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Role of Conduction Electrons in Electric-Field Gradients of Ordered Metals
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Measurements of the electric-quadrupole interaction of V" nuclei in the ordered P-wolfram structure
V3X (X=Ga, Si, Au, etc.) intermetallic compounds suggest a correlation between the magnitudes of the
electric-field gradients at the vanadium sites and the density of electronic states at the Fermi energy q(E+).
The conduction-electron contributions to an electric-field gradient in a metal have been inspected and the
results indicate that the above correlation can indeed be expected and that conduction-electron field-
gradient terms which are linearly related to rI(E~) are of experimental significance in many metals, ordered
and disordered. In these investigations, the sources of the field gradient have been divided into three terms:
(1) the lattice contribution, ql, tt, arising from the electronic and nuclear charge external to an atomic sphere
drawn about the nuclear site in question, (2) a local contribution, ql, arising from conduction electrons
within the sphere, and (3) Sternheimer antishielding contributions arising from the distortions of the ionic
core. Attention is focused on ql„and, in particular, on those contributions coming from electron states in the
vicinity of the Fermi surface. This is done by inspecting the change q in q&~ associated with the repopulation
of Bloch states of diRerent symmetries at the Fermi surface when ql, tt and its associated potential of Yp(g, p)
symmetry within the sphere are turned on (or oR). Although this eRect does not include all Fermi-surface
contributions to ql, a "coherence" due to the common symmetry of the perturbing potential and the
gradient operator tends to make this term important. It is linearly related to both qi tt, and q(E~}, and
tends to strongly shield the lattice gradient. For example, a maximum estimate of its value for VIGa is in
excess of —100ql «. Thus, we are deahng with an "overshielding" which, contrary to traditional expecta-
tions, can cause a field gradient which is linearly related to q&,« to be oppositein si gn to it. The investigation
suggests that this term will be of experimental significance in p band as well as high g (Ep) transition metals.
Self-consistent eRects have been included in the calculation and do not destroy the tendency toward strong
shielding. The electron-phonon interaction is inspected and found not to play a role in these terms Li.e., a
"bare" rt{E~) should be usedg. Finally, the eRect of thermal repopulation on the temperature dependence
of ql„is considered.

addressed. Emphasis will be placed on the role played
by the conduction electrons which are in the immediate
vicinity of the Fermi surface and on the implications
of such behavior for all metals (ordered or disordered)
with high densities of electronic momentum states
g(EF) at the Fermi energy. We will concentrate on
temperature-independent eGects but temperature-de-
pendent terms associated with the Fermi surface will
be considered.

The present work was stimulated by the experi-
mental results plotted in Fig. 1, where we see the V"
nuclear-quadrupole interaction as measured by nuclear
magnetic resonance, plotted versus q(E~), as deduced
from electronic specific-heat data, for several of the
V3X (where X=Si, Ge, Ga, As, etc.) intermetallic
compounds. ' The figure shows a correlation between the
field gradients and the rl(Ep) which suggests that the
Fermi-surface electrons may play a role in determining
the field gradient in a metal. Note that only the mag-
nitude of the gradients is plotted. The figure suggests
that the gradient appropriate to V~Ir (and perhaps

I. INTRODUCTION

1
'
UCLEAR-QUADRUPOLE interactions in metals

have been the object, of considerable investiga-
tion in recent years. Of particular interest has been the
source(s) of the electric-field gradient g which interacts
with the nuclear-quadrupole moment. In the earliest
work, surprisingly' good predictions of experimental q
values were obtained with simple lattice sums over
point charges assumed due to the positive ion cores
of the other atomic sites of the metal (which are in-
completely screened by the system's conduction elec-
trons). More recently, attention' has centered on the
contributions to q from the conduction electrons in
the immediate vicinity of the nucleus in question and
it is to this matter that the present paper will be

t Now at Brookhaven National Laboratory, Upton, New York.
'W. D. Knight, Phys. Rev. 92, 539 (1953); T. J. Rowland,

Nuclear Magnetic Resonance in Metals (Pergamon Press, Inc. ,
New York, 1961},p. 27 and references cited therein.

'M. Pomerantz and T. P. Das, Phys. Rev. 119, 70 (1960);
R. R. Hewitt and T. T. Taylor, ibid. 125, 524 (1962};W. J.O' Sullivan and J. E. Schirber, ibid. 135, A1261 (1964}; E. H.
Hygh and T. P. Das, Bull. Am. Phys. Soc. 9, 264 (1964};E. H.
Hygh, Ph. D. thesis, University of California, Riverside, 1964
(unpublished); and P. Tobin and G. Benedek, Bull. Am. Phy
Soc. 10, 75 (1965}.

s. 'The regions indicated for VsPt, VsSn, and VsAs are due to
the lack of knowledge of their rt(E~} behavior.
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it, the energy-band results Mattheiss' has obtained for
these compounds and finally the question of the value
of the V" nuclear-quadrupole moment Q.

The V3X compounds will be the particular object of
attention in this paper but crude estimates will be made
for a large number of pure metals. Some evidence will

emerge suggesting that the ideas developed in this

paper may very well be more appropriate for some of
these other metals. Exact statements will not be made
for any particular metal because of insufhcient knowl-

edge of Fermi-surface conduction-electron character.
Our purpose in the paper is to provide a qualitative
picture of the effect of Fermi-surface electrons on
electric-field gradients. In the process we have used
what might be called a tight-binding —augmented-
plane-wave model of conduction-electron behavior in
order to segregate what we believe to be the most
interesting features of the conduction-electron con-
tribution to a field gradient.

II. ELECTRIC-FIELD GRADIENTS IN METALS

The electric-field gradient at a nucleus arises from
the distribution of charge (both electronic and nuclear)
about it in space and is given by

FIG. 1. The magnitude of the V" electric-quadrupole interac-
tion

~
s'gQ[ plotted as a function of the density of states at the

Fermi surface, q(E~), as deduced from electronic-speci6c-heats
measurement (and normalized to the lattice cell volume) for
various Vsx(X=Si, Ge, Ga, etc.) compounds. In the cases of
VSPt, VSSn, and V3As, g(Lz) has not been obtained experimentally.

several others) is opposite in sign to that for VsGa and

V36e, causing a negative intercept.
In this paper we will consider a field-gradient con-

tribution which samples the behavior of electrons at
the Fermi surface and which is linearly related to both

if(Es) and the 6eld gradient, qi, &.„,arising from the
lattice external to the ion site. This contribution will

in general be of opposite sign to qi,«and may be larger
in magnitude than q&,«. This conduction-electron con-
tribution is estimated in Sec. III and the results suggest
that it may dominate for metals with large if(Es)
and orbitally degenerate conduction bands. The results
also indicate that this term may be very significant for
p-band metals despite their comparatively small if(Es)
values. Questions concerning self-consistency arise for
such a gradient contribution and these are considered
in Sec. IV. There is also the question of whether an
if(Es) deduced from electronic specific-heat data and
involving electron-phonon enhancement is appropriate
to the quadrupole efFects considered in this paper or
whether one should utilize the "bare" electron rf(Ei).
In Sec. V we conclude that the bare if(Ei) should be
used. The temperature dependence of the electric-field
gradient due to Fermi-surface electrons is discussed in
the conclusion and is considered in greater detail in
an Appendix. In another Appendix we consider the
V3X structure, the ql, t~ which might be appropriate to

eq= 2 p (r)—Ps" (cos8)dr .
ll space

However, for convenience it is useful to consider a
field gradient in a metal as arising from. three separate
sources. I.et us draw a sphere about the nuclear site
at which we wish to evaluate q as is done in Fig. 2. The
sphere radius can be chosen so that spheres touch for
near neighboring atomic sites. The first gradient con-
tribution is ql,«arising from the region outside of the
sphere, namely

eqlatt = 2
2

p(r) Pss(cos8)d7, —(2)
utside atomic sphere

where p is the nuclear plus electronic-charge density.
The integral can be replaced by a lattice sum over
point charges and higher multipoles centered at the
various lattice sites. Multipoles as high as the hexa-
decapole can be experimentally significant.

The second contribution comes from the conduction
electrons within the atomic sphere, i.e.,

eql =2
2

pgpns (r) Ps (cos8)dT
&

tomfc sphere

occupied conduction-
electron states 2

p;(r) Pss (cos8)dr, —
atomic sphere

(3a)

where p; is the charge density of conduction electron i.
It is the behavior of qi„,and the question of how this

4 L. F. Mattheiss, Phys. Rev. 138, A112 {1965).



ELF.CTRIC —FIFLL) GRAI) IF. X "I S OF ORDF. RF. D i%'1ETALS A 377

r/I
I

I
// ~LATY

/
/

/

II
/

r
~V

r
Il \

I
I II

r

/
/I

l

I
\ I

/

FIG. 2. Atomic spheres for a hypothetical metal with qi„
arising from the conduction-electron charge within the sphere
and qi tt from the nuclear and electronic charge outside.

'For example see R. M. Sternheimer, Phys. Rev. 80, 102
(1950}; 84, 244 (1952}; 86, 316 (1954); 95, 736 (1954); 96,
951 (1954); 105, 158 (1957); 139, 1423 (1963).

may be correlated with rI(Er), and other features of
Fermi surface electrons which will preoccupy us in this

paper.
Finally there are contributions from the closed-shell

core electrons at the atomic site in question. In first
approximation they are spherical and make no contribu-
tion to q but they become distorted under the influence
of their aspherical environment and interact in turn
with the nuclear-quadrupole moment. These distorted
core interactions may be accounted for in terms of the
familiar Sternheimer antishielding factors y„and Eq
appropria, te to

(4)

For the V core appropriate to the V3X compounds, we

estimate (1—y„) 8&2 and (1—Ro) 1.0&0.2. We
will assume values of 8 to 15 for (1—y„)and of 1 for
(1—Ro) for the V3X compounds and other metals
considered henceforth in this paper.

The electric-field gradient (EFG) in a metal is

typically 5 to 20% of what a single valence electron
would produce in the free-parent ion. For example, for
pure indium the gradient is of the order of 2% while
for tin it is somewhere between 8 and 25%. In other
words, a, gradient arises from rather severe cancellation,
a fact which makes serious theoretical estimates most
dificult.

Matters are further complicated by the fact that one
experimentally observes e'qQ, where Q is the nuclear-
quadrupole moment. An experimental estimate of q
requires knowledge of Q, a quantity based on someone
else's estimate of q for a system where they had meas-
ured e qQ. The V~' moment, of interest in this paper,

FJG. 3. The unit ceO for the P~(X=Si, Ge, Ga, etc.) com-
pounds having the p-wolfram structure, the X atoms being
shaded. The V atoms form nearest-neighbor chains lying in the
x, y, or s direction.

provides a good example of what can happen and a
review of estimates of its value appears in Appendix I.
Also appearing in the Appendix is a discussion of the
structure of the VSX compounds shown in Fig. 3 and
of the q~,&t, associated with them.

III. THE DENSITY-OF-STATES
DEPENDENCE OF q

One would expect dependence of the field gradient
on q(E~) to be primarily associated with gi„,the con-
tribution to the KFG from conduction electrons within
the atomic sphere. Actually, qi,«may also show such
dependence' but we expect it to be much weaker. %e
will, therefore, concentrate on qi„in this section, with
a few observations concerning q~,«appearing later.

For convenience we will quite arbitrarily divide q&„
into three terms

floe=/ +g +III

which arise in the following way. As our starting point,
let us assume that we have a set of Bloch functions
which are eigenfunctions of a crystal potential which
is spherical within atomic spheres about each atomic
site as in Fig. 2. The Bloch functions will have the
symmetry of the crystal since the array of atomic
spheres has that symmetry. Given the Bloch functions
and their energy eigenvalues, one can construct the
Fermi surface and in turn evaluate Eq. (3) obtaining a,

local gradient, which we will call q'.
Now, if the external environment is such as to pro-

6 This will arise from polarization contributions to Eq. (2)
which are similar to the qi terms considered in this section, see
e.g., M. Pomerantz and T. P. Das, Phys. Rev. 119, 70 (1960).
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duce a nonzero q~,«, it will also produce a potential
term within the atomic sphere of the form

Vg (r) = —(e'/2)qa„,r'PP(cos8) . (6)

Let us add this term to the potential seen by the Bloch
electrons and reevaluate Kq. (3). There will then be
two gradient contributions in addition to qo. First, the
V~ potential will contribute first-order shifts to the
Bloch-function energies causing a redistribution of oc-
cupied states in the immediate vicinity of the old
Fermi surface. The gradient contribution associated
with this redistribution is q'. Secondly, there is q"
which is associated with spatial distortions of the Bloch
functions. This includes terms which are linear in V2
and are analytically simila, r to the familiar Sternheimer
antishielding of core electrons. Experience with Stern-
heimer antishielding suggests that these lowest order
terms form the dominant part of q".

Of the three terms, q' samples function character
only in the region of the Fermi surface and can be
expected to depend on q(Ei) while q and q" measure
the behavior of all occupied conduction-electron states.
The q and, in particular, q" are not expected to be
strongly correlated with rl(Er).

The breakdown of q~„ into three terms has been
done deliberately in order to segregate q' from the
remaining contributions. The starting point yielding
this segregation was the use of a spherical potential
within the atomic sphere. Just such a potential is used
in many current energy band eRorts (in particular
with integral techniques such as the augmented plane-
wave method. ') This coincidence is of no significance
to us here. What is important is that V2 was omitted,
rather than that the potential was spherical, when q'
was obtained.

It is convenient to normalize our Bloch functions to
a single atomic sphere' when estimating q'. Doing this
and designating that fraction of states at the Fermi
surface having particular spatial character by y';, the
change in population of these states is

An, = —2g(Ei )f,{(V~);—8E~)
= —2n(Ep) f;{L—(e'/2)qi. „f

X(r'Pmo(cos8)); —hEp), (7)
where ( ); is the expectation value for an orbital with
spatial character ~; the factor 2 accounts for the fact
that, by convention, q(Er) is defined for electrons of
a single spin m, ; SEF is the shift in the Fermi energy
required by the conservation of particles, i.e.,

P, Sn;=O
yielding

SEE= L
—(e2/2)qi„~j P; f;(r P2'(cos8))„.

—= L
—(e'/2)q .«)(( 'P '(cos8))).

' J. C. Slater, Phys. Rev. 51, 846 (1937); 92, N3 (1953).' lt might seem more appropriate to replace the atomic spheres
by atomic polyhedra. For present purposes it makes no signiacant
di6erence.

The ith component contribution to q' is

(q'), = —2hn;(r 'P2'(cos8) ); (1o)

where the minus sign is associated with the electronic
charge. Summing to obtain q' we have

q'= —2e'qi, «rl(Ei)g; f;(r 'P20(cos8));

X{(r P2'(cos8)), —((r'PP(cos8) ))}. (11)

In this and the preceding expressions, the f; sampling
and sum over i could be replaced by an integration,
1'dSi„over the sheets(s) of the Fermi surface. The
latter choice involves a, more detailed sampling over
the Fermi surface than is required for the problem at
hand. We are not involved with such matters as the
topology of the Fermi surface, the energy dependence
of the energy bands in the vicinity of eF, or where a
particular orbital lies on the Fermi surface. We are
instead interested only in how much of each sort of
spatial character is associated with the Bloch orbitals
at the Fermi surface.

A nonzero 6EF tends to reduce q', i.e., the greater
~5Ei ~, the smaller the fraction of (U&) energy con-
tributing to repopulation. As we are interested in gain-
ing some insight into the extreme behavior allowable
for q' let us assume, for the moment, that REF——0 and,
for convenience, that individual Bloch orbitals within
the sphere can be expressed as a product of a radial
function times an angular part. ' With these assumptions

q' ~—2e'qi, «p(E&)g, f,(r'),(r ~),((PP(cos8));)' (12)

and in this form the essential properties of Eq. (11)
become prominent. First, we are involved with the
square of the (P20(cos8)); matrix elements because of
the common angular symmetry of the V2 and field-
gradient operators. This leads to a "coherence" in the
contributions from the diferent terms in the i summa-
tion, a coherence which is one reason for our preoc-
cupation with q'. Secondly, the individual factors
multiplying q&,«are all positive. Therefore q is of
opposite sign to q&,«, shielding it. On going from Eq.
(12) back to (11), this tendency will hold. Shielding
will generally persist, " through Fermi energy shifts,
bEF (and perhaps by mixtures of s and d character in
the orbitals) will reduce its effectiveness. Thirdly, we
see that q' is linearly dependent on i7(Er) while also

' Note that this does not imply an angular function which is a
spherical or cubic harmonic involving a single l value.

"Under special circumstances q' can reverse sign and become
antishielding. Typically this would involve a set of Fermi-surface
Bloch functions with identical or almost identical angular behavior
Lotherwise the angular character of Eqs. (11)—(12) will cause
shieldingj and appreciably differing radial behavior. This, with
an associated, and substantial, BI&'~ could lead to antishielding.
Vy'e doubt that the necessary conditions would ever be met by
a set of Bloch functions for a solid and if by chance they were,
the antishielding would be several orders of magnitude smaller
than the shielding considered in this paper. A set of predomi-
nantly s-like Fermi surface orbitals with small d admixing might
yield a negative sum in Eq. (11). If so, it would be small in
magnitude and would have a small g(EF) associated with it
again yielding a v eak antishielding,
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TABLE I. Expressions for q for several simple choices of the f; and of the spatial d- or p-electron character associated with them.
Orbitals are assumed to be purely d (or p) like and to have common radial behavior. Estimates (see text) of q'/q&, « for V3Ga are also
listed.

Case Band Orbital symmetry

d,~+4„,+d„; f; =1/3 for each
p +p„+p„. f,=1/3 for each

Spherical bands where

4)i,~ 2 k) (el,-ql,-)e] „,
d3, 2 „'-+d2 „";f, =1/2 for each

q'/~ql. ttn(~~)(r')(» ')

—4/49—4/25
—8/245

-8/125

—8/49

q jqlatt
as estimated

for VBGa

—110

—220

taking a detailed sampling of the spatial character of
the Fermi-surface orbitals. It does not, of course,
depend on the geometric shape of the Fermi surface.
In general one would expect changes in the sum in
Eqs. (11) or (12) to be as important as changes in

tl(Es) on going from one metal to another. The VsX
compounds may provide a minor exception. Their
Fermi surfaces lie on a common peak of the density
of states curve (assuming a rigid band model for these
metals) and inspection of Mattheiss's energy band
results4 suggests that there will be very similar func-
tional character on going from V3Ga to V30e, though
not so, on going further to V3As. In other words, q'

may show a strong linear dependence on r)(Er) here.
There remains, of course, the question of whether q'

is a signihcant fraction of the total VSX vanadium
gradient.

A detailed quantitative estimate" of q' for a particu-
lar metal is at best formidable due to the lack of
sufhcient knowledge of Fermi-surface orbital character.
Ke will not attempt a "realistic" calculation based on
the band structure of a particular metal but will
instead inspect three simple cases of spatial distribu-
tion which should give some indication of q' behavior.

"When estimating q's with Eqs. (7) to (12), one assumption
should be borne in mind, namely that we assume that the re-
population eGects do not distort the Fermi surface too severely,
for otherwise one cannot simply sample wave function character
at the Fermi surface. In other words the number of states popu-
ated (or depopulated), i.e.,

-', P[aa, ),

should not be too large. Fxactly what constitutes too large, is
best suggested by the exact expression for he;, i.e.,

where f; and the integration-limit contribution (V2); are, them-
selves, functions of E. In using Eqs. (7) and (10) we assume that
(V2);, the product p{E)f; and (r 'E2 (cos8)); do not vary too
severely as one moves a distance BE+—(V&}; o6 of the original
Fermi surface. For high g(E~) metals one would suspect that
p(E)f; is most liable to vary and comparison of the Z (hn; j with
yI(L) behavior in the vicinity of the Fermi surface, provides a
crude check on the seriousness of this. We should note that
g

~

Aa;
~

is linearly dependent on o(Er) and q &,t, t.

In all three cases bE& equals zero and for all three we
will assume that the orbitals are purely d like's (or for
p-electron metals, p like) within the atomic sphere,
with common radial behavior so that the (r')(r ')
product may be brought outside the summation of
Eq. (12). The three cases are indicated in Table I.
Case (b) was suggested by the Rayleigh plane-wave
expansion, where 8~ and yA are the angles taken by
k. The other cases involve the cubic p- and d-electron
representations. Case (a) represents the largest p band,
case (c) the largest d band, q' compatible with the
requirement of common orbital radial behavior at the
Fermi surface. Ke would like to use the expressions,
given for these three cases, to estimate q' for various
pure metals and for the V3X compounds in particular.
In this, we will use r)(Et) values as deduced from
electronic-specific-heats measurements and will, for the
moment, ignore any question of the appropriateness of
this choice. We obtain (r')(r ') values from free-ion
Hartree-Fock wave functions (integrated to infinity)
with some effort at choosing the atomic con6guration
most appropriate to the metal. "Having not integrated
out to just our sphere radius, these (rs)(r ') will tend
to overestimate the magnitude but not the sign of q'.

Using the observed" VsGa r)(Es) of 7.1 states of one
spin per vanadium per electron volt, and a (r')(r ') of
7 atomic units (a.u. ) we obtain the results appearing
in Table I. These suggest that not only is q' opposite
in sign to qi,«but that it can be one or two orders

"Mattheiss's energy-band results (Ref. 4) indicate that this
is true to something like 98% in the VIX compounds.

"For the V3X compounds with their two constituent atoms,
we must make further assumptions concerning Fermi-surface
orbital character. First, we will assume that the Fermi-surface
character, i.e., p(Ez), is entirely associated with vanadium sites,
an assumption which Mattheiss's calculations show to hold to
hetter than ninety percent. Secondly, with three types of V sites
(on the x, y, and s lines, respectively), there arises the question
of whether interference can occur between the polarization as-
sociated with different sites. We will avoid this by assuming that
one-third of the Fermi-surface Bloch electrons can be entirely
associated with one set of vanadium lines. Within the nearest-
neighbor tight-binding approximation, this assumption is rigor-
ously justi6ed but in actual fact this can be only approximately
done (see Appendix I).

"P. J. Morin and J, P. Maita, Phys, Rev, 129, 1115 (1963).
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TABLE II. Values of q'jqi, tt, and the (r }(r ') and g(I'.'p) on
which they are based, for various metals. Case (a) was assumed
throughout {see Table I).

Metal g /plat, t,

(r')(r-')

g(F-z)'
States per

electron volts
per metal atom

Sc 3d
Tl 3d
Co 3d
Y 4d
Zr 4d
Ru 4d

Nb in Nb3Sn
La 5d
Re Sd
Os Sd
Ga 4p
In Sp
Sn Sp
Sb 5p
Tl 6p
Bi 6p

—37—10—20—50 to —55—10 to —15—8—145—650—165—65—17—110 to —150—140 to —170

~7K
~jg
~9g
11—12&
~12g

15m

~140'
150'
150'

75 to 100'
90 to 110'

100 to 125'
~200f

200'

2.4b

0.7
1.0
21bd

0.4 to 0.6
0.2s
4 4d
2.1e
0.5d
0.2
0.1
0.35
0.3g

0.3
0.01

& Except where otherwise noted, these data come from J. G. Daunt,
Progr. Low Temp. Phys. I, 202 {1955).

b H. Montgomery and G. P. Pells, Proc. Phys. Soc. 78, 622 (1961).
'A. Berman, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 109, 70

(1958).
d F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963).
& From A. J. Freeman and R. E. Watson (unpublished).
f Relativistic and nonrelativistic Hartree results of J. Waber, D. Liber-

man, and D. T. Crorner (to be published).
From A. J. Freeman and R. E. Watson, Treatise of Magnetism, edited

by H. Suhl-G. T. Rado (Academic Press Inc. , New York, 1965), Vol. II.

larger in magnitude as well. In such a case, q~,«(1—y„)
is overpowered. If we assume that q' dominates over
q and q" and that the angular P LP2 (cosg)52 character
is much the same among the VBX compounds, we find
the result quite consistent with Fig. 1 and in particular
with the possibility that e'qQ changes sign as we ap-
proach zero q(E&). Figure 1 is thus consistent with,
but by no means conclusive evidence of, an important
density of states dependent q' in the V~'s.

Estimates of q' for other metals, along with the
rl(EF) and (r')(r ') values which were used, appear in
Table II. These are for the pure metals with the ex-
ception of Nb in Nb3Sn (which was treated in the same
way as V&X's).' For the pure metals it was assumed
that rj(Er) is associated entirely with the predominant
d or p band. This should be a good approximation for
the d metals and less so for p band metals where, in
general, rl(Er) is smaller. Case (a) was used throughout
the table. Large (r')(r ') values, rather than large
rl(Er)'s cause large q'/q&«& ratios for some of the p-
shell metals. This is associated with the fact that the
noded valence p electrons penetrate close to the nucleus
causing (r ') to remain large for an "outer" electron
which already has an appreciable (r"-).

Ke have seen crude estimates of a q' term which
suggest that it may, on occasion, be larger in magnitude
and opposite in sign to q~«, (1—y„).Its magnitude
suggests that a linear theory is inadequate and that
one must consider self-consistency, particularly since
the repopulation will make a contribution to the po-

tential within the sphere which is of Pmo(cos8) sym-
metry and which opposes V2(r). Self-consistent or
saturation efIects are considered in the following sec-
tion but before we go on to them let us consider a
feature of the total 6eld gradient, of q', and of the
polarization process. Our approach was to consider a
set of Bloch functions which were obtained with V2 set
equal to zero within the atomic sphere and to inspect
the effect on the gradient due to turning V2 on. This
led to repopulation (q') and changes in the spatial
behavior of the Bloch functions (q"). Repopulation
and spatial change would also occur if a different
aspherical potential (say cubic, if we are dealing with
d bands) were turned on or, under certain circum-
stances, " if the spherical potential were merely modi-
fied. The resulting repopulation would have associated
with it a change in field gradient which would be ana-
lytically similar to Eq. (11) in its dependence on the
Fermi surface. The important difference is that the
driving potential would not be of the same symmetry
as the gradient operator and the two terms would
therefore not act cohereetly when summed over Fermi-
surface orbitals. Therefore, by concentrating on a q'

which is driven by a V&(r) potential, we have not
isolated the entire dependence of our total gradient q
on Fermi-surface behavior. Ke have, though, isolated
the term in this dependence which will normally tend
to dominate. This term is also of interest because, like
the more familiar Sternheimer core antishielding, it is
linearly related to qi,&t.

IV. SELF-CONSISTENCY

If one includes the self-consistent e6ects associated
with repopulation, Eq. (7) becomes

hrI, = —2f q(Er)[(V2), 5Er+g, D—e,f(i,j)5, (13)

where f(i,j) is the interaction of an electron of orbital
character j with orbital character i. Consistent with
Fig. 2 and the convention of the preceding section we
will include in f(i,j) only that part of the interaction
which occurs when electron j, as well as electron i, is
within the atomic sphere (or polyhedron). The inter-
actions from electrons outside the atomic sphere provide
an electrostatic repopulation contribution to qi,«and
V2 which we shall ignore. " The interaction f(i,j) is,
in principle, the full interaction between electrons but
we will limit attention to direct and exchange Coulomb
terms. Then, if the orbital character is entirely p-like
or d-like, and has common radial character (within
the sphere) and if we ma, ke the usual multipole expan-

"Namely if the set of Fermi surface Bloch functions vary in
radial behavior.

"Providing that repopulation does not involve a transfer of
charge from one sphere to another (something which we are
neglecting in this paper), it will only contribute to the multipole
terms of Kq. (2). In such a case, we believe it to be relatively
unimportant.
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sion of 1/ri2, we have

e2 1
I ~ (ri) I'—

I v i(r2) I
'd»d»

~l2 2

(k—m)!
=e'P F"P t(Pq~(cos8)e' &);(Pi,~(cos8)e ' ~);—2I(Pk (cos8)e* ~);, I

2j, (14)
(0+m)!

where the erst term in the bracket is the direct Coulomb
interaction involving diagonal matrix elements of the
angular operators whereas the second term involving
oB-diagonal elements is the exchange term. The one-
half multiplying the exchange term arises because we
have assumed the metal to be nonmagnetic. The Ii ~ is
the familiar radial Slater integral

r&'
R(ri) R(rq) ri dri r2'dr2,

4+y

where the R is the radial part (and p the total spatial
part) of the Koch orbital within the sphere. The radial
integrations should be out to the sphere radius. '"

For d-like electrons, k will equal 2 and 4 while for
p-like orbitals it will equal 2 alone. If we had allowed
either variation in radial behavior or a transfer of
charge in or out of the sphere during the repopulation
process, a spherical, k=o, term would also contribute
to f(i,j) Such a te.rm could make a significant con-
tribution but since its evaluation requires an even
more detailed knowledge of the conduction-band wave-
function character appropriate to a speci6c metal than
do the terms which we consider here, we will ignore it.
Ke will, in fact, concentrate on the k= 2 term whose
direct Coulomb part should act coherently with V2.

One can simplify the 4= 2 term of Eq. (14) if we note
that the local symmetry in which our ion will normally
hand itself is such that x-like and y-like wave-function
character (the gradient axis being parallel to s) will
enter equally. One then obtains the same result for

Kq. (13) if one replaces f(i,j) by f (i,j) where

f'(i j)=e'F' (P20(cos8));(P20(cos8)),

(2—m)!
I(P~"(cos8)e' ~),;I' . (16)

m (2+m)!

It is to be emphasized that this is not identical to Eq.
(14) but that, subject to the above observation, it
yields identical results on. insertion into Eq. (13). Let
us make this insertion, and, considering only the direct
Coulomb term, observe the effect of self-consistency on
q'. One first obtains from Eq. (8) that

g hyatt

bEr = e2 — (r')+Q d n;F'(P20 (co») ),
2 j

X((F20(cos8))), (17)

where

((P2O(cos8)))—=Q; f,(P20(cos8)&;

Substituting this back into Eq. (13) we have

Dn; = —2e'g (Er)f;((P20(co»)),—((P20(cos8))))

g 1att,

X — (r')+P An, F'(Pmo(co»)&; . (19)
2 j

On introducing a small self-energy error by letting the

j sum span all repopulated orbitals, we see that the
square bracket is independent of i and

hni fi((P2'(cos8))i —((Pm'(cos8))))

En' fq((P20(cos8)) q
—((P20(cos8) &))

I'sing this relation to express the An, of Kq. , (19) interms of An, , we obtain

2e's (Er)f;(—q~«, /2) (r')((P2'(cos8) );—((P2'(cos8) )))dn;=—
1+2e2rI(Er) F'Q

(20)

and in turn

2e q(Er)qi«i(rm&(r 3)Q
g=— (22)

1+2e'n (Er)F'Q

"We will use free-ion values where the integration actually is
to infinity {as with the r" integrals) in what follows.

where

Q=g; f;(P2O(cos8));
X ((P o(cos8)&'—((P 0(cos8)») (23)

The F' term in the denominators is, of course, the self-
consistent-6eld term and it inhibits the polarization. In



TAat, E III. f(r')(r 3)/F') values for the valence
electrons of various ions.

TABLE IV. Self-consistent results for q'/qi, tt as evaluated
with Eq. {23) for case (a) for various metals.

Ion

Al(3p)'
Ga(4p}'
Rb+(4p) s

In (Sp) '-Sb (Sp)3

Pb (6p)'-Po(6p)'
V(3d)'
V'+(3d)'
Ni+(3d}»
Ni3+ (3d) 7

Zr'+ (4d)~-Ag'+ (m) '
Y+(4d )
Ag+ {4d)10

La(5d)'

115
296'
252.

380 to 450b
350 to 480b

36"
16'
22"
1 i'
50'
66'
55a

300b

Sc
Tl
Co
Y
ZI
Ru

Nb in Nb3Sn
V in V3Ga

La
Re
Os
Ga
In
Sn
Tl
81

—18—7—10.5—28 to —30~—10—l—42—20—220~—100

—16—85 tc —115
—100 to -125
—150 to —170—8

a A. J. Freeman and R. E. Watson (unpublished).
b Relativistic and nonrelativistic Hartree results of J. Waber.

the limit

q' approaches a limiting, "saturated" value,

r2 r3

In the limit of saturation, q is independent of g(EI)
and of Bloch orbital angular character. A list of
(r )(r ')/F'-values, for selected ions, appears in Table
III. The ratios are large indicating that self-consistency
limitations will seldom become severe. The ratios show
a rough consta, ncy as one scans ions of common valency
and row in the periodic table. There is a tendency to
decrease with increasing nuclear charge but this varia-
tion is slight when compared with the constituent
integrals which vary strongly.

The p-conduction-electron ratios a,re particularly
huge. This behavior is associated with the noded char-
acter of the radial wave functions, the greater ratios
coming with the larger number of nodes. The inner-
most loop of a function is almost entirely responsible
for (r ') (and the outermost for (r'-)) but the r~'/r&'
operator in Ii'- lets this loop contribute negligibly to
that integral. The unnoded 3d (and 2p) shells, and to a
less extent the 4d's, have comparatively small ratios
and even if saturation is not reached, one can expect
self-consistency to visibly affect q'. Having one fewer
nodes than p electrons of the same principal quantum
number e, the d electrons penetrate less closely to the
nucleus, and in turn tend to have the smaller ratios.
Table IV gives results of having evaluated Eq. (22) for
the angular distribution Case (a) of Table I. This
involves a choice in the (r')(r ')/F-'value and we have
utilized monovalent ion values for the transition ele-
ments and neutral-atom values for the p-shell ions. As
was to be expected, the d metals with their lower ratios
and high ri(F p) values have been most affected by self-
consistency considerations (compare Table II).

The ratios of Table III ha, ve other implications. "Of
interest to us here is that the V'2 perturbing potential
was taken to be entirely associated with ql,,«. If q" is
nonzero, there is, of course, a, second potential term of
the same I'20 symmetry which arises from the 81och
orbital cha, racter within the sphere at the onset of the
ca,lculation. To the extent that the full set of occupied
Bloch conduction orbitals can be cha, racterized by a,

single atomic l value and a single radial function, the
Coulomb part of this new term is

V,"(r)~—(e'/2) q'r'P2'(cosa) LF'/(r')(r ')]. (25)

%hile yielding correct matrix elements, the spatial
character of this expression is approximate, having
been written so that it is of the same form a.s the V2
of Eq. (6). Comparing equations, and making note of
the inverse of the ratios appea, ring in Table III, we see
that, unless q' is one or two orders of magnitude grea, ter
than ql, «, the V2' ' term may be neglected. Including
it, Eq. (22) becomes

2e'q (Ep) Lq(.„(r')(r-')+q'F'jfI

1+2e'g(E p)F'0

a.nd in saturation

(27)

Within the approximations giving Eq. (24) this term
attempts to exactly shield qo. Since full saturation will
never occur, the cancellation will never be complete
but we expect it to be significant when and if qo is.

I.et us now consider how the inclusion of 4=2 ex-
change terms modifies the self-consistent V2 shielding.
Exchange does not make coherent contributions in the
sense seen for Coulomb terms in Eqs. (17)—(22) Dn
particular in the ratio in Eq. (20)] and one must make
estimates assuming speci6c Bloch orbital angular dis-

» Among these is the fact that self-consistency has visible but
not catastrophic repercussions on the traditional perturbation
estimates of y„Pe.g. , see R. E. Watson and A. J. Freeman, Phys.
Rev. 131, 250 {1963)j.
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tributions. This is most simply done if the set of orbitals may be defined in terms of two fractions, fo
and (1—fo). Then, using Eq. (16), and ignoring V2"', one immediately obtains expressions of the form

2oP~qi, ~~f0(1—fo)n(E~) &r'&&r-'&(&Z2'(cose) &)'
28

1+»~fo(1—f )~(E~)F'(&f"(co&)&)'

where in saturation

The &P2'(cos8)) matrix elements are for" either angular
orbital type and the a and P are coefficients which
follow from that choice after the insertion of Eq. (16),
and a detailed evaluation of Eq. (13). In the absence
of exchange terms, n equals one. The o and P values
appropriate to cases (a) and (c) of Table I appear in
Table V. Here, of course, the relative amounts of
differing orbital angular character may vary, with f0=
corresponding exactly to the case (a) of table and f0
=-', to case (c). The n value of +9 corresponds to an
order-of-magnitude enhancement of the saturation
limits due to exchange. An additional example, case
(d), is listed. It is an example of a negative a and, in
turn, an antishieldieg saturation limit.

Predictions for these cases, plotted as a function of
2fo(1—fo)g(E~) [or effectively" 2g(Ep)Qj appear in
Fig. 4. Cases involving Coulomb terms, without ex-
change, have also been plotted [and are indicated with
the superscript cj.Vanadium radial integrals were used
in the construction of the figure and the values of
2fo(1—fo)g(Ep) appropriate to VSGa, Ti, and Sc for
case (a) of Table I are indicated on the figure. From
the 6gure it is clear that we are seldom, if ever, near
the saturation limit in a metal and that exchange, as

TABLE V. The role of self-consistent exchange terms as manifested
in the P and a appropriate to Eqs. (28} and (29) (see text).

Fractions applying to
Case Band fo (1—fo)

xy equal numbers of ys +1/4
and zx orbitals

equal numbers of x
and y orbitals

+33/16 +4/11

d 3z'-r' H-y' +17/4 16/7

d 3s'-r equal numbers of ys —7/16
and zx orbitals

"By convention we have taken (PP(cos8}) to be appropriate
to the angular type designated by f, when p values are reported
in Table V. The fo(1—fo) product in Eq. (28} is associated, in
part, with nonzero bEJ effects. This becomes quite obvious when
f, equals zero or one for then the entire V~ energy must go into
ATE+ with t see Kqs. (9)—{11))

(PP(cos9))—((P (cos8)))=0
This relation leads to a zero valued q' from expressions such as
Kqs. (21) and (22) and it is the fo(1—fo) product which serves
the same purpose in (28).

well as Coulomb, self-consistent terms can appreciably
affect q' well away from that limit. "The negative P
associated with case (d) has led to an erlhumcemenP' of
q' over what it would be if self-consistent eGects were

not considered.
Self-consistency eBects are most severe for the 3d

metals which we have just considered. Smaller g(E~)
values and F' integrals cause the e8ects to be smaller

for the 4d, 5d, and p-electron metals. The large q'

values for the p metals in good part arise from the

large &r')&r ') factors and are relatively unaffected by
self-consistency.

When one deals with d metals, 4=4 terms occur.
These will further perturb q' and saturation behavior.
For example, the F' of Eqs. (28) and (29) would be
replaced by (F'+&F4) where p is yet another coefficient.
We will not consider the e6ect of this here.

V. THE ROLE OF THE ELECTRON-PHONON
INTERACTION

In the preceding sections we have relied on rl(Ep)
values deduced from electronic-speci6c-heats data. It
has been shown theoretically" that the electronic spe-
ci6c heat is modified by the electron-phonon interac-
tion; other electronic properties, such as the magnetic
susceptibility, are not affected. " We may then ask
whether or not the density of states, g(Ep), that was

used to obtain the repopulation of states at the Fermi
surface shouM be affected by the electron-phonon in-
teraction and, if not, how this sects the results we
have already seen. The existence or lack of an electron-
phonon term also affects one's expectations concerning
the temperature dependence of gi„asone goes from low
temperatures to well above the Debye temperature.

~ This may seem surprising since direct Coulomb interactions
are commonly an order of magnitude stronger than exchange.
This is true here and is due to the spherical, k=0 term in the
interaction. We have omitted this term and if it did enter, it
would only do so through differencing due to varying Bloch
orbital character t see the discussion between Kqs. (15) and (16)j.
Considering terms with k equal to 2 or 4, exchange effects may be
every bit as large as the direct interaction terms and it is the
manifestation of this which we see in the examples above.

~'For case (d) most of the V, potential energy goes into bE~,
hence the shallow initial slopes of its curves with and without
exchange {the initial slope of any curve on the fIgure is what one
obtains in the absence of self-consistent terms). The negative P,
associated with this case, causes a singularity at 2fo(1—fo)q{Eg)
~99 states per a. u. per atom with an antishielding region above
the singularity. Being inside it, we have an enhancement over the
result without self-consistent terms.

~ M. J. Buckingham and M. R. Schafroth, Proc. Phys. Soc.
(London) A67, 828 (1954); and D. Simkin, thesis, University of
Hlinois, 1963 (unpublished).

J. J. Quinn, in The I"ermi Surface, edited by W. A. Harrison
and M. J. Webb {John Wiley, L Sons, Inc. , New York, 1960).
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70
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which is suKcient for our purpose) the electron self-

energy and used it to obtain the one-electron Green's

function t" for this Hamiltonian, retaining only the
matrix elements of Vs(r) which are diagonal in k since

they alone are of interest to us. The imaginary part of
G gives the density of occupied states as a function of
k and energy, "and by integrating over E we obtained
the expectation value (sss) of the one-particle state k
in the ground state. We then let Vs(r) =0 and found

(sss)p for this case. The change in the electron popula-
tion with a 6xed direction. of the wave vector that
arises from the action of Vs(r) is given by

~ 40
I

~U

30

20

$0

0
0 20 60

2fii (i fpl Q (EF) PER METAL lON

Fzc. 4. The effect of self-consistency on the d band q'/qi, t~

with and without (superscript c) exchange as a function of
fo(2 —fo) g (E~} for the cases dehned in Table V. Vanadium radial
integrals have been used in evaluating Eq. (28).

To answer these questions we have considered the
Hamiltonian

K=Xp+ Vs(r)+3C', (3o)

where 3Cp is the Hamiltonian for a free electron, Vs(r)
is a periodic potential of lower symmetry (that of the
lattice) and K' is the electron lattice interaction. We
use the Frohlich Hamiltonian for 3C', which in second-
quantized. notation is given by

3C'=Q Q isscs+stc„(bs+b st), (31)
y

where the constant o,I, is equal to

as= D2vr'h'/Vms)F AceJ".
Here k~ is the Fermi vector, P is the coupling constant,
of order unity and for simplicity an Einstein spectrum
with frequency co has been assumed for the phonons.

We have calculated' (only to second order in K'

~ A. B. Migdal, Zh. Eksperim. i Teor. I iz. 34 2438 (1958)
)English trsnsl. : Soviet Phys. —JKTP 7, 996 {1958)g.

8(tss) = ((fss) (ns) s)dk (32)
0

where the integration is over all wave vectors with
direction k. This expression was found to differ from

5(sss) found above (i.e., without electron-phonon inter-
action) only in order hs&/E~, showing that the electron-
phonon interaction has a negligible effect and that it
is appropriate to use the "bare" density of states for
n(&~)

Ke can understand this result as follows: In the
absence of BC' the Fermi surfaces of Kp and Ks+ Vs(r)
are separated in k space by a distance

bkp= —DVs(k)) —((Vs(k)))sj/~ Vs(E)
~

(33)

where ( )s indicates the average over the Fermi sur-

face. We now turn on the electron-lattice interaction
and ask for the difference in the self-energies Z(k~, Eq)
of an electron, respectively, at the two Fermi surfaces,
along a 6xed direction k. Clearly this change is of order
5 Z (6kp/k~)Z since bkp is the change in the k value at
which it is being computed. Z(ky, Es) is of order Fhoi,
and thus is small compared to the Fermi energy. The
change lS that would be needed to offset 5Z is given
by (ciE/elk)&&=SR, or bh F(hp&/Er)bkp Thus (hk/b. kp)
is of order ftoi/E~ which is negligible.

We might contrast this result with the fact that the
e ectronic speci6c heat at low temperatures is strongly1

affected by the electron-lattice interaction. This effect
is a consequence of the exclusion principle"; it would
have been absent for a static electron-phonon inter-
action and it gives a signi6cant contribution to Z onl
when the energies of the electronic states connected b

I
e y

X are separated by less than a phonon energy. This
contribution is proportional to the number of electron
states that are within an energy her both of the Fermi
surface and of the energy of the electron under con-
sideration. The reason the speci6c heat is strongly
affected is that this number decreases by half its value
as the energy of an excited electron increases from E
to E L*"E~+, - . In our problem of repopulation we are not

f

concerned with the behavior of excited states but only
with that of the ground state of the system.

'~ See for instance, T. D. Schultz, Qgaetgm Field Theory and
the Mazy-Body Problem (Gordon and Breach Science Publishers
Inc. , New York, 1964).

s
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In order to avoid the problem of evaluating the
electron-phonon enhancement of the specific heat for
the various metals, the uncorrected g(Ei) were used

in the preceding sections. As a crude rule of thumb,
those values (and in turn the q'/qi, «of Table II) are
too large by a factor of two. It is clear that the tem-
perature-dependence of q' (and qi„)will be unaffected

by the electron-phonon interaction. The other sources
of temperature-dependent eGects are considered in

Appendix II and briefly in the section which follows.

VI. DISCUSSION

The division of qi„into three terms may seem un-

desirable and unreasonably arbitrary. As a matter of
practical computation, however, the division has con-
siderable meaning. Any a priori estimate of qi„starts
with functions obtained in an energy-band calculation
and by almost universal practice current energy-band
methods utilize spherical potentials yielding functions
appropriate to q and not qi„.Equations (25)—(27)
suggest that any accurate estimate of q&„,say to better
than a factor two, requires going on and obtaining"
q'. That this is necessary is borne out by the estimates
of q'/qi, «, which are sometimes as large as 100, even
when calculated self-consistently.

We have avoided making estimates of q' since they
require detailed knowledge of orbital character for al/

conduction-electron states below the Fermi surface.
The evaluation of q" also formally requires knowl-

edge of the orbital character of states below EI, but,
unlike q', a crude estimate of its behavior may be
readily made for the case of a pure metal or an ordered
intermetallic. Our perturbing V2 potential is, after all,
periodic for it occurs at al1. like atomic sites. As such,
it has only o6'-diagonal matrix elements between con-
duction-electron states diftering by reciprocal lattice
vectors, i.e., between Chgerent bands in the conven-
tional single-zone schemes. The gross behavior can be
obtained as follows. Under the inhuence of the perturb-
ing Geld V2, any one given orbital will (1) distort
radially keeping axed angular character and (2) distort
angularly, the two distortions moving the charge
density into the region of lowest potential energy.
Simple physical arguments Lor our experience52r with
closed shell Sternheirner antishieldingj indicate that
the radial distortion antishields and the angular eGect
shields qi, tt,. Both tendencies will occur for our 31och
orbitals within the sphere. Calculations for individual
atomic orbitals or entire closed shells indicate that for
p or d electrons, the radial antishielding effects domi-
nate. We can use free ion antishielding results to obtain
an upper limit for this antishielding. Given a y„(l)

26 There are, of course, also terms similar to q' which are as-
sociated with the other nonspherical components of the potential.
These are expected to be normally much less important because
of the lack of coherence for such terms in the sense discussed at
the end of Sec. III.

~7 See also, M. H. Cohen and F. Reif, Solid State Phys. 5, 322
(1957).

computed. for a dosed shell of neutral-atom valence-

shell orbitals, ' of orbital momentum /, we have

g number of conduction electrons per site
& lv. (&) I

qi.« — 2 (21+I)

In principle this need. not overestimate the q"/qi, «
ratio but in practice it wi11 almost inevitably do so

(if only because s character in the Bloch orbitals will

reduce the radial effect). We should note that this
limit is large when the (r')(r ') product is large, i.e.,
an antishielding q" will tend to be largest for heavy
p-electron metals. Assuming that there are no "resonant"
effects associated with close lying bands just above Ep,
the largest angular shielding which can occur (and
hence the strongest tendency for q" to shield) is but a
few percent.

Our application of perturbation theory to the con-
duction-electron contributions to a field gradient may
have reminded the reader of the important work of
Kohn and Vosko. ' In contrast with the present work

appropriate to ordered or disordered systems, they
dealt with the gradient arising from the response of an
electron gas to an impurity charge. There, Fermi-
surface repopulation does not contribute and the eAect
is entirely associated with the lowest order counterpart
of q", D.e., their bn&" (r) for k antiparallel to k'$. Thus,
the two cases are very different.

The investigations of the preceding sections have
been appropriate to zero temperature. One might hope
to sort out the respective roles of q&,«and IIIioc by in-

spection of a gradient's temperature dependence. Kith
electron-phonon terms unimportant, there are two
leading sources of temperature variation. First, there
are the changes associated with the thermal variation
of the lattice constants. Secondly, there are thermal-
repopulation effects across Ep associated with the
Fermi-Dirac statistics of the system.

The role of lattice distortion can be independently
investigated by pressure and stress experiments. The
work' of O' Sullivan and Schirber on In suggests that
q vari. ation is not entirely associated with changes in
the lattice constants, i.e., that a signihcant fraction
remains to be explained by other sources. Unfortu-
nately, lattice-constant changes cannot readily sort out
the respective roles of q~, t,& and qi„because both are
affected. Repercussions on qi„come in part from dis-
tortions of the Fermi surface which in turn arise from
shifts in Brillioun-zone boundaries.

Providing that a significant shift in charge from one
type of atomic site to another does not occur one can
anticipate that thermal-repopulation e8ects will mainly
affect qi„(including, of course, q' with its dependence
on the lattice field). The effects on qi„,and q' alone,

~8 The neutral-atom valence shell will normally not be 6lled,
but given the valence-shell radial orbital character we then
want y„(l)computed for a closed shell of such orbitals.

~f'%'. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960).
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are inspected in Appendix II. Their dependence on
Fermi-surface behavior is much more detailed than
that already considered in this paper since, for a given
segment of Fermi surface, one samples orbital spatial
character and other factors such as $8ri/BE7s~ Th. e
increased detail of the samplings makes these terms
less amenable to crude estimates. The estimates made
in the Appendix suggest a substantially greater thermal
variation of the VSGa gradient than the small change'
which is seen. Almost nothing is known concerning the
system's lattice constant variation and the small mag-
nitude' of the q variation suggests, to us, an appreciable
cancellation among terms. The estimates of the Ap-
pendix suggest that experimentally signi6cant contribu-
tions to the temperature dependence of q can arise
from thermal repopulation in high q(E p) metals.

VII. CONCLUSION

This treatment has concentrated on q', the electric-
field-gradient contribution from conduction electrons
within the atomic sphere, arising from the redistribu-
tion of occupied states about the Fermi surface in the
presence of a noncubic crystalline potential (in the
sphere). The other terms, arising when the non-
cubic potential is zero-valued within the sphere
(q') and from orbital distortion (q"), may be important,
but the most striking efI'ects evidently come from q'.
Large negative q'/q&, «ratios, i.e., overshielding, may
occur, causing sign reversals in the total 6eld gradient.
The fact that an estimated q~,«divers in sign with
experiment then need not imply that q~.«and it&

associated crystal 6eld are not the essential source of
the 6eld gradient.

In the case of transition metals (or transition metal
sites in intermetallics) a high density of states, p(Ew),
permits a substantial repopulation, i.e., a large b,n;,
and in turn a substantial ratio. The heavy p-electron
metals, on the other hand, also have large ratios, in
spite of their comparatively small g(Er). This is due
to their large (r')(r ') products. Self-consistency is most
important when repopulation is substantial but q'/q~, ~~

ratios as large as —100 occur, in spite of it, for both
transition and p-band metals. We expect q' to tend. to
be most important, relative to the other terms of q~„,for
the transition metals.

In closing, it is perhaps appropriate to return to the
V,X behavior seen in Fig. 1. The large q'/q~„, ratios
obtained in Secs. III and IV, and the point-charge
estimate" of q~,«reported in Appendix I, are all con-
sistent with the idea that these experimental results
are reflecting v(E&) behavior. Our inability to assess
the relative role of qo makes any rigorous conclusion
impossible but we do believe that q', with its depend-
ence of q~,«and g(E~) is making a significant con-
tribution to the gradient of the VSX and other metals.

~ In Vaca, e qQ (300'K}=3.17 Mc/sec and e'qQ(20'K} =3.24
Mc/sec.

"The important feature is the possibility of a significant q&&
for small point-charge values.

ACKNOWLEDGMENT

One of us (Y.Y.) would like to thank Dr. W. Marshall
and the Atomic Energy Authority for the opportunity
to work at Harwell. We have bene6ted from discussions
with Dr. A. J. Freeman, Dr. J. Hubbard, and Dr. L. R.
Walker.

APPENDIX I. THE STRUCTURE AND q~«& APPRO-
PRIATE TO THE V3X COMPOUNDS AND THE

V" NUCLEAR-QUADRUPOLE MOMENT

We would like to inspect the structure and q~,«
associated with the VSX compounds. These systems
have the P-wolfram structure which is cubic with six
V and two X atoms per unit cell as is indicated in Fig.
3. One-third of the V atoms lie in lines along the s
axis, another third along the x and the remainder

along the y. The nearest neighbors to a V atom in any
particular line are the adjacent V atoms in the same
line and in a nearest-neighbor tight-binding approxi-
mation one would thus expect the essential features of
the V3X compounds to be associated with one-dimen-

sional chains of V atoms. The energy-band investiga-
tions of Mattheiss4 show this approximation to be poor.
The local symmetry at a V site is noncubic and a non-

zero qj,«may occur. Limiting oneself to point charges
Zye and Zxe associated with the V and X lattice sites,
lattice sums yield vanadium site values of

pq, .«—{3.2Zv —1.2Z&.}X 10' esu' cm '

and

q2q„«—{3.4Zv —1.3Zs;})(10'esu' cm '

for V3Ga and V&Si, respectively. Insofar as the ion
cores of charge +Z;e are well localized and the con-
duction electrons are nonlocalized and uniformly dis-
tributed in space, this expression will hold. Assuming
Z's of +1, one obtains e'q&,«Q(1—y„)which is twice
the observed V3Ga interaction and proportionately
greater than the observations appropriate to the other
V3X compounds. Limiting attention to point-charge
terms and assuming Z's equal to one is admittedly
unrealistic and has, we believe, overestimated q&,«.

Comparison of theory with experimental q behavior
embroils one in estimates of Q, as was indicated in Sec.
II. The V" moment is a case in point. Murakawa ob-
tained" a Q value of 0.28&0.15 b from optical-atomic-
hyper6ne data. This involved a theoretical estimate of
the atomic-field gradient. Using this Q value one ob-
tains experimental V3Ga and V3Ge vanadium field
gradients which are, respectively, 10 and 3% of what
a single atomic V 3d electron (with m~= 0) will produce.
This is consistent with one's general experience with
6eld gradients in metals. We should perhaps note that
there are other VSX compounds, such as V3As, which
have still smaller gradients of the order of (using the

Q of 0.28 b) one percent of the atomic 3d value. More

~ K. Murakawa, J. Phys. Soc. Japan 11, 422 (19S6}.
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recently Nagasawa, Takeshita, and Tomono have ob-
tained" an independent estimate of Q by observing
the quadrupole interaction in V205. Assuming an ionic
crystal, they performed a lattice sum for q, in turn
obtaining a Q value 1/30th that of Murakawa. This
implies a Vaoa field gradient which is three times the
atomic 3d value. While not impossible this seems
rather improbable. We expect V205 to be highly cova-
lent and a theoretical q, based on assuming it to be
purely ionic, would be liable to severe potential errors.
Comparing Murakawa's estimate of the atomic q with
Hartree-Pock theory, and inspection of Hartree-Fock
predictions" of 6ne and hyper6ne structure suggest
that his estimate of q is accurate to 10, or at worst
20%. If his Q is in more serious error, it is due to the
optical hyperfine data. Earlier in the Appendix and
elsewhere in this paper, stated experimental vanadium

q values were based on a Q of 0.28 b.

q'(T) = 2 P (2r—'P2'(cos8)), , s
p

dg(E)
(E), DV ), bE —tdtE

dE

=2K. (2» '2'2'(co»)), ~ t.(V2) —bE~3

-8'n (E),—
n(Ep), +—(kT)' + . .

6 BE'
(A3)

or for the jth component

q'(T)~ —q'(0)t + 9'n(E)/8E'le~, ;=—(kT)' + 0 ~ ~

q'(0), 6 n (E&),

just orbital spatial character. If (2r P2'(cos8)), , g and

n(E); vary slowly in an interval E to E+(V2), bE—&,

we have

APPENDIX II. THERMAL-REPOPULATION
EFFECTS AND THE FIELD GRADIENT

Ke are interested in the thermal-repopulation effects
associated with the Fermi-Dirac distribution function

n(EF)— n(E), (dg/dE)dE
(A4)

n(Ep),

g (E)—1//g(E e)ter+—1) (A1)

where ~ equals Ep when T=O. Such contributions have
generally been ignored and we will see suggestions that
they play their largest role when the n(Er) is high.
For the moment let us concentrate on the temperature
dependence of q', as defined in Eqs. (10) and (11).
Using standard procedures, "q' at t)0 becomes

q'(T) = 2 P (2~'PP (cos8));,sn (E),
0

XLg(E+(V,),—bE,)—g(E) jdE, (A2)

where the V2 matrix elements and 5Ep are dehned at the
original unperturbed Fermi surface as in Eq. (7). The
j summation is essentially a sum" over segments, j, of
the Fermi surface with associated density of state con-
tributions n(Ep), . It is a more detailed sampling than
the f~n(Et:) of Secs. III and IV for it involves more than

Without a detailed knowledge of the band structure and
wave functions, an accurate determination of this tem-
perature dependence is not possible. The magnitude
may be estimated if we made the assumption that the
right-hand side of Eq. (A4) is independent of j.
Clogston" has estimated the temperature dependence
ofl'0" n(E) (dg/dE)dE from available susceptibility and
specific-heat data for V3Ga. His results suggest that

Lq'(300) —q'(0) $/q'(0) ——0.35

which is an order of magnitude greater than the 2.2%
temperature dependence actually observed" in V36a.
There are, of course, many potential sources of such a
discrepancy.

Let us now consider the Fermi redistribution effect
appropriate to the entire q~„and define qt„(0)and a
Fermi surface which are appropriate to the exact
erysta/ potential. Again using the standard expansion
techniques" one obtains

-8n(E)- Bn(E)-
q~«(T) —

q~o, (0)=—(kT)2 P (2r 'P2 (cos8)) f;—
3 j BE - Ep ~

— BE gyp

-8(2r-'F20(cos8) );-
+n(E~),

BE
+0(T4), (A5)

"H. Nagasawa, S. K. Takeshita, and Y. Tomono, J. Phys. Soc. Japan 19, 764 (1964).
~ For example, M. Blume, A. J. Freeman and R. E. %'atson, Phys. Rev. 134, A320 (2964) and M. Blume and R. E. watson,

Proc. Roy. Soc. (London} A271, 565 (2963).35¹ F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publications, Inc. , New York, 2958),
Chap. 6.

~~In practice one would probably replace this sum by an appropriate integral over k-space surfaces of common energy (e.g.
the Fermi surface proper) but for our purposes here, notation is simpler if we leave this as a sum.

"A. M. Clogston, Phys. Rev. 136, A1417 (1964).
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where the factor involving Bg/BE plays essentially the
same role here as the ((PP(cos8));—((P& (cos8)))) of
Eqs. (11) and (19)—(23). We may rewrite this as

q...(T)—g (0)

=P an(T);(2r —'F20(cos8));+—(kT)'g(Ep),
3

-B(2r-'P~'(cos8) ),
—

+0(T4) . (A6)
BE g~

The first term of either Eq. (A5) or (A6) represents the
thermal repopulation, he(T);, into or out of the jth
Fermi-surface region and the second term represents
the change in ql„due to thermal repopulation normal
to the Fermi surface. Despite super6cial dissimilarities,
these equations include the q'(T) —q'(0) term of Eqs.
(A3) and (A4). Standard assumptions were made in
deriving these equations, namely that g(E); and
(2r-'P20(cos8)); vary slowly with respect to Bg(E)/BE
in the energy range Ep&kT. Normally such require-
ments are reasonably well met in a metal but this may
be marginal for the VBX compounds. If so, not only are
the above equations suspect for these compounds but

so are the existing analyses of the electronic specihc heats
and the temperature-dependent spin susceptibilities.

Estimates of qi„(T)—q&„(0) are more formidable
than any al.ready made in this Appendix and elsewhere
in this paper because we require knowledge of z(E);
and (2r 'P2'(cos8));, & as a function of both j and E
(in the vicinity of E~).

An eGect which could decrease the expected tem-
perature dependence of the 6eld gradients is the self-
consistency and associated saturation behavior dis-
cussed in Sec. IV. Limiting attention to direct Coulomb
P terms, one expects saturation to reduce the tem-
perature dependence of q~„(T).This becomes obvious
if the orbitals in the vicinity of the Fermi surface have
essentially common radial character because any ther-
mal j repopulation Cthe first line of Eqs. (36)—(37)]
causing ql„ to change will then also produce a re-
population potential term Le.g., see Eqs. (14)—(20)j
which opposes the repopulation. This is due to the
common angular character of the gradient and the Ii'
potential operators. Both experimentally and in the
observations of the preceding sections, there is the
suggestion that saturation e6ects play a signi6cant
role in the VIX compounds.
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Compressibility and Electrical Conductivity of Cad~ium Sulfide at
High Pressures

G. A. SAMARA AND A. A. GIARDINIt

V. 5, Army Electrowics Lcboratorf'es, Fort No@mouth, ¹w Jersey

(Received 7 May 1965)

The compressibility and electrical conductivity of CdS were investigated to over 60 kbar under nearly
hydrostatic conditions. Volume change mas measured by the inductive-coil technique. In single-crystal
samples, the murtzite —+ rocksalt phase transformation starts at 23+1 kbar at 25'C. At the transition a sud-
den volume change of 21% occurs, and the electrical resistivity decreases by several orders of magnitude.
The average volume compressibilities are 18.2X 10 ' kbar ' for the wurtzite phase (0—23 kbar) and 9.5X10 '
kbar ' for the rocksalt phase (40-60 kbar). Both phases exhibit semiconducting behavior. For the high-
resistivity samples used (p& 10' 0 cm), an activation energy of 0.9 eV and a band gap of ~2.3 eV mere ob-
tained for the murtzite phase. Both increase with pressure. For the rocksalt phase an activation energy
of 0.1-0.2 eV and a band gap of ~1.3 eV mere obtained. The progress of the forward and reverse transitions
was followed visually under high magni6cation, and some observations are made concerning the mechanism
of the transformation.

I. INTRODUCTION

CADMIUM sulfide (CdS) is a dimorphous com-~ pound crystallizing in both the hexagonal wurtzite
and the related cubic zincblende structures. Both of
these are loosely packed structures which transform to
phases with doser packing at high pressure. Drickamer

~ Present address: Sandia Laboratory, Albuquerque, New
Mexico.

t Present address: Department of Geology, University of
Georgia, Athens, Georgia.

and co-workers, '—3 using optical and electrical tech-
niques, were the 6rst to report a pressure-induced
polymorphic transition in CdS. The transition, ob-
served in the range 20—30 kbar, is accompanied by a
large discontinuous red shift in the optical-absorption

'A. L. Edwards, T. E. Slykhouse, and H. G. Drickamer,
J. Phys. Chem. Solids 11, 140 (1959); A. L. Edwards and H. G.
Drickamer, Phys. Rev. 122, 1149 (1961).' G. A. Samara and H. G. Drickamer, J. Phys. Chem. Solids
23, 35? (1962).' S. Minomura, G. A. Samara, and H. G. Drickamer, J. Appl.
Phys. 33, 3196 (1962).




