
I' I I V S I C 4 L R I'. V I I'. 7 VOLITM I 140, XI M 8 KR 1:Y 4 OCTOB I: Z

Yariational Treatment of High-Frequency Transport Problems in Solitis*

N. K, BINDLE Y

Research and Development Laboratory, Corning Glass Works, Corning, Rem York

F. GARCIA-MOLINE R

Instituto "Rocasolano, " Consej o Superio de Investigaciones Cientificas, 3Iadrid, Spain

(Received 5 April 1965; revised manuscript received 18 June 1965)

A variational method of solving the Boltzmann transport equation in a magnetic field is extended to high-
frequency problems. The variational functional does not have an extremum at the solution, but a saddle
point. It is shown that the approximations to the conductivity satisfy a sum rule which is also satisfied by
the exact result, provided reasonable trial functions are used. Alternative variational principles have been
formulated by several authors and some of these are discussed. The variational equations used in this paper
can also be derived by Blount's method, and this casts more light on their nature. It is shown that when the
current carriers are not degenerate and the band is parabolic, the use of Sonine polynomials in the carrier
energy as trial functions has certain formal advantages, but that in actual calculations simple powers of the
energy give the same results. The method is applied to a calculation of the frequency-dependent magneto-
conductivity for mixed ionized-impurity and polar optical-phonon scattering, using parameters appropriate
to n-InSb at 77'K. The results are used to calculate the Faraday rotation and ellipticity as a function of
magnetic field at a frequency of 35 Gc/sec. It is suggested that measurements of the Faraday ellipticity can
give useful information about the scattering mechanisms in a material.

1. INTRODUCTION

''T is well known that in treatments of transport
~ ~ problems starting from the Boltzmann equation,
a magnetic Geld plays much the same role as a high-
frequency electric field; the circular frequency co of the
electric field is simply replaced by the cyclotron
frequency ~,. This parallel is also apparent in the
variational description of transport phenomena, and
the magnetic operator M and the frequency operator 0
have the same formal properties. (The exact definition
of these operators is given in Sec. 2.) The scattering
operator I. is Hermitian and positive definite, but M
and 0 are anti-Hermitian. As a consequence, it is
possible to set up a simple variational principle' which
maximizes the conductivity when co=~,=o, but the
properties of M and 0 make this dificult when they are
present.

In this paper variational principles in the presence
of M and 0 are first considered, and the simple but
nonextremal principle formulated some time ago' for
problems in a magnetic Geld is extended to the fre-
quency-dependent case. This form of the variational
principle has been used in actual computations of
solid-state properties. '4 It is shown that approximate
solutions obtained by this method satisfy certain sum
rules which also hold for the exact solutions. Other

* Q'ork supported in part by the U. S. OfBce of Naval Research
under Contract No. NONR 1834(12), and by the Air Force
Offi of Scientific Research, under Air Force Grant No. 328-63.
Most of this work was done while both authors were at the
University of Illinois, Urbana, Illinois.' J. M. Zirnan, Electrons and I'honons (Clarendon Press,
Oxford, England, 1960).

F. Garcia-Moliner and S. Simons, Proc. Cambridge Phil. Soc.
53, 848 (1957).

3F. Garcia-Moliner, Phys. Rev. 130, 2290 (1963), hereafter
referred to as I.

4 F. Garcia-Moliner, Proc. Roy. Soc. (I,ondon) A249, 73 (1958).
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variational principles which have been formulated' '

are discussed, and their respective advantages for
practical computations are compared.

The variational equations are then set up and
formally solved, and it is shown that the use of Sonine
polynomials as trial functions simplifies the formal
treatment somewhat, but that it does not improve the
convergence. The formalism is applied to a case of
mixed polar-optical and ionized-impurity scattering,
and the results of a calculation of the frequency-
dependent magnetoconductivity and of the Faraday
rotation and ellipticity are presented.

f~ = f~' @~(~f~'I~&J ) . — (2.1)

This defines CI, which is to be found by solving an
equation of the form

RC „=Xg= —eve. S(8fg')BEg—) . (2.2)

Here e is the charge of the carrier and v& the velocity
of the state k. Henceforth the label k will be omitted
unless it is needed for clarity.

'B. B. Robinson and I. B. Bernstein, Ann. Phys. (N. Y.) 18,
110 {1962).' E. I. Blount, Phys. Rev. 131, 2354 (1963).' M. Bailyn, Phys. Rev. 126, 2040 (1962).
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2. VARIATIONAL PRINCIPLES FOR THE
HOLTZMANN EQUATION

If k is the wave vector of charge carriers in a solid,
E~ the corresponding energy eigenvalue, and fz' the
equilibrium distribution function, the presence of an
external electric field sets up a nonequilibrium distribu-
tion fj, which, in the linear approximation, is cus-
tomarily' written as
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R= I.+M+0, (2 3)

where I is the linear integral collision operator, exten-
sively discussed by Ziman, ' M is the magnetic operator

MC = —(e/ke)(Bf'/ BE)(v x)H ~),4, (2.4)

and 0 is the frequency operator

QC = uo(Bf—'/BE)4. (2.5)

Thus C isin general afunctionof k, H, co, and8, andit
is a complex function if cvQO. For any two functions C

and 0 of the same space (assuming all appropriate
boundary conditions) the scalar product will be defined

(C,C )—= 4 audit; dit=—(4s') 'dk&dkmdka. (2.6)

It can be shown that the following equalities hold:

(4 L%)=(% LC)'
(4 M%)= —(4 MC)'
(C,M) = —(%,M)',

(2.7)

thus I.is Hermitian, while M and Q are anti-Hermitian.
These properties of I and N are discussed by Ziman'
for real functions C and C.

One possible form of writing a variational principle
is the following: Let 4 + be the function 4 in a magnetic
Geld &H, and remember that ~ indicates complex
conjugation, that is i —+ —i or 0 —+ —0. A suitable
variational functional is then

E(4)=(4 *,RC,)—(4 ',X)—(X,C,). (2.g)

By an extension of a formalism used elsewhere, ' it is
seen that independent variations of C+ and 4 * yield,
respectively, the two conjugate forms of the Boltzmann
equation

In the presence of a magnetic Geld 8 and an electric
Geld varying as e'"', the operator R is the following:

Re(r ((o)dk) =
2m*

(2.12)

where m* is the conductivity effective mass of the
carriers and n is their concentration. This equation
follows from the solution of the problem of the initial
acceleration of the carriers when an electric Geld is
applied suddenly. The scattering mechanisms do not
enter this problem, so it would be expected that the
Sth-order variational approximation 0-&~& would also
satisfy (2.10) provided reasonable trial functions are
chosen. This expectation is confirmed by an argument
given in the Appendix. Hence

There is no difBculty in formally establishing varia-
tional principles in alternative forms, and many have
been published in numerous references (usually for
0=0). The real questions concern, on the one hand,
the physical meaning of the principle, and, on the
other hand, its practical use as a method of calculation
for solving transport problems. Ziman's book' reviews
the relevant developments (for 0=0) up to 1960 and
demonstrates the intimate relationship with irreversible
thermodynamics. The meaning of the variational
principle has also been discussed, for 0/0, by Robinson
and Bernstein' for transport phenomena in a plasma,
and by Blount. ' The latter has shown that the func-
tional E(4) of Kq, (2.8) has in the steady state a
minimum with respect to variations of (4++4 ),
which is the part of C even in both frequency and
magnetic Geld, and a maximum with respect to varia-
tions of (4+—4 *),the part of 4 odd in both. Thus E(4)
has a saddle point rather than an extremum.

Therefore for M or QWO the variational equations
(2.11) do not set a limit to the conductivity. However,
the variational approximation to the conductivity
does share an interesting property with the exact result.
Consider the case M =0, 0/0. Then the real part of the
exact conductivity Rea. (co) satisfies the sum rule"

vree'

(L—M —Q)4 *=X; (L+3E+Q)4+=X. (2.9)

If C is expanded in some set of functions q „,
Reo (")(co)des=

one'
Re~(co)der= . (2.13)

2m*

()v) g e + @ 4(N) P d + (210)

then the variational equations, obtained by var&ring

E(4) with respect to the coefficients d„, are

where R„,=(p„,Rqr, ), X,=(v„x).When %=0=0, one
has a definite minimum principle for E(4). In the steady
state —E(4) is precisely the current, so that the
variational calculation maximizes the conductivity.
Therefore, successive approximations approach mono-
tonically the exact conductivity from below.

It should be noted that this relation is incompatible
with monotonic convergence of Re(r( ) ((0) to the exact
result from below.

This sum rule is easily generalized to the case where a
magnetic Geld is also present, if the system is isotropic,
or if it is a crystal and H is parallel to a threefold,
fourfold, or sixfold symmetry axis. It is then convenient9
to consider a circularly polarized electric field
rotating in the (x,y) plane normal to H:

S~=
~
S~e'"(1/V2)(1, Wi, 0). (2.14)

The corresponding components of the conductivity

D. Pines, Elementary ExciIations in SolQ's (W. A. Senjmnin,
Inc. , New York, 1963), p. 136.

9 N. K. Hindley, Phys. Status Solidi 7, 67 |',1964).
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tensor are written 0+. The problem is now symmetric in
co and the cyclotron frequency ~„and 0.~ depends only
on (co+co,). This implies sum rules like (2.12) in co,.

Bailyn' has remarked that (when 0=0) the even
part of 4 is the solution of the equation

4, (a) (L ML—'3f)4, (a& X (2 15)

for which there is an extremal principle, as Z is positive
de6nite and Hermitian. Using this principle, one arrives
at Bailyn s formula (3.4a), which yields approximations
which tend monotonically (from below) to the true
value of the even part of the conductivity. Speci6cally,
with H = (O,O,H), one has a calculation which maximizes
a-,. However, the de6nition of Z involves I ', which
may be evaluated by using the ordinary variational
principle. If these "internal" variational calculations
are carried out to the same order of approximation as
the "external" calculation, the same results are obtained
as with the variational principle (2.8), if the same
expansion functions are used throughout. To make this
point more explicitly, consider an earlier publication,
(hereafter referred to as I) in which Eq. (2.8) was used
to perform a calculation of galvanomagnetic eR'ects for
a semiconductor with polar-optical-mode scattering.
Equations (36) and (37) of I are exactly equivalent to
Bailyn's formulas (3.4a) and (3.4b), the matrices A
and 8 of I being the representation of Bailyn's operators
2, and —ZMI. ' in terms of the chosen expansion
functions.

More complicated extremal principles have been
given by Robinson and Bernstein, ' and by Blount. '
Blount's method consists in premultiplying the Boltz-
rnann equation (2.2) by Rt T, where Rt is the Herrnitian
adjugate of R, and T is any positive-de6nite Hermitian
operator. The operator RtTR is then Hermitian and
positive definite, and an extremal principle applies.
If T is chosen equal to I.—' the method is equivalent to
Bailyn's. Blount" has pointed out that the Eqs. (2.11)
can also be obtained from his variational principle, and
this sheds more light on the nature of the earlier
principle, Eq. (2.8). The appropriate variational func-
tional for the Blount principle is

V(4) =(C.,RtTRC) (C,RtTX) (X,TRC)—. (2.16)—

Thus since T is positive de6nite V~ has a minimum
value of P—;,~X;*T;,X, when all the A, are zero. But
the equations A;= 0 are precisely the variational
equations (2.11).

In the above argument the matrix T is arbitrary, but
if T= ,'(R -'+R( ') then (X,TX) is the part of the
conductivity even in both co and P. The equations (2.11)
minimize V~, and therefore maximize the conductivity,
for a given value of X. However, since it is not neces-
sarily true that

p;,"+' X,*T,,X,&p, ,"x,*T„x,,
monotonic convergence to the exact result does not
follow. All we can conclude is that for a given set of X
trial functions, equations (2.11)maximize the expression
for the conductivity. In view of Eq. (2.13), perhaps
this is the most that can be expected. Equations (2.11)
will form the basis for the rest of this paper.

As has been mentioned, there is a symmetry between
the frequency dependence of the conductivity and the
magnetic-field dependence, with real and imaginary
parts corresponding to parts even and odd in H. Thus
the same set of numerical results obtained in a given
calculation can be interpreted to yield, for a suitably
arranged geometry, either galvanomagnetic coeKcients
as a function of H or optical coe%cients as a function of
co, or indeed magneto-optical coeKcients as a function
of (co%co,). This is obvious from the standard. formulas
when a relaxation time exists. Consider, however, the
problem of polar-optical-mode scattering at arbitrary
temperatures. The variational calculation reported in I,
which ignored the field-theoretic complications of the
polaron problem, yielded two functions of temperature
and magnetic 6eld F, and Ii~ which are related to the
conductivity mobility p, and the Hall mobility p, &'.

p.=p(z)F. (z, Y) I ~=I (z)F~(z, Y) (2 18)

Here z= ~,o/IcT, and co,o is the frequency of the optical
phonons; Y= pH/c, and p is a known function of z of
dimensions of mobility.

The real and imaginary parts of o+(co,co,) may be
expressed in terms of the same functions if F is re-
interpreted as I'+.

Expanding 4 in terms of the (o„, as in Eq. (2.10), the
Sth-order functional is

then
Y~= ~p(~+~.)/I e I, (2.19)

iV

V~= Q c,oR, ,*T,(,R(,ccc Qc ;*R,;*T,(,x(, — .
ijkl ijk

$T

—Q X;*T;,R,kcg„
ijk

= —Q X;*T;,X,+Q A,"T,kAc,

where .1;=Q, R.;,c,—X;. (2.17)
'0 Ke wish to thank Dr. E. I. Blount for this suggestion and

for several other very helpful comments.

o~ (co,co,) = n
I
e

I p(F, (z, Y~)
i Y~,(z, Y~)F~(z,—Y~)) . (2.20)

The derivation of this equation is considered in Sec. 4.
The frequency- and magnetic-6eld-dependent dielectric
function e;;(co,co,) is related to the conductivity tensor
a;, (co,co,) by

e;, (co,co.)= cob;,—(4z.c/co)o, , (co,co,), (2.21)

where 5;, is the unit tensor and eo the dielectric constant
of the lattice. The free-carrier magneto-optical prop-
erties of a polar semiconductor can therefore be cal-
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culated from the data given in the tables of I. Un-

fortunately, for most values of s, the range of V+
covered by these tables is inadequate for practical
ranges of variables in magneto-optical calculations.

g (L„,+M„,+Q„,)c,=X„
s=0

(3.1)

From now on it will be assumed that the solid is
isotropic, or has cubic symmetry with the magnetic
field 8 along a threefold or fourfold axis. The direction
of H will be taken as the s axis of a right-handed
Cartesian coordinate system with the x axis in the
direction of 8(8J H). Unit vectors along the coordinate
axes (x,y,s) will be denoted by (u, u', h), as in I. Let
(A, (E)} be a set of functions of the carrier energy,
which may be, for example, simple powers of E or
polynomials in E. Expanding to Xth order,

3. THE VARIATIONAL EQUATIONS

After the above considerations the routine is straight-
forward. The variational equations (2.11) may be
written

These then are the explicit formulas to calculate
magnetic-field and frequency-dependent free-carrier
properties, as the experimental coefficients can all be
expressed in terms of the 0.;;. To evaluate the formulas

explicitly one has to specify the model under study
(scattering and band structure) and the functions

&P,(E). For example, for nondegenerate statistics and a
standard parabolic band structure, the matrices M„,
and Q„„and the vector X„, take a particularly simple
form if the tlt, (E) are taken to be Sonine polynomials. "
The polynomials S„"(y) are defined by

(1 l)
—ttt—ie—ttt/(t —t& P S r( )lr

and satisfy the orthogonality condition

(3 9)

F (m+ p+1)
e
—*S„&(x)S„&(x)x"dx= (3.10)

F(p+1)

where b~, is the Kronecker delta symbol.
The trial functions lP, (E) will be taken to be

tP, (E)=S3/s (y), y=E/kT. (3.11)

The matrix element 0„, then becomes, using Eqs. (2.5),
(2.6), and (3.10),

C &v&= p c„tp,k u+ p c', tp, k u', (3.2)

0„= (™/4x) (k'u) Ss&s (y)Ss&s (y)
the operator E has the following matrix representation:

-L+n M—
(3.3)

stem'n r (r+-', )

h' F (r+1)F (-', )

X (8f'/BE)dkidksdks,

(3.12)

As in I, here L,M, and 0 are submatrices of the matrix R, Defining
and they have (%+1) rows and columns each. Hence
one easily obtains

F(r+s)
Yr=

r(r+1)r (-', )
(3.13)

a, tN&= b ' Q X,L(L+0)+M(L+0) 'Mj„'X, ,
one has

0„=ia) (m*n/h') yg„. ,
(3.4)

tr, st~&= —h-' g X„LM+(L+0)M—'(L+0)j 'X .

and similarly
M„=—cd. (m*n/h-') yg„,
X,= (en/h) hl&', p.

(3.14)

Using the identity

cr~= 0 „~Zg,„. (3.5)

It is convenient to express the results in terms of the
conductivity components o-+ corresponding to the
circularly polarized electric fields of Eq. (2.14); these
are given by

Thus M and 0 become diagonal matrices and all the
X„are zero except Xo. In general, however, L is not
simplified, so the numerical work involved, principally
the inversion of the matrix (L+0&iM), is not much
reduced. However, there is one case in which L is
diagonal too. This is the case in which scattering can
be represented by a constant relaxation time r. Then

(A+iB)—'=(A+BA 'B) ' i(B+AB 'A) ' —(36)
one obtains

o

L= ——
r BE

(3.15)

~~'~&= h ' Q X,(L+0&iM) 'X

Also, for a.„one obtains

~„t"&=6 ' Q X,(L+0),, 'X,

(3.7)

(3.8)

L,.= (m~n/hsr)yg„ (3.16)
"S.Chapman and T. G. Cowling, The MathensaticaI, Theory of.Von-Uniform Gases {Cambridge University Press, London,

England, 1939). Sonine polynomials have been used in a study of
solid-state transport properties in a magnetic field by S. Devlin,
thesis, Case Institute of Technology, Cleveland, Ohio, 1964
(unpublished).
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Equation (3.7) now becomes

n~= (rze'/r/z*) Q b„og(1/r)+~+i(e.] '(1/y, )b„b.o,
7) SM

ee'-

zzz* 1+z(o)a/o, )r
(3.17)

and the dc conductivity in the absence of a magnetic
field o.o is given to zero order by

0& (Ne'/n'*)(1/r) ' (3.19)

whereas the correct result has (r) for (1/r) '. For
example, if v= roy"', which is approximately the case
for ionized impurity scattering, the ratio of the exact
result to the zero-order result is

o o/e 0 = (r)(1/r) = 32/3zr =3.40. (3.20)

However, a first-order calculation already gives a much
better result:

(y'/ )(1/ )—(y/ )'
=(r)

(25/4)(1/r) 5(ylr)+(y'/—r)

128
= 1.045. (3.21)

It is interesting to note that when v ~y'~'-', the exact
solution for the distribution function is

C = (ekb/z/z*)k ur ~ yz/'(k u) (3.22)

which cannot be expanded in the form (3.2) if the f, are
taken to be polynomials in y. Yet the variational
expression for the conductivity o.o still converges very
quickly.

Since the Sonine polynomial Sz/z"(y) is of degree r,
an Eth-order calculation using these polynomials as
trial functions, up to Sz/z (y), must give the same results
as a calculation using powers of y up to y~. This may
also be checked directly. Therefore, Sonine polynomials
do not improve the convergence of the method and give
little or no advantage in numerical calculations.

4. SCOPE OF THE PRESENT CALCULATION:
M~ED IMPURITY AND POLAR-

OPTICAL-MODE SCATTERING

As a practical application of the variational method,
a calculation has been made of the free-carrier magneto-

This is of course the result obtained by solving the
Boltzmann equation by elementary methods, and it is
valid for all orders ~V of the variational calculation.

For energy-dependent relaxation times, the lowest
variational approximation may be inaccurate. Then

m*n m*e 1 "1
Loo= (1/r) =— —y'/'e "dy, (3.18)

kz k r(-',), ,

optical properties of a semiconductor in which scattering
by polar optical phonons is important. Since a relaxation
time cannot be defined for this scattering mechanism
except at very high and very low temperatures, a
variational method is needed. The calculation was
programmed in FORT'RAN Iz for a digital computer, and
the program was based on that used in I in a calculation
of the magnetoresistance of a polar semiconductor:
Practical use was thus made of the formal relation
between the operators M and Q. The trial functions

f,(E) of (3.2) were taken to be

f„(E)=y", y=E/kT, (4.1)

because these were the functions used in I, and because
a power-series expansion yields the same results as an
expansion in Sonine polynomials if carried to the same
order.

As far as possible, results will be presented in a general
dimensionless form to make them more convenient to
use in the analysis of particular situations. However,
the ranges of variables and parameters chosen are those
appropriate to n-InSb under typical experimental
conditions. Nonparabolicity of the conduction band,
partial degeneracy, and other complications encoun-
tered in this semiconductor are outside the scope of
the present calculation, which assumes a band of
standard form and classical statistics. However, in
order to be fairly realistic, ionized impurity scattering
has been included as well as polar optical scattering.
Many of the calculations have been made for a value of

sk~//ekT corresponding to a temperature of 77'K,
which is a convenient temperature experimentally, and
at which impurity scattering is important but the other
complications mentioned above are not. The calcula-
tions have also been pushed to higher temperatures for
pure polar scattering to study the dispersive properties
of this scattering mechanism at diferent temperatures.

The matrix elements of the polar scattering operator
with the basic functions (4.1) are' "

L„&»= (I
~
e ~/k'p)d„(z), (4.2)

where the d„,(s) are dimensionless integrals identical
with the b„(s) of Howarth and Sondheimer, " and p is
a quantity of dimensions of mobility

3y(kT)"' e*—1
(4.3)

27/z~l/2
I
e ]

zzz83/2 eg/2

Here y
—', which is proportional to the dimensionless

coupling constant for the electron —polar-phonon inter-
action, is defined so that it is independent of the
effective mass:

1/y = (co.,'/4zr) (1/e„—1/e, ),
where e„, e, are the dielectric constants of the lattice at
frequencies co&~,~ and &(co,~, respectively.

~D. J. Howarth and E. M. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953).
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The Brooks-Herring formula" for the relaxation time
for ionized-impurity scattering can be written

where
(4 4)

(4.5)
0.8

and where v 0 and the screening constant e are independ-
ent of y. Using Eq. (3.15) the matrix elements of the
impurity-scattering operator are found to be

0.6

where
I,.&"= (rn*rz/!'z're) X,+., (4.6)

(4 7)

The integral P „can be evaluated in terms of tabulated
functions by integrating the term involving In(1+e,y)
by parts. The following recurrence relation is obtained:

where

X./rs!=X. &!(n 1)!+—L(n +I)/ r(-', )j FIG. 1. The conductivity cr~jo 0 in the 3rd-order variational
approximation as a function of v~= {co&co,)v;ff for pure polarX t + ~(I/rz) & n+r(I/o)3 i (4 g) scattering and two values of z=fap, v/kT The curve. for a constant
relaxation time is also shown.

1 y"e Indy

A„(x)=-
&r

The integral X0 can be evaluated in the same way:

where
D„=d„,+EX,+„
R= prrr*/!, e [,ro

(4.13)

(4.14)
& o

——(1+1/u) A o(1/a) —1. (4.10)

The in.tegrals A„(x) have been studied and tabulated
by Dingle et a/. "The screening constant a is usually
large, and in the present application an expansion of
the A „(1/u) to order u ' was used. The expansions are
collected here for reference:

The parameter E. is a measure of the ratio of polar to
impurity mobility. The matrix elements of M, 0, and
X are given by

(4.15)

I' (-';)I p
——(1+2/a+ 3/2o') (inc —C)—1

+ I/rr+3/4a',

r (-', )Xr——(1—3/2sz) (1na —C)+2/a —5/4uz

(1/2!)I'(-', )its ——(ina —C)+-', +I/a —7/4as,

2
-+

n! (n —1)! r(-', ) n a(rr —I)rr

(4.11)

where

(4.16)

where
(4.17)

The formulas (4.12) and (4.15) for the matrix elements
are to be substituted in the general expression (3.7).
The result may be expressed in the form

I,.= I.„"+I„&v' = (ne/l'r'p)D„, (4.12)

"H. Brooks, Advan. Electron. Electron Phys. 7, 156 (1955).
'4 R. B. Dingle, D. Amdt, and S. K. Roy, Appl. Sci. Res. $6,

144 (1957).

In the above, C is Euler's constant, 0.577216.
The total scattering matrix element I.„, is given by

adding Eqs. (4.2) and (4.6):

(4.19)

The result may be written in a neater form if the
matrix v is introduced:

(4.20)

Then by splitting Eq. (4.18) into real and imaginary
parts, using Eq. (3.6), one 6nds

F t~i (z, V~) =
t rv r lop+ iV+Lr v 'D-'r]pp. (4.21)

If this result is compared with the formulas for F.(z, V)
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and FH(z, Y) given in Eq. (41) of I, Eq. (2.20) follows
immediately.

The frequency- and magnetic-Geld-dependent dielec-
tric function is de6ned by Eq. (2.21), which for cir-
cularly polarized radiation may be written

P'

0.9-

p-0

Hence

where

py = pp —(4prp/cd) cry .

pic"& = pprc1 igF—&"&(z,Y~)), (4.22)
0.8- polar phonon

v=4«l el &/p~ (4.23)

The refractive and absorption indices X+ and E+ are
then dehned by

(Xg iKg—)p= p~. (4.24)

07-

p=+

Thus knowledge of the function I'&~& is all that is
needed to evaluate the free-carrier magneto-optical
properties of a polar semiconductor.

5. RESULTS

The function F&~&(z, Y), and the optical constants
cV~ and K~, were calculated for z=3.77 (77'K assuming
an Einstein temperature for the optical phonons of
290'K, which is appropriate for InSb), and for a few
typical values of R and pI. In addition, F&N&(z, Y) was
computed for pure polar scattering (R=0) for various
temperatures. The calculations were carried to 3rd
order (using 4X4 matrices).

Figures i and 2 show the real and imaginary parts of
o ~&P&/cr p&P& =F&'& (z, Y)/F &P& (z,0) as functions of c ~, where

y~ ——Y~F&P'(z, 0) = (cd~co,)r ff&P&. (5.1)

I.o

0.8

0.2

FIG. 2. The conductivity &~/&0 in the 3rd-order variational
approximation as a function of y+= (cy~u, )v, ff for mixed polar-
phonon and ionized-impurity scattering with parameters (corre-
sponding to e-InSb at 77'K) as shown. Curves for constant relaxa-
tion time and for impurity scattering alone (r ~kP&} are also
shown.

0 I 2
z~ tip/kT

Fn. 3.The half-width vIgg, the value of v* at which Res ~= )ap,
as a function of s for pure polar scattering. Values for various
energy-dependent relaxation times are also shown (broken lines),
and the single point at s=3.1"l is the value for mixed polar optical
and impurity scattering for 8=1.00, a =34.4.

Here 7.,ff& & is an effective relaxation time chosen to
give the Eth-order dc conductivity 00&~~:

d '"&= (ppep/mp)r (5.2)

Figure 1 shows the results for pure polar scattering,
together with the standard Lorentzian curve obtained
for a constant relaxation time. The curves show the
kind of deviation from the Lorentzian shape which
occurs, but for clarity results are plotted for only two
values of z.

The departures from the Lorentzian curve are due
to the dispersive nature of the scattering mechanism.
A measure of this effect is given by v&~2, the value of v~
at which 0~= &00, for a constant relaxation time v~g2

is j., but for any other scattering mechanism it is less
than 1. It is clear from Fig. 1 that for polar scattering
v~~2 is a function of temperature, and it is plotted on
Fig. 3 as a function of z. The form of this curve between
z= ~~ and z=1 is suggested by the fact that, at small
values of z, polar scattering behaves like a positive dis-
persive mechanism (in the limit z~ 0 it can be repre-
sented by a relaxation time rcpt"'), while for z&1 it
behaves like a negative dispersive mechanism. This
change of behavior is most clearly revealed by warm-
carrier effects."There should therefore be an intermediate
temperature at which the mechanism shows no dispersion,
though since a relaxation time does not exist, the precise
temperature at which this happens may depend on the
phenomenon considered. The form of the curve on
Fig. 3 is very similar to the variation of the ratio p~/Ic,
with z, studied in I, where p~, p, are the Hall and
conductivity mobilities, respectively. This ratio is
another measure of dispersive effects. Figure 3 also

"D. Matz and F. Garcia-Moliner, Phys. Status Solidi 7, 205
{2964).
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R=0.18, a=600, q=6.71. These values correspond
to n-InSb with n = 1.23X10" and 6X 10" carriers
cm ', respectively, at a frequency of 35 Gc/sec. The
corresponding values of fdic.,ff are 0.306 and 0.690,
respectively.

At high fields such that co,r,« is very much greater
than either co~,«, 1, or the loss parameter 1=4%0'0/%to,
the Faraday rotation approaches the limiting value

500I-
1

limlr (8/t) = 27rge: Hgeo (5.5)

IOO
10

I

50 loo

H tgauss)

I

500 IOOO 5000

FIG. 4. Faraday rotation as a function of magnetic Geld H for
mixed polar and impurity scattering (3rd-order variational
approximation) at z =3.77 with parameters as shown. The broken
lines are high-field asymptotes, Ho is the cyclotron resonance
6eld mc(g/~e).

shows the values of v&~2 for various relaxation times
w ~ F&; in these cases vi~2 is independent of temperature.

Figure 2 shows the variations of o+/oo with v+ for
mixed polar optical and impurity scattering at a= 3.77.
The value of R is 1.00 and the screening constant
a=34.4. A calculation with 8=0.18, a=600 gave an
almost identical curve. The value of vii2 for this curve
is also shown on Fig. 3. The curves for a constant
relaxation time and for 7. ~ E '-', which represents
impurity scattering alone, are also plotted on Fig. 2.
The mixed scattering curve shows less dispersion than
either pure polar scattering or impurity scattering; this
is clearly the result of combining a positive and a
negative dispersive mechanism.

Note that the real part of IT+//0-0, plotted on Figs. 1
and 2, gives the absorption in a cyclotron resonance
experiment with a circularly polarized electric field;
in this case vj, 2,/'v, ff is the half-width of the resonance
line. The very small values of 7,fq encountered at the
temperatures considered here would, of course, make
this very dificult to observe. Note also that the sum
rule (2.13) leads to an interesting relation, if Eqs. (5.1)
and (5.2) are used:

This limit, which is independent of scattering mechan-
isms, is also shown on Fig. 4. The values of I= &&F"'(s,O)

are 110 and 11.9 for the two samples, so both are very
lossy and the high-field limit i.s not reached until the
field is much greater than that at which the rotation is
a rnaxirnum. The ellipticity also shows the typical
behavior of lossy samples with small ~7-,ff. Figure 5
may be compared with curves given by Furdyna and
8rodwin" for various scattering mechanisms rep-
resented by a relaxation time 7-c E,". Their curves are
for o&(r}=0.55 and t=3.9, and have the qualitative
features of the purer sample of Fig. 5.

Since the Faraday ellipticity is particularly sensitive
to the nature of the scattering mechanism, " experi-
mental measurement of this quantity as a function of
magnetic 6eld in the microwave region can, in principle,
give useful information. Unfortunately, the theoretical
expressions are quite complicated, and the only way
information can be obtained from the results is to
make a detailed comparison between theory and
experiment. The three theoretical parameters E, g, and a

Io

—IO

-20
tanh '8

t
-30

(cm ')

-40
Re(o ~("&/oo'v&)do~= —. (5.3)

Thus the area under all the curves of Re(o+/oo) shown
on Figs. 1 and 2 is the same.

Figures 4 and 5 show the Faraday rotation 8 and the
ellipticity 8 as a function of magnetic field, calculated
from the formulas

-60

IO
I I

5o Ioo H 5oo Iooo
0

H (gauss)

5000

8= (X= X~)o&t/2c,

8= tanh)(E'+ —K )cot/2c],
(5.4)

FiG. 5. Faraday ellipticity as a function of magnetic field H for
mixed polar and impurity scattering (3rd-order variational
approximation) at z=3.77 with parameters as shown. EIp is the
cyclotron resonance Geld mccoy/ j e [.

where 3 is the thickness of the sample. The values of
the parameters are 8=1.00, a=34.4, q=239; and

' J. K,. Furdyna and M. E, Brodwin, Phys. Rev. 124, 740
(1961).
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are functions of carrier or impurity concentration, as
well as the effective mass of the carriers and the
dielectric constants e, and ~„. Thus it seems little
information can be obtained by this method unless

quite a lot is already known about the material.
The calculations presented here were made for values

of the parameters corresponding to two particular
samples of n-InSb. However, if computing facilities
are available, it is not di%cult to repeat them for other
values of E, g, and a. The experiment can provide a
valuable check on hypotheses as to the nature of the
scattering mechanisms in a material, especially if the
relevant parameters are known or can be estimated, for
then detailed calculations can be made and compared
with the experimental results. Good agreement would

be a positive confirmation of the hypothesis. It would

also be possible to determine the values of the param-
eters by calculating a family of curves, and choosing
the one which gives the best agreement. If the hypo-
thetical scattering mechanisms are polar optical and

impurity scattering, the theory presented in Sec. 4 is
directly applicable. The most suitable materials at the
present time seem to be the III-V compounds, such as
n-InSb or m-GaAs, for in many of these materials
these two scattering mechanisms are thought to
dominate between 77'K and room temperature.

6. CONCLUSIOÃS

makes the matrices M and 0 diagonal, but it gives the
same results as simple powers. In the theory of metals an
expansion in powers of (E I), —where f' is the Fermi

energy, seems to give good convergence, and in an-

isotropic materials expansions in spherical harmonics

suggest themselves. But the general problem of choosing
the "best" trial functions would be well worth further
study.

AIeasurements of the microwave Faraday ellipticity
as a function of magnetic field can give useful informa-

tion on the scattering mechanisms in the material, if

supported by theoretical calculations. The theory
presented in this paper is directly applicable to materials
in which the dominant mechanisms are polar optica, l

and impurity scattering, and it is suggested that
measurements on the III-V compounds would be
interesting.
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It is well known that the variational principle has an
appealing physical meaning for M=0=0, in that it
maximizes the entropy production, and also that it has
the practical advantage of maximizing the conductivity.
Variational principles for the cases when M or 0 are
present have been devised by several authors, and
some of these methods are, in principle, extremal.
However, Bailyn's method' in the end gives the same
results as the simpler principle, Eq. (2.8), unless care
is taken that the various stages of the calculation
converge independently. This requirement of independ-
ent convergence of the "internal" calculations may
aniount to a considerable complication in practice.
Blount's method' includes Bailyn's as a special case, and
it is also possible to derive the equations (2.11), used
in this paper, from Blount s variational principle. This
argument shows that for a given set of X trial functions,
Eqs. (2.11)maximize the expression for the conductivity,
but it does not guarantee monotonic convergence to
the exact value as X is increased. Since a principle
which maximizes the conductivity at all frequencies and
magnetic fields is inconsistent with the sum rule Eq.
(2.13) this is probably the best one can do.

More dificult and important in practice is the
choice of suitable trial functions. In the present calcula-
tion, a power-series expansion in the carrier energy
gives good convergence at low and high temperatures,
but the convergence is slower at intermediate tempera-
tures, ' say 1.&a&5. The use of Sonine polynomials

It was asserted in Sec. 2 that the sum rule Eq. (2.13)
satisfied by the exact conductivity components is also
satis6ed by the 0 th-order variational approximation.
This will now be proved starting from the expression
(3.8) for 0 &"&((u):

o''"' = 8-' P X,(L+0)„'X, -
reM

(A1)

This expression was obtained using the trial functions
(3.2) and assuming either isotropy or cubic symmetry
with H along a threefold or fourfold axis. In Eq. (3.2)
it is convenient here to replace (Ir «) by (v «), but the
iP„(E) will be left unspecified. We then find

where
(1/~)Q„=E„, (A2)

(v.«)V.(~)4"(&)(~fo/~~)dit (A3)

If the trial functions are chosen so that $0(E)= 1, then

X,=eBE,D.

Substituting in (A1), one finds

o &"i = e'LIc(L+ icoE)-'Ejoo.

Both J and E are Hermitian and positive dehnite.
This property of E follows because we know that its
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eigenvalues are all real and positive; for an isotropic
parabolic band the eigenfunctions of A. are Sonine
polynomials and the eigenvalues are ny, ~m*, with y,
given by Eq. (3.13).

In the limit co~~,
0.&~& ~ i (e'-'—g'(v) Koo (A6)

where m* is the effective mass determining the conduc-

The meaning of E00 can be found by considering the dc
conductivity under a scattering mechanism represented

by a constant relaxation time. Under these conditions,
from Eq. (3.22),

00——e'-7.Zoo.
Hence

Koo= e/m*,

tivity. A general expression for ~"s~ is obtained by
comparing Eqs. (AS) and (A3).

The poles of o-('~', regarded as a function of the
complex variable cu, are the zeros of the determinant

~

J.+i~A ~, as all the matrix elements of I. and IC are
finite. Consider the equation

(A9)

Because I. and E are Hermitian and positive definite
it follows that all the roots X are real and positive. The
poles of Eq. (AS) are then given by Eq. (A9) with
P = —uo. Hence fr(~& is analytic in the lower half of the
co plane, like the exact solution 0. By integration round
an infinite semicircular contour closed round the lower
half plane, using Eqs. (A6) and (AS), the sum rule

(2.13) is obtained.
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Intrinsic and Extrinsic Recombination Radiation from Natural and
Synthetic Aluminum-Doped Diamond
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The edge-recombination-radiation spectrum from natural semiconducting diamond has been re-examined
and compared with spectra obtained for the first time from aluminum and nominally boron-doped General
Electric synthetic diamond. The intrinsic components are due to the phonon-assisted decay of free indirect
excitons of internal binding energy ~.08 eV. Comparison of the phonon energies with recently obtained
dispersion curves for the fundamental lattice vibrations shows that the conduction-band minima are located
at points ~~ of the way from the center to the (100) boundaries of the reduced zone. Substructure has been
observed in the intrinsic components due to the ~7-meV spin-orbit splitting in the valence-band energy
states at the zone center. The major extrinsic components are due to the zero-phonon and phonon-assisted
decay of excitons bound to a characteristic acceptor center of semiconducting diamond (Ez =0.36 eV). The
bound excitons have a thermal and optical ionization energy of ~50 meV. These extrinsic components
exhibit enhanced spin-orbit splitting (~12 meV). Radiation due to the zero-phonon and phonon-assisted
recombination of free electrons at the neutral acceptor center has been detected. Infrared absorption meas-
urements, neutron-activation analysis, and electrical-transport (Hall-eBect) measurements have also been
made, Intercornparison of these results and the edge-emission data shows that the acceptor center is due to
isolated substitutional aluminum impurities. These acceptor centers are considerably more abundant in the
synthetic diamonds, but the degree of compensation is generally much higher than in the available natural
semiconducting specimens. Nitrogen donors with very deep energy levels apparently play a major role in the
compensation.

I. INTRODUCTION

KCOMBINATION radiation of quantum energy
close to the indirect energy gap, Eg=5.5 eU, of

natural semiconducting diamond (type IIb)' has al-
ready been discussed. ' Comparisons of results obtained
from the latest edge-emission spectra, with the lattice-
vibrational dispersion curves recently measured by the
inelastic scattering of slow neutrons' shows that the

' C. D. Clark, R. W. Ditchburn, and H. B. Dyer, Proc. Roy.
Soc. (London) A234, 363 (1956). The classification of natural
diamonds by absorption spectra is discussed in this reference.' P. J. Dean and I. H. Jones, Phys. Rev. 1M, A1698 {1964).' J. L. %arren, R. G. %'enzel, and J. L. Yarnell, Phys. Rev.
(to be published).

previous interpretation must be revised. The present
paper shows that a very sa, tisfactory description of the
indirect gap transitions is obtained using the new
lattice-dispersion data. The diamond spectra prove to
be remarkably similar to the well-known recombination-
radiation spectra of silicon, 4 the main diGerences arising
from the very small spin-orbit valence-band splitting
and the more compact wave functions for the elec-
tronic complexes in diamond.

In the previous work, edge emission from insulating
General Electric synthetic diamonds was looked for

' J. R. Haynes, M. Lax, and %. F. Flood, J, Phys. Chem.
Solids 8, 392 (1959).


