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Excitation by Electron Collision of Excited Atomic Hydrogen
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The atomic form factor of the hydrogen atom with arbitrary initial and final states is evaluated in closed
form using parabolic coordinates. Using this expression the cross section for excitation of the hydrogen atom
by electron collision in the Born approximation is evaluated. The total cross sections in the energy range of
interest for transitions between the following principal quantum numbers are tabulated: n = 1 to n'= 2, 3, 4,
5, 6, 7, 8, 9, 10; I=2 to n'=3, 4, 5, 6, 7, 8; g=3 to n'=4, 5, 6, 7, 8; n=4 to n'=5, 6; n=S to e'=6. In
conclusion, a curve for the total of inelastic collisions of electrons with the hydrogen atom in its first five
energy levels is constructed. The expression for the atomic form factor may be used in the evaluation of the
generalized oscillator strength and in the calculation of the dispersion of x rays in atoms.

I. INTRODUCTION

HK excitation cross section in hydrogen induced
by electron collision, calculated in the Born

approximation, is proportional to the squared modulus
of the atomic form factor given by

where f, and fy are the initial and final eigenfunctions
of the atomic electron and E is the magnitude of
momentum transfer of the incident electron. In this
paper a closed form is found for the above expression
when iP; and Pf are hydrogenic functions expressed in
parabolic coordinates. Elwert' has evaluated this ex-
pression with similar speci6cations, although his fi.nal
result is in differential form.

The main concern of this paper is the evaluation of
the cross section for electron-impact-induced excitation
between two arbitrary levels of hydrogen, calculated
in the Born approximation. Up to now many such
calculations in the Born approximation have been

carried out, and tables of cross sections with initial
states in the range of principal quantum numbers 1—5
and fi.nal states with principal quantum numbers 2—10
are available, ' " although for higher levels the calcu-
lations are only for certain substates.

In this paper, before tabulation, the results in para-
bolic coordinates are compared with those in spherical
coordinates, and their consistency is examined. The
calculation is then extended to higher levels, for which
results in spherical coordinates are not available. All
cross sections are listed in tables. It is hoped that these
tables will be useful in plasma and astrophysical
calculations.

II. FORMULATION

Excitation Amplitude

Let the propagation vector of the exciting electron
before and after collision be designated by k0 an3 k&, and
the states of the atom in parabolic coordinates before
and after collision by n1n2m and e1'n2'm'. The excitation
cross section in atomic units for such a collision is then
given by"

kp+kg

Q(N(n. m, n2, 'e, 'm') =
A 2~0 kp —ky

V(»n, nm,
' 'mI') = e'x*y*„,„, (]qy)@„,,„,.„.(gory) ,'(g+q)de~-d@

5 (m~m )41V~ggn 3' ~g' ~2
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exp —($—g) —-', (n+o') (P+g)
0 0
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' G. Elwert, Z. Naturforsch. 10a, 361 (1955).
2 L. Goldstein, Ann. Physik 19, 305 (1933}.
I B. M. Yavorsky, Compt. Rend. Acad. Sci. U.R.S.S. 43, 151 (1944).
4 R. McCarroll, Proc. Phys. Soc. (London) A70, 460 (1957). Cross section for the transitions e/= 1s ~ n'= 2, 3, 4, 5, 6.' T. J. M. Boyd, Proc. Phys. Soc. {London} 72, 523 (1958). Cross section for the transitions el =2s ~ n'=3, 4, 5, 6, 7, 8, 9, 10.
6 D. McCrea and T. V. M. McKirgan, Proc. Phys. Soc. (London) ?5, 235 (1960). Cross section for the transitions elm=2p0,~1 —+ n'=3, 4, 5, 6, 7, 8, 9, 10.
7 G. C. McCoyd, S. N. Milford, and J. J. Wahoo, Phys. Rev. 119, 149 (1960). Cross section for the transitions n =3 —+ n'=4 and

3s —+ 5p, 3p ~ Sd, 3d —+ 5f.
L. Fisher, S. N. Milford, and F. R. Pomilla, Phys. Rev. 119, 153 (1960). Cross section for the transitions 4s ~ 5p, 4p —+ 5d,

4d -+ 5f, 4f~ Sg, 4s —+ 6p, 4f —+ 6g.
9 S. N. Milford, J. J. Morrissey, and J. H. Scanlon, Phys. Rev. 120, 1715 (1960). Cross section for the transitions Ss~6p,

Sp ~ 6d, 5d ~ 6f, 5f —+ 6g, Sg ~ 6h. See also J. H. Scanlon and S. N. Milford, Astron. J. 134 724 {1961)."G. C. McCoyd and S. N. Milford, Phys. Rev. 1M, 206 (1963). Cross section for the transitions 10s —+ 11p and e=i0, l=9 —+
n'=11) l'=10."K. Omidvar, Phys. Rev. 140, A26 (1965),Eqs. (II.4). This report precedes the present paper and will be designated from now on as I.
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S„,„,is the normalization factor of the &, 2t eigenfunctions given in I; similarly, X„, , is the factor corresponding

to $', q'. Kith this equation and the generating function of the associated Laguerre functions it follows that

S"'S'n' t "2t'n2

V(n&222m, &2&'222'm)

~1=0 ~2=0 ~l'=0 ~2'=0 (&2&+m) !(2tl'+m) !(222+m) !(222'+ m) !
1 '1' $ T
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oo oo

exp —(P—lt) ——,
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P = —', ((2+n'), q

= —2'Et'2, (4)
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By means of a Taylor's expansion we obtain"
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XC(vill)C(vl'ti')(2"'a'""Xa —(~+'+" +" ' Xs' s" '

(6)

a= p+q= 2 (a+(2' —iE) .
The coeflicients C(vl) are defined in I. Similarly,

P—q+ +-
tt2l2' v2 v2'

(m+ v2+ v2')!
(t2!t2'!) '(—)"~""X

XC(p2t2)C(p2~t2~)~no, ~»'a —(20+2+»+»'&t(2$&2' (g)

i&((&then these equations are substituted in Eq. (5) and note is taken of the relation
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the right-hand side of Eq. (3) becomes, after making a binomial expansion of its denominator,

m+yI m+g j' m+g2 m+g2'
4i~ tll&2(~ 21 n2 (tl!ti')/„l/„')) —l( ) l+ .'+ 2+ "

jill 2222 ~1~1 vl v1 ~2~2 v2v2 $1 22 jo

X(m+vl+vl')!(m+vl+v2')!C(v l )C&(iv l )iCl(v2t2)C(v2'l2')o("'+n'"»"+"" a++"'+""&a' ' ++"2(.»'&

x[(m+1+vi+ pl )a'j(m+1+v2+ pl )a7sll+" »'+s' t l'l2t2'(& 2'+'2''

/2&
n m+3/2

n1n2
kn

HEI .S2 ~
—1j2 z

(22&+m)!2(n2+m)!2 n

"For details of expansion see K. Omidvar, External Report X-641-64-j.93, Goddard Space Flight Center, Greenbelt, Maryland
(unpublished).

Equating the coeflicients of equal powers of s, s', t, t' of this equation and the left-hand side of Eq. (3), sub-
stituting the value
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and ma!ring use of Eq. (7), we obtain
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y stands for the set of 12 variable integers,
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Y ($1j2jl @12 llV24»ll &&I l2» ) &

l$ 0) 1p 2p ' 'y npj

lg ——0, 1, 2, , ng,

lg'=0, 2, 2,

t,'=0, &, 2, "-,~t,';
jg'= ng' —lg',

jQ —BQ l2

vy=0, 1, 2, , lq,.

vs=0, 1, 2, ~ . . lg

vI=0, ~y2, ' ply j

vg =0~1~2) ''' l2 j

(16)

and E is the total number of combinations of the 12
integers for a given n~n~nj'n2'.

Substitution of Eq. (11) in Eq. (1) and a numerical
integration with respect to E allows the cross section
between two arbitrary states to be determined. %hen
N is not very large, it is advantageous to carry out the
integration with respect to E analytically. Through
Eqs. (1), (11) we can write

8~.4' -~

Q(n, »:n, n, 'n, 'm)= P P G(& }G(y )
ko'- v1=1 ~2=i

dA
H (y, )H"'(y2)—. (17)

E3

With the form of H (y) given in Eq. (14), the integra, tion
with respect to E is straightforward.

The cross section for an initial state n&n2m and a
6nal state n'm, is obtained by summing the above
equation over n&'n2'. %e obtain in this way

Q(222122m, 22'm) =Q(222N2m, 12'm) . (20)

Similarly by averaging the initial states over n&n& we
obtain

Q (12m,N2'nr'm) = Q (nm, 121'122'm) . (21)

For a given nm, the state n&n& is the reReciion of the
n&n~ state with respect to the z=O plane. For n~&n~
most of the electronic charge lies on the positive z axis,
and for n~&n2 it lies on the negative z axis. Equations
(20) and (21) indicate that the initial or the 6nal states
that are the mirror images of each other with respect
to the z=O plane have equal excitation cross sections. "

Equations (18), (19) are used to test the accuracy
of the numerical results.

S~~etry Consid. erations

It is evident from Eq. (2) that

V ()l2122m )21 1)2 m
I

21) V (122122m, 221 122 1)2I +},
V (122122m, 222'nr'm

I

—11)= V (nrn2m, nr'122'm
I &).

It follows that

and, by Eq. (1)

Q(n2121m 112 121 m) = Q()21)22m&112 )22 m) ~ (19)

I v(222122m, 221'222'mI —z) I'=!V(N212, m, 222'222'm
I
ft)

I

'
=

I V(121)22m, n1'122'mIE') I', (l8)

Multiplicity of States and the Total Cross Section

Since the direction of the z axis is taken along the
momentum transfer vector K, the magnetic quantum
number does not change in any transition. As nj+n2
=n —ns —1, n~ can take the values 0, 1, 2, , n —m —1;
or n —m values. The same is true of ng. Then the total
number of combinations of n~ and n2 for a given n and

"The asymmetry in the cross sections which apparently is the
cause of the weakening of some components of Stark lines in a
canal ray tube is due to higher order corrections in the cross
sections. See E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, New York, 1963),
Chap. 17, Sec. 1.
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T.&BLE I. Fxcitation cross sections of n= 1 level in units of ~gg .

Impact
energy

Ry eV
Q(1,2) Q (1,3) Q (1,4) Q (1,5) Q (1,6) Q (1,7) Q (1,8} Q {1,9) Q (1,10) Z Q (1,yg) Q (T)

1.00
1.44
1.96
2.56
3.24
4.00
6.25
9.00

12.25
16.00
20.25
25.00
36.00
49.00
72.25

13.60
19.58
26.66
33.43
44.06
54.40
85.00

122.40
166.60
217.60
275.40
340.00
489.60
666.40
989.40

1.2868
1.5354
1.4993
1.3886
1.2630
1.1424
0.8919
0.7101
0.5780
0.4797
0.4050
0.3468
0.2634
0.2075
0.1526

0.1787 0.0509
0.2782 0.1000
0.2798 0.1021
0.2600 0.0951
0.2358 0.0862
0.2123 0.0775
0.1637 0.0595
0.1290 0.0468
0.1041 0.0377
0.0858 0.0310
0.0721 0.0260
0.0614 0.0221
0.0463 0.0166
0.0363 0.0130
0.0265 0.0095

0.0199 0.0092
0.0476 0.0265
0.0490 0.0274
0.0457 0.0256
0.0413 0.0232
0.0372 0.0208
0.0285 0.0160
0.0224 0.0125
0.0180 0.0100
0.0148 0.0083
0.0124 0.0069
0.0105 0.0059
0.0079 0.0044
0.0062 0.0034
0.0045 0.0025

0.0050 0.0032
0.0163 0.0104
0.0169 0.0112
0.0158 0.0104
0.0143 0.0096
0.0128 0.0088
0.0098 0.0064
0.0077 0.0048

0.0018
0.0075
0.0078
0.0073
0.0066
0.0059
0.0045
0.0035

0.0012
0.0054
0.0056
0.0053
0.0048
0.0043
0.0033
0.0026

0.0016
0.0242
0.0250
0.0234
0.0208
0.0189
0.0148
0.0117
0.0243
0.0201
0.0167
0.0142
0.0107
0.0084
0.0062

1.5583
2.0515
2.0241
1.8772
1.7056
1.5409
1.1984
0.9511
0.7721
0.6397
0.5391
0,4609
0.3493
0.2748
0.2018

TABLE II. Excitation cross sections of n=2 level to n =3, 4, 5, 6, 7, 8 levels in units of wgp~.

Impact energy

Ry eV
Q (2,3) Q (2,4) Q (2,5) Q (2,6) Q {2,7) Q(2,8} Z Q(2,~)

mW

0.2025
0.25
0.36
0.64
1.00
1.44
1..96
2.56
3.24
4.00
4.84
5.76
6.76
7.84
9.00

2.75
3.40
4.90
8.70

13.60
19.58
26.66
33.43
44.06
54.40
65.82
78.34
91.94

106.62
122.40

70.796
57.213
45.062
36.042
29.415
24.462
20.679
17.726
15.386
13.493
11.927
10.633
9.547

7.385
12.016 3.933
13.227 4.941
10.794 4.104
8.334 3.151
6.538 2.456
5.250 1.960
4.309 1.601
3.602 1.332
3.059 1.127
2.632 0.968
2.293 0.840
2.016 0.737
1.792 0.652
1.596 0.582

1.706
2.435
2.049
1.570
1.220
0.971
0.791
0.657
0.555
0.475
0.412
0.361
0.319
0.284

0.868
1.395
1.186
0.907
0.704
0.559
0.455
0.378
0.319
0.272
0.236
0.207
0.183
0.163

0.491
0.880
0.753
0.576
0.446
0.354
0.288
0.239
0.201
0.173
0.149
0.131
0.116
0.103

0.570
1.566
1,351
1.033
0.800

0.427

92,037
95.240
77.433
60.633
48.206

27.314

Twaz. z III. Excitation cross sections for the transition n=3 to n =4, 5, 6, 7, 8, in units of map'.

Impact energy

Ry eV
Q(3,4) Q (3,5) Q(3,6) Q(3,7) Q(3,8) Q{3m)

0.07
0.08
0.111
0.16
0.36
0.64
1.00
1.44
1.96
2.56
3.24
4.00
6.25
9.00

0.95
1.1
1.5
2.2
4.9
8.7

13.6
19.6
26.7
33.4
44.1
54.4
85.0

122.4

657.1
709.2
735.3
676.9
460.9
322.3
237.4
182.5
145.1
118.4
98.5
83.5
58.5
43.6

83.37
126.98
125.33
83.69
56.35
40.33
30.34
23.69
19.07
15.71
13.19
9.12
6.71

42.92
47.26
31.86
21.16
14.98
11.19
8.69
6.94
5.70
4.75
3.25
2.38

19.16
23.56
16.08
10.62
7.47
5.55
4.29
3.45
2.81
2.34
1.61
1.19

9.94
13.67
9.44
6.21
4.35
3.23
2.49
1.99
1.62
1.38
0.97
0.66

12.04
22.86
16.02
10.52
7.36

2.30

946.3
909.6
618.0
427.2
311.9
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Impact energy

Ry eV

0.03 0.41
0.04 0.54
0.0625 0.85
0.111 1.51
0.16 2.18
0.36 4.90
0.64 8.70

13.61.00

26.7
2.56 33.4

44.13.24
4.00
6.25
9.00 122.4

a(4,5)

WGp

3081
3778
3795
3137
2584
1567
1050
759
581
450
367
306
262
190
151

Q(4,6)

432.4
660.1
570.5
462.1
264.3
169.7
118.6
88.1
68.5
54.3
44.6
37.4
25.9
19.4

Z Q(4,m) Q(T)

map 2

475
269
171
119

5004

3521
2100
1391
997

'
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energy
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Ry
eV
vrao~

Ry
eV
~aa~

Ry
eV
~ao~

0.0169
0.23

11308
0.36
4 90

3980
2.56

33.4
1048

0.0225
0.31

13792

0.64
8.70

2628

3.24
44.1

929

0.04
0.54

13588

1.00
13.6

1907

4.00
54.4

845

0.111
1.51

8698

1.44
19.6

1485

6.25
85.0

719
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2.18
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1221
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122.4
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with k, and kf the initial and final wave numbers in
the excitation process.

In a calculation which will be reported later the
present calculation will be extended to higher excited
states and to higher energy ranges, and exchange of
the electrons will be included.
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A steady-state cascade theory has been set up for radiative electron transitions. These are assumed to
occur between a continuum and various excited states, as well as between any two excited states, of hydrogen-
like atoms. The work contains two features which have not previously been fully taken into account:
(1) Both spontaneous and induced transition probabilities have been included exactly. (2) In addition to
the radiative transitions, the reverse transitions due to absorption of background radiation have also been
included. The following graphical results are given: (a) The steady-state occupation probabilities of the
excited states as a function of excess electron density. (b) A "sticking probability" P„(for an electron from
a level e to reach the ground state without leaving the atom) as a function of the principal quantum num-
ber ~. (c) The effect of the cascade on the transition rate into the ground state. The calculation is valid for
semiconductors and for the analogous astrophysical problem. Temperature dependences have also been
studied. The graphs shown bear out quantitatively the expectation that P„decreases as either the tern-
perature or the principal quantum number increases.

1. INTRODUCTION

KCOMBINATION-generation processes involving
a series of levels (e.g. , excited atomic states) lead

automatically to cascade problems. In these, electrons
can move up and down the energy scale and the transi-
tion probabilities between any two levels, together with
the assumption of a steady state, leads to a steady non-
equilibrium probability distribution for the occupation
of the quantum states involved. This will in general
differ from the cruder "quasi-Fermi" distribution often
hypothesized in solid-state work.

The simplest cascades are those involving a con-
duction band (a continuum in astrophysics) and the
states, labeled by the principal quantum number n, of
hydrogen-like ions. In such cases the results of the cal-
culation may be given in terms of the probabilities II„
that an electron will reach the ground state from level
n without leaving the atom. This has been called the
"sticking probability" in solid-state work, and has
proved difficult to calculate. If states lying above n=.V
are neglected an approximate probability II„,~ is ob-
tained. Many results of this paper are presented in terms
of "reduced" sticking probabilities I'„,~. As far as we
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are aware, this is the first time this probability has been
investigated systematically for a solid-state problem by
a quantum-mechanical method.

The assumptions made in this paper are: the electrons
in the band having a Maxwell distribution in the steady
state; hydrogen-like wave functions for the discrete and
continuum states, modified by an eR'ective mass and a
dielectric constant; black-body radiation in the solid;
Saba dissociation formula for equilibrium even for the
large principal quantum numbers n; neglect of term struc-
ture for given n. If the steady state is maintained by
pumping electrons back into the continuum a general
theory is readily set up LEq. 4.2(a)7. If it is also assumed
that all transitions are radiative, the matrix elements
which occur are standard. For the purposes of numerical
calculations the problem can be further simplified by
supposing that because the lowest level n= 1 is the most
highly populated of the discrete levels, the pumping
action may be neglected for the levels n&~ 2. This leads
to the final set of Eqs. (5.17) whose solutions are readily
computed.

The cascade model set up in this way is informative in
spite of the limitations implied by the above assumptions.
It provides guiding lines for a more complete cascade
theory which incorporates also the effect of phonons and of
electron collisions, but such a theory is not attempted here.


