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Spin-Orbit Interaction in Graphite
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L sing symmetry arguments, the efkctive-mass Hamiltonian including spin-orbit interaction is derived for

energy bands with extrema near the vertical edge of the hexagonal prism which represents the Brillouin zone

of graphite. The energy bands in the plane normal to the vertical edge are described by k.p perturbation

theory, whereas along the edge a Fourier expansion is used for all the matrix elements. It is shown that spin-

orbit interaction lifts all band degeneracies (other than the Kramers degeneracy), and affects the graphite
Fermi-surface topology at the Brillouin-zone boundary k, = ~n-/co, where two de Haas —van Alphen periods
are predicted. Magnetic energy levels for a static magnetic field H~~c are obtained by solution oi the ef-

fective-mass Hamiltonian. Selection rules for infrared interband transitions are discussed. An evaluation

of the spin-orbit band parameters is suggested by analysis of structure in the low-quantum-limit magneto-

reflection data and of the low-frequency de Haas —van Alphen oscillations.

The e6ect of the spin-orbit interaction was previously
considered by Slonczewski' in his derivation of the
effective-mass Hamiltonian. By use of tight-binding
arguments, he concluded that this e6ect was small

compared with other interactions, and therefore no
detailed calculation of the spin-orbit interaction was

given at that time. ' More recently, McClure and Yafet'
used spin-orbit interaction to calculate the small g shift
observed in the spin-resonance experiments of Wagoner. '
Since the measured g shift arises from averaging the
contribution of all electron and hole transitions about
the Fermi surface, certain simplifications were made in
order to obtain numerical results. These simpli6cations
amounted to introducing a minimum number of spin-
orbit band parameters. Tight-binding arguments were

employed to show which spin-orbit terms were large
and these were all set equal to one another, while the
smaller terms were ignored. Thus, with only one spin-
orbit band parameter, McClure and Yafet were able
to obtain good agreement with experiment for the tem-
perature dependence of the g shift, although a larger
value for one of the other band parameters was required
(6 0.1 eU) than is indicated by other experiments. "

Since more reined experiments relevant to the spin-
orbit interaction in graphite are now available, a more
detailed theory of the effect has been developed. The
point of view adopted in this paper diQ'ers somewhat
from previous work in that symmetry considerations
are emphasized more strongly. Tight-binding arguments
can then be used to obtain a physical interpretation of
the various spin-orbit band parameters which are re-
quired by symmetry. The numerical evaluation of these
parameters can, in principle, be made from suitable
experimental measurements. Since the effective mass
Hamiltonian is constructed by symmetry arguments

I. INTRODUCTION

~ 'HE Slonczewski-Weiss (S-W) band model' has
been frequently used to interpret experiments re-

lating to the electronic band structure of graphite. '
In the past this model has been very successful in ex-
plaining many of these experimental results. Recently,
the magnetoreQection and low-frequency de Haas —van
Alphen measurements have become so precise, that a
more refined theory is now needed to explain certa, in
small departures from the usual S-W band model.
Although the spin-orbit interaction is small, it has an
important efI'ect on the energy bands in the neighbor-
hood of band degeneracies. Since the Fermi surface
always lies near a band degeneracy, this interaction is
responsible for measurable deviations from the usua, l S-%
band model in the vicinity of certain critica, l points
along the vertica. l edges of the Brillouin zone. In the
case of the magnetoreQection experiment, a nonzero
band gap is found for interband transitions associated
with point E in the Brillouin zone, indicating a spin-
orbit splitting of the doubly degenerate E3 bands. Fur-
thermore, considerable structure is observed in the
magnetoreAection experiment in the limit of low photon
energy and high magnetic 6elds, suggestive of a spin
splitting of the resonance lines. ' A detailed analysis of
the low-frequency de Haas —van Alphen oscillation
associated with the Fermi surface about point H in the
Brillouin zone gives evidence for a spin-orbit splitting
of the x bands in the vicinity of the Brillouin-zone
corner. ' '
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8'. The .1 and 8 atoms are in the same layer plane,
whereas the atoms A' and 8' are on a layer plane dis-

placed by t4/2. The origin of the unit cell is taken at an
~ site, so that the position vectors of the atoms in the
unit cell are given by

tg=0, tA =t4 2,
tg ——(tg —tu)/3, tp = —(tg —tg)/3+t4/2,

in which the ti, t~, and t4 are primitive translation vectors
for a simple hexagonal Bravais lattice, with

Fio. 1. Projection of the graphite lattice on a layer plane. The
atoms A and B lie in the plane, while the A' and B' atoms lie in
another plane displaced along the plane normal by t»/2. The basis
vectors for the primitive cell containing atomic sites A, A', B,
and B' are t1, t~, and t».

~t;~=co——2.46A, i=1, 2, 3

(t4( =CQ=6.74 A, (2)

the numerical values for graphite at room temperature. '
The reciprocal lattice vectors derived from the primitive
translation vectors are denoted by K;, in which

alone, the derivation given here applies equally well to
all other materials having the same crystal symmetry.
Similar Hamiltonians could be derived for the analysis
of the electronic band structure of other semimetals
with different crystal symmetry.

In Sec. II, the derivation of the effective-mass
Hamiltonian is given. Both the k.y perturbation terms
and the spin-orbit terms are treated on equal footing.
Symmetry considerations are used to establish the form
of the Hamiltonian in the vicinity of a symmetry axis
(in this case the Brillouin-zone edge). The dependence
of the matrix elements of the Hamiltonian on the wave
vector k, along the symmetry axis is found explicitly,
still using symmetry arguments.

In Sec. III, the e8ect of the spin-orbit interaction on
the Fermi surface is discussed. In particular, without
spin-orbit eGects, neither the degenerate Fermi-surface
cross section nor the effective mass at the Brillouin-zone
boundary is extremal. By including spin-orbit inter-
action, certain band degeneracies near the zone corner
are lifted, thus resulting in two extremal Fermi-surface
cross sections and associated effective masses at the
Brillouin-zone boundary, k, =~m/co. These extremal
areas are related to the low-frequency de Haas —van
Alphen oscillation.

The e6ect of the spin-orbit interaction on the energy
bands in a magnetic field is considered in Sec. IV. A
specific application of these magnetic energy levels is
made to obtain selection rules for interband transitions
in the magnetoreflection experiment. Finally, the experi-
mental determination of the various band parameters in-
troduced in the effective-mass Hamiltonian is discussed.

II. HAMILTONIAN FOR ~ BANDS
IN GRAPHITE

The form of the effective-mass Hamiltonian for the
x bands in graphite follows directly from the symmetry
of the lattice, which is illustrated in Fig. 1.The primi-
tive unit ceH contains four atoms labeled 3, A', 8, and

k, = 3K'—3Kg+k-eg, (4)

in which e, is a unit vector along the K4 axis, and all
the edges are equivalent.

The character table for the double group of the wave
vector k„denoted by G(S), is given in Table I. The
symmetry operations on the wave vector include rota-
tions by ~2+/3 and glide rejections in the (t4t;) planes.
In this table, the representations Sj, So, and S3 give the
transformation properties of the spatial part of the wave
functions, whereas the spin functions transform as
D&~,."Thus, the total wave functions (space times spin)
transform as the direct products, (S;XD'~'), i=1, 2, 3.
The decomposition of the direct products (S,XDi, ') are
included in Table I. This decomposition immediately
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FK'. 2. I'irst Brillouin zone for graphite. The basis vectors of
the reciprocal lattice K1, K2, and I» are indicated. The vector
k, to a general point along the zone edge is also shown.

'0 R. J. Elliott, Phys. Rev. 96, 280 I'1954).

K;.t = 2+6;;) i) j= 1) 2) 4

and the half-vectors K;//2 are indicated in Fig. 2, show-

ing the erst Brillouin zone which these vectors define.
The graphite Fermi surface lies near the six zone edges
labeled HKH and H'E'H'. The wave vector to one of
these edges, designated in Fig. 2 by k„ is given by
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TAsx.K I. The double group G(S) and its small representations.
Here n=exp( —ik, t4j2}, S4 and Ss are degenerate by time re-
versal, D1/2 is the two-dimensional representation for the trans-
formation of the spin-wave functions, and

S1X D1]2=S6,
~2XD1/2 =&6,

hgXD1/ =64+.5:+66,
are direct products.

smaller than the spin-orbit interaction term in Eq. (6)
and, also, since this term gives rise to no additional band
splittings, it is neglected in the explicit calculation,
presented here.

It is convenient to write the spin-orbit and "k p"
perturbation Hamiltonians in terms of the raising and
lowering operators: p~= p,Hip„, L~=L &ii.„

Operator Definition
3C., =L,~.+22(L+o -+I. (r+),

P12 P&2 P3

identity
rotations by &2m/3 about s axis
reflection in (t4t;) planes, i=1, 2, 3
symmetry operation Q followed by rotation of 2x

C'roup elements

(~l0)
(S, )0}, (S,-1 )0}
lP II

24)2'
(~ ~0)*

(g f 0)+ (g
—1

/ 0)+

(P tk«}*

Representations
S1 S2 S8 54 55

1 1 2 1

1 1 —1 —1 —1

o. —n 0
1 1 2 —1

1 1 —1 1 1

0 —im i~

S6

2

1

0
—2

0

and the operator I defined by

L= (I /4~2c-')(V V Xp}

transforms as the angular momentum. "k p" perturba-
tion theory is used to obtain the energy levels at a
general point in the vicinity of the Brillouin-zone edge,
k=k, +2o. The perturbation obtained from Eq. (5) is
then

~'= (/2/222) v. [p+(1/4mc"-)eX (V )')]+I2'-~'/2m. (8)

Since the Hamiltonian in Eq (5) is assume. d to be solved
for all points k„ the wave vector x in the perturbation
can be taken in a K&K2 layer plane. The quadratic term
(hox2/2222) is a c number and contributes only to the
diagonal matrix elements of the Hamiltonian. The term
in Eq. (8) derived from the spin-orbit interaction could,
in principle, be treated within the framework of this
calculation. Since this term is expected to be much

shows that by including the eGect of the electron spin
through the spin-orbit interaction, the S3 spatial de-

generacy is lifted. Since the representations S4 and 55
are degenerate by time-reversal symmetry, all energy
levels along the zone edge are doubly degenerate. In the
remainder of this section, the symmetry considerations
given above are applied to obtain an explicit form for
the effective-mass Hamiltonian of graphite.

The one-electron Hamiltonian for a periodic potential
V(r) including spin-orbit interaction is

3C= (P2/2m)+ V(r)+(h'42222c2)(V VXp) e (5)

in which the spin-orbit interaction is given by the last
term,

( Io)=( ), 9 Ilo)=( ),

0 cv 0 M(colot)=o, (uolot. )=~
0

cubi

0

in which

and

o)=exp{22ri/3),

a= exp{—ik, .t4/2} .

The diagonal matrix elements of the Hamiltonian,
taken in the representation which transforms as the
irreducible representations of the group of the wave
vector k„are denoted by

L2(&*)= (+» I
~o

I +11),
&2(4)= (+21IKol@22) )

2(&.) = (+» I3'-o
I +22) = (+22

I
~o

I +22),

in which

Xo= (P2/2m)+ V(r)+(i22K2/2m),

(12)

(13)

3C'= (h/2m)(x+p +x p~).

Since both the linear- and angular-momentum opera-
tors are unaffected by translations, their transformation
properties under the glide operations ()o;I t4/2) are ob-
tained from those for the wave functions given in
Table I by setting k, =0 or +=1. These irreducible
representations are de6ned as I';=—5;(k,=0) and pertain
to a point group derived from G(5). The linear and
angular momentum components p, and L, transform
as the irreducible representation I'& and F2, respectively,
while p+ and L+ transform as I'2.

The matrix elements of the Hamiltonian are taken
between wave functions which transform as the irre-
ducible representations S~, S2, and S3 and are denoted
by 4'», +», 0'», and 4», respectively, following the
notation of Slonczewski and %eiss. ' These wave func-
tions are constructed by taking appropriate linear com-
binations of the p, wave functions (2r functions) on the
A, 4', 8, 8' lattice sites. An explicit matrix representa-
tion of the two dimensional S3 representation is
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TAi.'r.E II. Decomposition of direct products of
the type g gFI„.X$,.

53

TABLE III. Matrix elements of the "k p" Hamiltonian. By
time-reversal symmetry (see Appendix A), x1, 3, ~&, 3, and +3, 3

are real.

5
53

F2

I')
r1
r3

I'3
I'3

I'1+I' +I'3
+31 K 7l1, 3

KyX'I, 3

0
0

K—772, 3

K+%2, 3

+31

K+7/I 3—K+1l2 3

K F3, 3

K ll1, 3

K %'2, 3

K+%3

52
53

r
I"

3

r,
F3

I'1+I'2+ F3

r,
F3

I'3
I'3

FI+F2+F3

r,
I3

F I+F2+I 3

53

I'1+F2+F3

F1+F2+F3
I'1+F2+3F3

and x is a wave vector in the KIK2 plane measured from
the zone edge. The k, dependence of the diagonal matrix
elements is given explicitly at the end of this section.

Symmetry considerations can be used to show that
certain matrix elements of the Hamiltonian must vanish,
while other matrix elements are related one to another.
Let 8(1'3) be an operator which transforms according to
the point group representation I'3, and 4'(5,) be a wave
function which transforms according to the group repre-
sentation 5;. Then for matrix elements of the form
(1k'(5~)

l
8(I'3)

l
4'(5,)) to be nonvanishing, it is necessary

for the direct product (S,XI'3XS,) to contain a I'& in

its decomposition, where F& is the identity representa-
tion for the point group derived from G(5). Further-
more, the number of times that the representation F& is
contained in such a decomposition is equal to the
number of independent matrix elements of the form
(1k'(5,) l

8(I'3) l%'(5;)). Although the diagonal matrix
elements are real, the oG-diagonal terms are, in general,
complex. But if the operator 8 is Hermitian, the o6-
diagonal matrix elements are related by complex con-
jugation. The direct products which enter into the
evaluation of the matrix elements of Eqs. (9) and (10)
are summarized. in Table II. In this table, the repre-
sentations F~ are listed in the upper left-hand corner
of each block, the representations S; in the left-hand
column and the representations S; in the top row. The
results for the direct products are then tabulated as a
matrix. Since the direct products (5;XI'3XS;) for the
operators 8(1'3)=p+, I.+, 1., contain I'3 either once or
not at all, there are at most three independent matrix
elements for the "k.y" Hamiltonian and five for the
spin-orbit Hamiltonian. The relations between these
matrix elements are found by performing the symmetry
operations of the group and using the matrix repre-
sentation given in Eq. (11) for the S3 states. The matrix
elements for the "k-y" perturbation Hamiltonian taken
between the spatial part of the wave functions are listed
in Table III. The spin integration gives unity between
states of like spin and zero otherwise. The k, dependence

of the independent matrix elements

3r3, 3(k.) = (k/2m)(@33l p l @33)
= (k/2m) (+33 l p+ l +32), (14a)

~2, 3(k.)= —(k/2m)(+23 l p l
+33)

= (k/2m)(e»l p+l +32), (14b)

3r3,3(k.)= (k/2m) (@33l p l @32)
= (k/2m)(%'32l p+ l &31) 7I 3, 3 (k.), (14c)

X, 2*(k,) =(e„ll., i+23), (15a)

(15b)

(15c)

(15d)

x, , ,*(k.)=(e„lI..
l
~„)——(e„lI..l ~„),

x, ,(k,)=(e„lz le„)=(e„ll,,le„),
~2, 3(k*) (+23l ~

I +33)= (+231~+I p32),

~3,3(k*)= (+33IL-
I +32)

= (+32I L+ I +»)=4,3*(k*).

The spatial symmetry of the graphite lattice gives the
above relations for the matrix elements. In Appendix A
it is shown by time-reversal symmetry that X& 2' is real,
that X~3 and X23 are pure imaginary, and that X3,3
vanishes identically. In Table IV, it is seen that the
coupling between states of like spin only involves L,,o.,
and that the matrix elements for 3C,., between two
spin-up states and two spin-down states are of opposite
sign, which can be verified by carrying out the spin
integration explicitly.

~I J. %. Mcclure, Phys. Rev. 108, 612 (1957)."J.%. McClure, Phys. Rev. 119, 606 (1960).

is discussed at the end. of this section. By using time-
reversal symmetry (see Appendix A), the matrix ele-
ments x~ 3 and m23 are also shown to be real. This
"k y" Hamiltonian was derived by Slonczewski and
gneiss' and discussed extensively by McClure. ""

%hereas the "k y" Hamiltonian connects only the
same spin states, the spin-orbit Hamiltonian terms I.,r,
couple the same spin states, while the I.+o.+ terms couple
opposite spin states. From the direct product decom-
position given in Table II, it is seen that (5;XI'2XS~)
contain F~ three times; thus, there are two independent
matrix elements of L„one of which is diagonal and the
other o6 diagonal. Similarly, there are three other inde-
pendent matrix elements involving I.+. The matrix
elements for the spin-orbit Hamiltonian between states
labeled by a spatial times a spin wave function are
listed in Table IV, and are de6ned by
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Tasx.x IV. Matrix elements of spin-orbit Hamiltonian. By time-reversal {see Appendix A} X1, 2* X3, 3* are real
and X1, 3 X2, 3 are imaginary.

Rs.oe

+21"'

+11„

+31„
+32„

0
~1,2

0
0
0
0

0

X1,2*

0
0
0
0
0—4,3*
0

0
0

3g

0
0
0
0
0

0
0
0—X3,3'

X1,3
X2, 3

0
0

0
0
0

X1,3*
0—X1,2'*
0
0

0
0
0

'A2, 3*
~1,2

0
0
0

+311,

X1,3—X2, 3

0
0
0
0

0

0
0
0
0
0
0
0

X3, 3'

The k, dependence of the matrix elements in Eqs. (12),
(14), and (15) can be expressed as a Fourier cosine series
in k cp/2 where c,/2 is the separation of adjacent atomic
layers. Since the basal plane at k.=o is a reAection
plane, all of the matrix elements are even functions of
k, and all terms in the Fourier sine series must vanish.
In Appendix 8 it is shown that the wave functions
which transform as the irreducible representations of
the wave vector k, have the following symmetry
properties:

s2, 3(k,)= g C„(—1)"cos(nsP),

s 3,8(k,)= Q D. cos(L2n+1/s-&),
rl,=o

and Eqs. (15) can be expanded to give

Xg, 2*(k,)= Q F.cos(2nx&),

(18b)

(18c)

(19a)

@n(k,aK4) = 4'2r(k, ),
@n(k.+K4)=+&g(k,),
Var(k, WK4) = —@sr(k,),
e„(k.+K,}=e„(k,),

(16a)

(16b)

(16c)

(16d)

X3,3*(k,)= P G. cos(2nsg),
n=o

Xg 3(k.)=i Q H„oc(snsg),
n~0

(19b)

(19c)

PP(k, )= Q A„c o(ns(s),
n=O

(17b)

g,o(k,)= P A„( 1).cos—(nx~),
n~o

(17c)

&30(k,)= Q B„cso( 2vrng),

n 0
(17d)

and the dimensionless wave vector $ is defined by
g=k, co/2s. To obtain Eqs. (17), the relations of Eq.
(16) have been used to relate the Fourier coefficients in
the expansions for EP and 820 and to cancel the odd
terms in the expansion for E3'. The terms in ~' given in
Eq. (17a) are generally neglected, but are of about the
same magnitude as the spin-orbit terms that have been
included.

Similarly, the Eqs. (14) can be expanded to give

mq, 3(k,)= P C„cos(ns.)),
n~o

(18a)

in which K4 ——(2s/co)(0, 0,1), and k, defined by Eq. (4),
is a function of k,. Thus, the diagonal matrix elements
defined by Eqs. (12) and (13) are written as

Z, (k,) =(k~.2/2~)+~ o(k ) '= » 3 (»a)

in which the terms E;o(k,) have the Fourier expansions

X2 3(k,)=i P H„(—1)"cos(ns$). (19d)

TAaz.z V. Relation bebveen Fourier coeKcients and McClure's
band parameters.

Mcclure band parameters

+p
+1
72
/3
)t'4

')t'6

where p =2 (6)112/Bup

Fourier coeScients

—P,Cp
A1/2
81

pap&/4
/2

A2
~ P

—~2—BP+&1

In these equations the Fourier coeScients A, 8„,C,
D, Ii, G„,H„are shown in Appendix A to be real. The
relation between the 3„,8„,C„,and D„coeScients and
the band parameters de6ned by McClure" are sum-
marized in Table V. In constructing this table, the
Fourier expansions in Eqs. (17) and (19) were cut oR in
a manner consistent with the number of terms retained
by McClure.

McClure has shown how these band parameters can
be related to overlap integrals involving tight binding
functions. " Furthermore, McClure and Yafet' have
discussed a tight binding calculation of the X~,~' and
X33' matrix elements. They point out that with the
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tight binding functions given in Eqs. (Ai) and (A2),
which depend only on 2p, orbitals, the expressions for the
larger magnitude spin-orbit matrix elements (i.e., » 2

and », s*) depend on two-center integrals, whereas the
terms of smaller magnitude (i.e., » 3 and ) 2,3) depend
on three-center integrals. The tight-binding estimates
of McClure and Yafet show that the admixture of
d functions into the wave functions with Si, S2, and Sa
symmetry produces a larger contribution to the spin-
orbit matrix elements than the overlaps of the 2p,
functions. The tight binding arguments of McClure and
Yafet could be used to calculate the magnitude of all
the spin-orbit matrix elements required by symmetry.
In this paper, no such tight binding calculation has been
made and the evaluation of the spin-orbit matrix ele-
ments is left to experiment. The tight binding arguments
indicate that for graphite only the leading terms Fo,
Go, and Ho need be considered. Thus, there are three
spin-orbit band parameters to be evaluated by experi-
ment.

The generality of the graphite effective-mass Hamil-
tonian was appreciated by McClure and others, and

used explicitly in the experimental determination of the
graphite band parameters. '" " Since this derivation
only employs the symmetry of a hexagonal lattice, the
eGective-mass Hamiltonian for any hexagonal material
near the edge of the Brillouin zone can be related to this
graphite Hamiltonian.

III. GRAPHITE FERMI SURFACE

In this section the energy eigenvalues for the graphite
eGective-mass Hamiltonian are found and the results
are applied to calculate the areas and eGective masses
for Fermi-surface cross sections normal to the c axis.
It is seen that even though the spin-orbit band param-
eters might be small, they are nevertheless important
in lifting energy band degeneracies (1) at the Brillouin-
zone vertical edges, (2) at the Brillouin-zone boundaries
k.= &s/co, and (3) at the intersection of the edges with
the planes, i.e., points H and H'.

The energy eigenvalues are found by solution of the
secular equation derived from the graphite eGective-
mass Hamiltonian discussed in the previous section:

Hga*

II).3
0
0

—Xga
0

82

Hga*
—H23

0
0

0

Hga

H23

ca+Ra, a'

Haa*
0
0
0
0

Haa*
—H23*

Haa
ea—) 3,3'

~i, a

0
0

0
0
0

8y

Hga

0
0
0

—~~,3

8g

—Hga

—~~, a

0
0

Hga

H23
ea —Xa, a'

Haa*

0
0
0
0

Haa'

H33
ea+) 3 3'

(20)

in which e; is related to the energy eigenvalue e by

e;=E;—e,' i=1, 2, 3,
and the notation

Hya=K+Ky 3 )

Hga= —K+m2 3,

Haa= K+~3,3,

(22a)

(22c)

is used. The matrix elements ~~,3, m2 3, and xa, a, Xi. ~', Xa, a' are real while the matrix elements X~ 3 and P 2 3 are imagi-
nary. The determinantal secular equation can be multiplied out—for example, by using the method of Laplace
on the 4)(4 blocks for like and unlike spins. The result is

I: I &~,~, 3,4""I—I».al'fe2(e~+1 3,~*)—
I &»I '}—

I
&2,3I'fei(e3+~3, 3 ) I

H1
—

2 I», ~l I "2.31{»,2*(ca+13,3')—%3H23*})'=0, (23)

in which the 4&4 block coupling like spins is

a& 2 &
4' "'I= (e&e2—(» 2)'}{e32—(1 s~)'}—(e~e2I II~3 I '+2e~e31 H»

I
'+2e2ea

I &»
I
'}

—(«(&»'&»+&»*'&»*)—e2(&»'&»+&»**&»*)}+4I &»
I
'I &»

I
'+(»,.*)'I&»

I

'—4&3,3*»,~*&»e»*. (24)

The factorization of this 8th-order equation in e into
two identical quartic equations implies a double de-
generacy of all the energies, which is consistent with the
time reversal requirements of group theory. In the
presence of a magnetic field, this time reversal de-

generacy is lifted and no such factorization of the
Hamiltonian is possible.

For a general point in the Bri11ouin zone, where there
'~ M. S. Dresselhaus and J.G. Mavroides, IBM J.Res. Develop.

8, 262 (1964).
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are no band degeneracies, the spin-orbit terms can be
neglected and the quartic equation can be solved for the
energy eigenvalues. However, at the three Brillouin-
zone locations having band degeneracies, the solution
of Eq. (23) must be carried out in more detail.

At the zone edge, Eq. (23) reduces to

3+~33 jl{ 12 (~12) ){3 l133)

Il,ssl~, s*g=O. (25)

S

S

S+S

2)
S 5$5

Thus, the degeneracy of the E3 bands is lifted at the
zone edge. Neglecting

I
Xs 3 I

and
I
Xs 3 I, as suggested by

the tight binding arguments of McClure and Yafet, ~ the
band splitting shown in Fig. 3 is obtained for a general
point along the zone edges IIEH and H'E'B', but not
in the vicinity of the zone corners H and H'. The Ei
and E2 levels are only shifted slightly, i.e., of order
(X8,2*)'/(E1—Es), while the Es bands are split by
2X3,3'.

In the absence of spin-orbit interaction, the planes
P=&-,' exhibit two sets of doubly degenerate bands,
with energies —2'(E8&{E82+8IH13I')'"), since E1——Es.
These degeneracies are again lifted by the spin-orbit

Fre. 3. The effect of spin-orbit interaction on the energy bands
at the zone edge. In the absence of spin-orbit interaction the bands
are labeled using the conventional notation and the irreducible
representations corresponding to these bands are indicated. With
spin-orbit interaction, the resulting bands are labeled by the
double group representation.

interaction and at g= +2', Eq. (23) reduces to

{(e1+X1,2*)(es+4,3*)—2 IH1sl') =0, (2«)

{(e1 ~1,2 )(~s—4.8*)—2 IH» I

'—2
I
l18.3 I

'& =o (26b)

in which the equality IX8 sl = I4 3I at t=-2' has been
used. Equation (26) has the roots

3= —2'LE1+7 1,2*+&3,3*~{(E1+4,2*—4.3*)'+8
I H83 I

') '"j,
,=-;LE,-~, .*-~,.*~{(E,-~, , +~, ,*) +8IH„I +8I~, .I & q.

(27a)

(27b)

The twofold degeneracy in this plane is lifted by the
spin-orbit interaction. These band splittings are indi-
cated in Fig. 4, using the approximations suggested by
McClure and Yafet, ' Xs,3*=As,2* and IX1,3I =0. The
effect of the off-diagonal matrix element IX8,3I is to
make the band splittings unequal. The x dependence of
the energy bands in this plane is obtained explicitly by
the substitution E1——5+ (fs'~'/22N) and

I H» I'= —8'yssa32$2.

At the zone corners, H and II', both the degeneracies
of the zone edges and zone boundaries are present in the
absence of spin-orbit interaction. These degeneracies are
lifted according to Eqs. (27) as

I
H»I~ 0. Since at the

zone corner in graphite E~=d«0, the energy of the
band derived from 28(E1+{E82+8IH»ls)'~2) is lower
than that from —',(E1—{E1'+8lH13

I
')'").The splitting

pattern at the zone corner is shown in Fig. 5, using the
same approximations as in constructing Fig. 4. The
effect of the matrix element

I
X8 3 I

is to produce equal
and opposite shifts in two of the levels.

Thus, it is seen that all band degeneracies at these
three locations in the Brillouin zone are lifted by the
spin-orbit interaction terms connecting states of like
spins. The matrix elements connecting unlike spins are
relatively less important and e6'ectively contribute only
to the asymmetry of the splittings. These results are
consistent with the McClure-Yafet approximation of
neglecting matrix elements connecting unlike spins in
their calculation of the g shift in graphite. ~

Although the oG-diagonal matrix elements X~,3 and
are relatively unimportant in determining the

energy levels at critical points in the Brillouin zone,
these matrix elements are quite important in deter-
mining the properties of the Fermi surface at the zone
boundary. The Fermi surface cross-sectional area can
be found from solution of Eq. (23) for lxl 2=K~, which
is rewritten as

B l~l'+Bscos3~I$I'+Bsl$I'+B3=0
in which x+——I~ I

e+" and the coefficients are

84——4n-g 3'x2 3'

B3=28rs 3{e22r8,3 —e18rs 3 },

(28)

(29a)

(29b)

B2 srs, s {$132 (l11,2 ) }
1,3'{2eses —

I 4, 3 I
') —8rs, 3'{2eses—

I X1,3 I
'}

+22rx, 2rss{2X3 3912*—I43I lbssl }, (29c)

BO f 3+l1$ 3 ){L lr2 (l11 2 ) PL~3 ~$ 2 j

l.~Isle, (30)

For simplicity, the small terms 182812/2m in the energies
e; have been neglected. Provided that the Fermi surface
is simply connected, the Fermi surface cross section
normal to the c axis is found by performing the integral

ss. /3
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[E +(E +8(H I ) ] 53 1,2

2 [E -(E +sIH I ) ]
AE

s,st 1,2 2X,
,

FIG. 4. The effect of spin-orbit interaction on the energy bands
at the zone boundary, dedned by the planes g= ~$. Fxo. 5. The effect of spin-orbit interaction on the energy

bands at the zone corners, 8 and H'.

in which the wave vector
l
11'

l
is evaluated from solution

of Eq. (28) at the Fermi energy 3=ED. For a general
value of k, no band degeneracies are involved, and
spin-orbit interaction is relatively unimportant. In that
case, most of the Fermi surface can be constructed from
Eq. (30) using measured values of the band parameters,
as is done, for example, in Ref. 13.

However, at k.=pr/cp, spin-orbit interaction is im-
portant in lifting the degeneracy of the Fermi-surface
cross section at the zone boundary. It is this area which
has recently been investigated by Soule' and Williamson
ef al. ' in studies of the low-frequency de Haas —van
Alphen oscillations in single-crystal and pyrolytic
graphite. In this special case the coefficients in Eq. (29)
become

and the spin-orbit term 0, which has the dimensions
of energy, is defined by

03= [(e1X3,3*—ep) 1 3*)'

+21~..l ("+~..)("+~.")] '. (34)

If the approximation lX1pl =0 is made, Eq. (32)
simplifies to

(35)S—Sp 1+ 1~

The lifting of the degeneracy of the Fermi-surface cross
section at the zone boundary implies that two nearly
equal low-frequency de Haas —van Alphen oscillations
should be observed, and, in fact, preliminary results by
Soule' indicate the existence of two such oscillations in
single-crystal graphite. Since in pyrolytic graphite'
2E&(Er h)»53, it is exp—ected that the off-diagonal
matrix elements X~ 3 and X~ 3 are of some importance in
determined the splittings of the degenerate Fermi-sur-
face cross section and the complete expression given by
Eq. (32) is applicable.

The cyclotron effective masses corresponding to these
Fermi surface cross sections are found by performing
the integral

84=4~y 34,

83=0,
83 —43r1, 33(e1ep—X3

——39.1,3*),

(31b)

(31c)

Ilp (ep+)13,3 )(&1+)&1,2 )
X((e1—X1,3')(e3—X33*)—2lX13l'). (31d)

Since the term in lal3 vanishes, Eq. (28) becomes
quadratic in ll' and has solutions at the Fermi surface
denoted by l

11'
l
'. Thus, the cross-sectional area

S=prl~p l' at the plane /=31 can be written as
3/2 x /3

m*=
t' BE

&Blp.
l

(36a)
(32) X 0

~3,39 i,2' 02
5=Sp

Ep(E&.p 6) Ep(Ep 5)— —
in which the Fermi-surface cross section without spin-
orbit interaction in terms of the McClure graphite
energy-band parameters is

Sp
=4xEp(Er 6))/3y p."ap'—(33)

in which the angular dependence of l11l and BE/BI3;l at
the Fermi surface are found by appropriate solution of
Eq. (28). At the zone boundary, $=-,', there is no
angular dependence for lrl and BE/Blr. l, so that an
explicit expression for m* can be written

(e1&3,3*—ep&1,3')(4,3*—) 1,3*)+
l 4, pl '(e1+ep+) 3,3*+)1,3*)

m*=m.* 1~
(2EF—a)n'

(36b)

in which the effective mass in the absence of spin-orbit
interaction mo* is

m p* 2h'(2E3 6)/3y——ppa p'— (37)

Since P3 3'=) ~ 2', the terms in the oG-diagonal matrix

element
l
X1 3 l

are important in lifting the degeneracy in
the effective mass, with the larger m* being associated
with the larger cross-sectional area. Numerical values of
the spin-orbit band parameters could, in principle, be
found by detailed analysis of the two nearly degenerate
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de Haas —van Alphen oscillations, of their temperature
dependence, and of their anisotropy.

IV. EFFECTIVE-MASS HAMILTONIAN IN
A MAGNETIC FIELD

In this section the eGective-mass Hamiltonian in the
presence of a magnetic held is derived and is applied
to study the effect of spin-orbit interaction on the
magnetoreQection experiment. The magnetic Hamil-
tonian is generated from the zero-field Hamiltonian by
the transcription x —+ L—eA/ch and the gauge for the

static magnetic Geld H is selected as A= (0, Hx, 0).This
treatment is a generalization of the McClure-Inoue
equation, "'4which has been useful in the analysis of the
diamagnetic susceptibility" and magnetoreAection ex-
periments. "The (8X8) Hamiltonian can be written in

the form H= Ho+H' in which

where the (4X4) matrices S~ and 2 are defined by

J.q+ pH

Iris~

Hgg

I."2+pH

—IIg3

Hga

823
J.e+X3 3'~pH

0

—II„*
0

I 3%5.3 3'&QH,

0 0 Xg3 0
0 0 —X23 0
0 0 0 0

0 0

The Hamiltonian H() is exactly diagonalized by the
eight-component eR'ective-mass wave function
which can be written in the form

(42a)

(42b)

ill. =
t (»+1)sj'j2$.+l,

jl P„=L»s]ijg. l,
in which

s=2~ e~ H/ch. (42c)

K$ 3 and x2 3 are real, and the raising operator ~+ and
the lowering operator If. acting on the harmonic-oscilla-

(40) tor wave functions yield

4', j= (1/2z.)e'""e"»4.
,j. (41a)

in which 4„, can be represented by a vector with 8
components which for n&~ 1 can be written as

@n,j (Cl+ ' Pn~CR+ ' Pn~Cll+ ' g'n —11C82+ ' 11'n+lq

Cl "'Pn+i, Cl "Vn+i)Cli "'fn,Cal "Vn+l) (41b)

The efI'ective-mass wave functions 4'„; for the special
cases»=0, —1, —2 are found from Eq. (41) by setting
the coefficient C;" &=0 whenever the associated-har-
monic-oscillator quantum number is negative, e.g. ,
C3y+"'=0, for n=0, —1, —2.

The secular equation which determines the magnetic
energy levels for n) 1 is given by

Here the f are normalized harmonic-oscillator func-
tions centered at Lx,—(che„/eH) j.For a given "oscillator
state" n there are eight eigenstates and eigenvalues,
labeled by j. The terms H» and H», defined by Eqs.
(22a) and (22b), are now operators. The matrix elements in which the 4X4 matrix S+(») is defined by

(43)

~Kg 2'

el~(»)
—(»s)'"m. l, &

((»+ 1)s)' j'iran

el+(»)

(»s) '"mls-,
,((»+1)s)'j' lllr,

(»s) '"n.l, l
—(»s)'"ir2, l

ell~(»)
0

((»+1)s)'"~l
((»+ 1)s)'"ir l, l

0

elegy(»)

(44)

and

e;~(») =E OajiH+(h's/2m)(»+-', )—e; i=1, 2, (45a)

eel+(») E3 &jsH&4 3 +(h's/2m)(» ——,')—c, (45b)

elms(») =El'& jiH&jil, s*+(h's/2m)(»+a2) —e. (45c)

The matrix H' is given by

(46)

in which oo o 0)
0 0 0 0
0 0 0 H33
0 0 JI33* 0

(47)

and 8 is the 4X4 zero matrix. The matrix H' is not
diagonal in 4,;, but couples the states n to n&3. The

'4 M. Inoue, I. Phys. Soc. Japan 17, 808 {1962).
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nonvanishing matrix elements of H in the representation which diagonalizes Ho are

(C.+3,; l

H'l 4 „,;)= s'l'«r 3[C»+"+' «"C»+" «(n+2)'l'+C'» "+' «"C» " «(n+3)'l'],

(C. 3« l

H'
l
4 „,) = s'l"-«r3 3[C33 " ' "*C33~"«(n 1—)'l'+C, 3

" '-« "C33 " 'n'l'].
(48a)

(48b)

The magnetic energy levels I;„,(j=1,. 8) are calcu-
lated by solution of the secular equation defined by
Eq. (43). The corrections to these levels associated with
the trigonal warping band parameter y3 are found by
treating H' in second-order perturbation theory. The
eGect of the magnetic field is to lift the Kramers de-
generacy and to produce nondegenerate Landau levels.
For a general value of k„ there are eight Landau ladders,
four of which are essentially spin up, and four spin down.
Because of the complexity of the (8X8) Hamiltonian,
explicit solutions for these energy levels must be found,
in general, by machine calculation using band param-
eters determined from experiment.

However at (=-'„a relatively simple solution can be
found and the eftect of spin-orbit interaction is to lift
all the degeneracies implicit in the Mcclure-Inoue solu-
tion"'4 at the zone corner

&««=(&/2)&[(&/2)'+(n, n+1)3s"r33a3'7'" (49.)

%hen spin-orbit interaction is included, the magnetic
secular determinant given by Eq. (43) factors to give
two quartic equations given by

{2[h(n)] —e3$+(n)[es+(n) —X3 3*]}
X {2lh("+1)]'—e»-(n+1) [e3-(n+1)+~3.3*]}

2
l ~1,3l e31+(n)[e3 (n+1)+&1,2 ] (50a)

These energy levels at $= 33 are of particular interest in
the analysis of the low-frequency de Haas —van Alphen
oscillations and the oscillatory magnetoreHection
experiments.

In these magnetoref4ection experiments, electronic
transitions between magnetic energy levels are induced
by application of optical electromagnetic fields. The
Hamiltonian describing the optical perturbation is

The matrix X),~ depends on A+, the vector potential for
right and left circularly polarized light, through

R.,= —(e/ke) [A+X).p
—+A—n.,+],

in which the 4&(4 matrices X),~+ are given by

(53)

interaction is to lift all the degeneracies at point H.
The results for the eight energy levels, neglecting the
smail correction arising from terms in lx33l', are
3„+(1,1,1), 3,+3+(—1, —1, 1), 3„~3+(1,—1, —1), and
&„+3+(—1, 1, —1), in which the function 3 +(n,p,y) is
defined by

3„+(o.«p«p) = 6/2+nl«H+ p(X3 3'—X3 3*)/2+ (h' s/2m) n

a-'3[{6+(yhss/2m) —p(X3 3'+X3 3*)}3
+3nsy33a33]'l3 (5.1)

h(n) = (ns) 'l3«r 3 3. (50c)

{2[h(n+ 1)]'—e33+(n) [er+(n)+ X3 3 ]}
X {2[h(n+2)]' e33 ( n—+1) [e 3(n+1) X33*]}- ,

= —2l4, 3l'e33 (n+1)[e3+(n)+F33*], (50b)

in which

0
(h'/2m) 3

0
7r2 8

X'2, 3

(h'/2m)3
0

m'3, 3

(h'/2m)3 .
(54)

If the electron-spin terms and the free-electron term
h333/2m are ignored, these equations at $=-33 (point
H in the Brillouin zone) reduce to the simple result
given by McClure, "Eq. (49). The effect of spin-orbit

and X),~+ is the Hermitian transpose of X),~ . The
selection rules for optical transitions are found by
looking for the nonvanishing matrix elements of the
form (C„,; lH.,', lc,),

(@' —3,« l &o« l@,J)=«r3, 3[C3+" "C33~"'+C33~" "C3+"'+C " "'C "'+C " "'"C
+«r3 3[—C3+" ""C33+"~+C33+" ' '"C3+" '—C3 " '«'*C33 " '+C33 " ' '"C3 " ']
+(h'/2m)s'l'[n'l'(C =&«"C "«+C =&«'"C -«'+C =i«'"C -«)
+(n+1)«.l (C ««'"C, «'+C —~, 3«'»C ~«yC —~—, «,«C,

+(n —1)' 'C33+" ' '"C33+" ~+(n+2)'l'-C33 " ' "*C33 " '] (SS)

(4'3+3,1 I
& w I

C', )= ~3,3[C33+"+"'"C33+"''+C33" "'*C33 "']. (56)
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The nonvanishing matrix elements for the other sense
of circular polarization can be found from Eqs. (55) and
(56) by making use of the relation

Thus, the selection rule for allowed optical transitions
is ~v= &1 on the e6ective-mass wave functions 0'. ,;,
whether or not spin-orbit interaction is included. The
interpretation of this selection rule is somewhat difFerent
than that for simple parabolic uncoupled bands where
he=0. As an example, for a given quantum number
~&~1 which labels the wave function 0„;, there are
eight energy levels j which couple to eight other energy
levels j', associated with the wavefunction 0' ~~;.. The
magnitude of the coupling between energy levels E,;
and E„+&;is calculated from the (j,j') matrix element
of Eqs. (55) and (57). Thus, all energy bands are, in
principle, coupled, although the magnitude of the
coupling varies greatly from one case to another. In
particular, there is a weak coupling between bands of
opposite spin, and the magnitude of these matrix ele-
ments depends explicitly on the oR'-diagonal spin-orbit
matrix elements X~ 3 and X2 3. In fact, one method of
evaluating the band parameters ) ~ 3 and P 2 3 is a high-
resolution magnetoreQection experiment in the limit of
low photon energy and of high magnetic 6elds.

YVith or without spin-orbit interaction, harmonics
connecting states 4„;and 0'„+2,; are expected, and the
intensity of these weaker transitions is proportional to
Ã3, 3 ~ p3 Thus, a study of the relative intensity of the
allowed transitions and harmonics in the magnetoreAec-
tion experiment could provide numerical values for the
trigonal warping band parameter y3.

The general efFective-mass Hamiltonian developed in
this paper provides a framework for the detailed inter-
pretation of the magnetoreQection and de Haas-van
Alphen experiments, thereby yielding numerical values
for the spin-orbit band parameters. Such an analysis is
to be the subject of forthcoming publications. ' "
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APPENDIX A. TIME-REVERSAL SYMMETRY

In addition to the spatial symmetry operations for the
group of the wave vector given in Table I, there are two
other symmetry operations which leave the graphite
efFective-mass Hamiltonian invariant. These operations
are time-reversal and spatial-inversion-translation, de-
noted, respectively, by E and 41=(jit4/2). Here 41

represents the compound operation of spatial inversion
J followed by a t4/2 translation. The need for invoking

'~ S. J. Williamson, S. Foner, and M. S. Dresselhaus (to be
published).

time-reversal symmetry when spin is included is implied

by the additional degeneracy of the irreducible repre-
sentations S4 and S~ for the double group. In fact, time-
reversal symmetry requires a double degeneracy in the
energy levels not only along the zone edge, but also at a
general point in the Brillouin zone.

The efFect of these operations on wave functions which
transform as the irreducible representations of the group
of the wave vector G(S) can be studied by using as basis
functions appropriate linear combinations of tight-
binding functions. Following the notation of Slonczewski
and XVeiss, ' these basis functions are written as

+,g
——(1/v2) (a+a'),

@24——(1/v2) (a—a'),

(Ala)

(Alb)

(A1c)

in which the tight binding functions associated with the
3, A', 8, and 8' atomic sites are constructed from
atomic 2p. orbitals P,(r—d) centered at d on a Bravais
lattice having sV lattice sites,

1
a(k, ) = —Q e'""'P,(r—d),

g&V e
(A2a)

1
a'(k, )= ——P e'"" +' 'P, (r d t—~ ),—(A2b)

+IV e

b(k ) — P efks (d+ts)P (r
. d te)

Ã ~
(A2c)

4'y4(k, )'i —4'g&( —k,)
e2g(k,),.„., „+emg( —k,)
O»(k, ) —0&4(—k,)
.4'ee(k. ). .—ocr( —k,).

and it is readily seen that g is unitary, i.e., gal=1.
%hereas the spatial-inversion-translation operator acts
only on the spatial wave functions, the time-reversal
operator acts on both the spatial and spin wave
functions"

in which 0-„ is the Pauli spin matrix and Eo is the com-
plex conjugation operator. The efFect of E~ on the basis

'llew.

Kittel, Quavers Theory of Solids Qohn Wiley 8z Sons,
Inc., New York, 1963), p. 182.

1
b'(k, )= —P e'""«+'~ &P, (r d'ts —), —(A2d)

gX e

in which the vectors k, and tg, t~, t~, t~ are de6ned in
Eqs. (4) and (1), respectively. By direct calculation, the
efFect of the spatial-inversion-translation operation on
the basis functions is found to be
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functions is merely to replace k, by —k„since the
atomic 2p. functions 3p.(r—d) can always be made real

by taking appropriate linear combinations in the
azimuthal quantum number. Using the de6nitions

0
for the spin up state, and &=

&
for the spin

down state, the e6ect of the operator

The matrix element X3 3' is necessarily real, since it is the
diagonal matrix element of a Hermitian matrix. Thus,
the two spin-orbit matrix elements which couple like
spins are real. On the other hand, the spin-orbit matrix
elements coupling unlike spins are purely imaginary.
This result follows from the argument given in Eq. (AS)
when applied to the matrix elements X~,3 and X2 3,

. i.e.,

on the spin wave functions is

T=l

ivory)=
—t.

(A5)

(A6)

&1 3 (——q 11(k,) $,L o4-431(k,)1)
(—@33(k,) t', L o+%'11(k,)]) ,

—=l11,3*
(A9)

X3 3—— (4—31(k,) 1,L o++31(k,) &)

= —(e»(k, ) t,L o++31(k,) l) = —X3,3'.

The matrix element P 3 3 couples unlike spin states be-
tween the two degenerate basis functions 0'3~ and 4'32.
The time-reversal argument of Eq. (AS) yields

Using the commutation relations for the g and iit

operators with linear and angular momenta, " these
results for the time-reversal and spatial-inversion-trans-
lation operators can be applied to obtain additional
restrictions on the matrix elements of the "k p" and
spin-orbit Hamiltonians. For example, the "k y" matrix
elements x~ 3 and x2 3 can be shown to be real by the
following argument:

43 , (——+31(k)&,L,o++33(k)&),
= —(4'31(k.) &,L o+% 33(k.)1)= —X3,3, (A10)

which requires that X3 3 vanish identically.

APPENDIX B. WAVE FUNCTIONS IN THE
EXTENDED ZONE

3r1, 3 (+11(k) p—+31(k ))
= (It pp 4'31(k,),Kp+11(k,))
= —(p++31(—k.)P»(—k*))
= —(p+ 9+»(k.),8+11(k ))
=(@33(k,),p @11(k,))=3r13* (A7)

in which the unitarity of g has been utilized. The reality
of m2, 3 can be established by a similar argument.

Restrictions on the spin-orbit matrix elements can
also be obtained. For example, the matrix element X~ "
is necessarily real, since a(k, WK4) =a(k, ),

a'(k. ~K4) = —a'(l, ),
b(k, WK, ) =b(k, ),

b'(k, aK,) = —b'(k, ),

(Bla)

(81b)

(B1c)

(B1d)

l11,2 (+11(k ) t I -o 0 31(k ) l )
= (A L. .+31(k„)l,A e„(k,) 1)
= —(9+ (k.)l,I* .a+ (k.)l)

(431(k—.) J,L.o,%31,(k,) 1) 'Xi 3*= (AS) and the results of Eq. (16) follow immediately.

The symmetry properties of the wave functions under
translation in wave-vector space by K4 are established.
Because of the necessary twofold degeneracy of the
energy levels at point II, it is sometimes useful to con-
sider a double zone, which is constructed from the first
Brillouin zone by a K4 translation. An explicit deriva-
tion is given for the tight binding basis functions of
Appendix A, but similar considerations apply to sym-
metrized plane wave basis functions. Since K4 1=2xn
for n=0, +1, +2, , a translation of the wave vector
by K4 in the functions defined by Eq. (A2) yields


