since

for each /; we are only interested in the leading term in
the interaction potential at large 7., we can write

[QE—-m)QT!
~[Q(Ero—Hr)Q]?
= 2" [Ran(r)Yruu(@2))

n,l,l2

(A6)

X[Ero—Era]™ (Rny(r1) Yy (Q12) | . (A7)

Using (A7), Eq. (AS) may be written in the case for
which the dominant contribution comes from large 7, as

A=2e? Z/ [ET[)— ET,,,]—IIO\,n,ll,lz)I*(V,n,ll,lz)

n,l1,l2,A.v

x / CusP () ri"drs, (A8)

where the prime indicates that n=1,A=1, and y=1 are
excluded, where

I()\,n,ll,lz) =f)\(ll)l2,O;L;L) /RIO (rl)’l)‘.ﬂkn I (71)(171 y

and where f is defined by Eq. (2.23). If we use Eqs.
(2.23), (2.26), and (2.27), A may be written as

0
A= Z A(lx),

l1=1

(A9)

# M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959); M. H. Mittleman, B. A. Lipmann, and K. M. Watson,
Phys. Rev. 116, 920 (1959) ; M. H. Mittleman, Ann. Phys. (N. Y.)
14, 94 (1961).

% C. J. Kleinman, Y. Hahn, and L. Spruch (to be published).
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where

AW =— 22 | fll (01L3l1512; L) | 2all
12

where
2
ay=—ey’ /Rm(n)h““’Rn u(r1)dr,
X (Epo—Era)™, (All)

and where N (/1,L) values of I, contribute to A,

In general oy, is not known, but that does not matter
for the present analysis since it is independent of /;. The
essence of the argument is that the radial integrals are
the same whether the positron jumps into one or
another of its possible values of /; and the ratio is then
determined completely by a knowledge of the various
angular integrations involved. It should be noted that
a; and ap are the dipole- and quadrupole-electric
polarizability of the atom, respectively.

We find for /;=1 and L>0,

AW=—a [|£1(0, L, 1, L—1; L)

+1/0,L,1, L+1; L) 12]/(14L”)2rz“‘dr2

B L L1
——all:3(2L+1) ' 3(2L+1)]
X/‘[’uLP(fz)]%'{—'ide (A12)

so that the ratios of the l,=L—1 to l;=L+1 contribu-
tion to A® is given by
L=0.

Azz_z,_l(l) : A12=L+1(1) =L: L+ 1 y for (A13)

We also have, for l;=2, and L>1,

AP =—a|f2(0, L, 2, L—2; L)[*+] f2(0,L,2,L; L|?*

+1/£(0, L, 2, L+2; L)V]/ (urP)ratdrs
from which we obtain the ratios

Apeo®:Ap0®: A, P=7:10:18, for L=2. (Al4)
The theoretical results and the results obtained with the
MP are in quite good agreement as shown in Table IV.
Since the ratios of the A,’s corresponding to a given
AU are independent of ay, in the actual calculation we
use for convenience single eigenstates of the target with

lowest % values, i.e., n=4+1.

HAHN, AND SPRUCH

APPENDIX B: MATRIX ELEMENTS FOR L=1

In this Appendix some details of the calculation for a
total angular momentum L=1 will be presented. For
L=1 where the trial function includes values for /;=0
through /;=3, the values for /, that have to be con-
sidered are given in Table I, together with the labeling
index y=+(l3,l2; 1). Thus we have

V=5 ¥ col0¥sr,

T y=0

(B1)

where the index ¢ indicates that, for each value of v,
more than one set of values of & and of d may be
considered and where

a05/2x1sz\I/ iy = Wiy (xl)xi'y (xﬁ)tyi‘n (BZ)

with w;y, and X;, given by (2.17a) and (2.17b), re-
spectively. Thus for any ¢ we have to calculate 7N’s
and 28K’s.

In all of the N’s, defined by (2.37), there appear
integrals of the type

Z(mm,b; 2)= f 0 () )7 25) exp(—bar) . (B3)
We have ’
Z(mm,b; x)

=(n+m)!><~—1——|:1—exp(—bx)<

prtmtl xmtl

(bx n+m l (bx)n+m—1
(ntm)! | (n+-m—1)!

xm(n—m—1)
—bT——‘ exp(——bx)

bx
LR

by)r—m—1 bx)n—m—2 b
((x) | () L...—*—-—x—*—l). (B4)
1!

T T
n—m—1)! (n—m—2)!
If we define U,(2) as
Up(z)=—2% fullle0,L; L)Z(mmb;z2), (BS)
l2

Eq. (2.37) may be written as

amV,,=/dep(z)uP(z)Up(z). (B6)

Equation (2.39) can be written as

Ka.iw‘7= (2l2+ 2) !(2l1+2) !Di'y.jv—(2 l”s)Biv.i'y—mlH)
X ([Divvh/(l2+l)]+di1dj7

_[Biv.iv/(ll+1)]+bivbi7— é’) ) (B7)

where
Diy,jy=diyt+djy and Biy jy=biyt+bjy. (B8)

Equation (B7) does not hold for K, ;o because of the
special form Eq. (2.17a) assumes for y=0.
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In Eq. (2.40) there appear integrals of the form
I(mm,B;s,D)= /dxz xo? exp(—ng)/dxl "

Xexp(— Bxi) (v<™/x>m);  (BY)

such integrals can be evaluated by writing I as
I=(B+D)="*[J (mn,B; s,D)+J (m,s,D;n,B)], (B10)
where

(s—m—1)!
J{mmn,B; s,D)=———

s—m—1 (n+s—1—t)!/B+D t
X% ( ) .

t=0 (s—m—1—8)I\ D
Using (B10) K5, can be written as

Ky, pg=—2 Z; Iyl By LI(--+). (B11)

Using Eq. (BS) K.,p, as given by Eq. (2.41) can be
written as

(—kao®)Ke,ivip

00 0
/

85 Xi () Uy () { /

0

X [theea® (3<)tirres” (2)

dz' U;p(3)X;,(2")

—cot (ﬂp—e)uregp (z)uirregp (ZI)] . (B12)
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Thus, the prescription to calculate N;, and K,,,;, in-
volves the U;,. We present the matrix elements for
v=0 and 1 only.

‘Y=0 l1=0, lz=1
Ui(2)=4a:Z2(0,2,2; 2)—42(0,2,4 :0; 3) .
Kijo=2-4'Dg, ;o[ Bio,jo*— 8 (A4 04 jo)*]
X (3Do, jo+diodjo— 8)— Bio, jo-2(Bio, jo— biobjo)
+8(4 104 jo)*}+2a:1(0,2,4 jo; 4,D 0, j0)
+2(1j1(0,2,A i0; 4,Di0,jo)"‘ ZaiajI(O,Z,Z 5 4,Di0,j0)
- 21(0,2,Bio.jo; 4,Di0.j0)+Kc.i0jo-
l1= 1 y lz= 0
Uil(Z) = —%Z(1,3,A i1, Z) .
Kion=3%[ad(1,3,41;3,D:0,51)
—1I(1,3,Bi0,1; 3,Di0,1) ]+ Ko, i01-
Kiajn=2-4\Di,i%Bir,jir*(Dir, i+ dadn
—3Bi,at+babp—8)

—2I(0,4,Bi1,5152,D i1, 1)+ Ko i1,
where Z, I, and K, ;,;, are defined by (B4), (B10), and
by (B12), respectively, and where

4 ‘7=bi7+1 ) Afpzbip+1 )
di=8A io_a, a,~=8Ajo‘3,

y=1

(B13)

and
&= —1+ (kay)?.

The values of the ;, and of the d;, used for each v, and
the matrix elements for 1<y<6 for L=1 and 0<y<5
for L=2 are given in the thesis and will be supplied
upon request.



