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A theoretical analysis of galvanomagnetic phenomena in an intense electric field is given. The Boltzmann
transport equation is solved for the case of acoustic-phonon and impurity scattering and the magneto-
conductivity tensor is calculated. The dependence of the Hall and conductivity mobilities on electric and
magnetic fields is determined both for spherical constant-energy surfaces and a band structure of the many-
valley type. Expressions are derived for both the Hall and conductivity mobilities in the limit of small
magnetic fields, where one considers quadratic variations of mobility in the magnetic fields, as well as the
case of large magnetic fields. Negative magnetoresistance obtains for the case of spherical constant-energy
surfaces and predominant acoustic-phonon scattering, whereas the sign of the mobility variation is shown to
depend sensitively on the many-valley band structure and intervalley transition processes.

' 'N this paper we consider the transport properties of
~ - charge carriers in the presence of electric and
magnetic Gelds. We shall be particularly concerned with
the calculation of the magnetoconductivity tensor for
the case of intense electric fields.

Sodha and Eastman' have calculated the electric-
field dependence of the small-magnetic-Geld Hall coeS-
cient for a band structure with spherical constant-
energy surfaces and scattering by acoustical phonons.
Conw'elp has derived general expressions for the
magnetoconductivity tensor in a many-valley semi-
conductor in terms of the electron distribution function.
As we shall discuss in Sec. I, the calculation of the
distribution function must be carried out in a sdf-
consistent manner, in order to properly take account of
the effect of the Hall Geld on the energy distribution.
This complication does not arise for weak electric Gelds,
since in this case the energy distribution, or the isotropic
part of the distribution function, is independent of both
the electric and magnetic fields.

The author' has computed the small-magnetic-Geld
Hall coefFicient for hot electrons in a many-valley semi-
conductor as well as the distribution function for
arbitrary electric and magnetic Gelds for the case of
acoustic-phonon interactions. The small-magnetic-Geld
Hall mobility in m-type germanium has been studied by
Das and Nag. 4 The effect of phonon non-equipartition
on the low-magnetic galvanomagnetic properties has
also been treated. ' ' More recently, Matz and Garcia-
Moliner have studied non-Ohmic transport phenomena
in a magnetic Geld with emphasis on galvanomagnetic
eQects in the absence of a Hall field. 7

In Sec. I of this paper, w'e shall Grst discuss the
Boltzmann equation relevant to hot electrons and its

solution for the case of acoustic-phonon and impurity
scattering. Expressions for the field dependence of the
conductivity and Hall mobilities are given in Sec. II
and it is shown that under hot-electron conditions the
conductivity mobility increases with increasing mag-
netic field, i.e., negative magnetoresistance. In Sec. IV
we consider some of the e6ects associated with a many-
valley band structure, in particular the dependence of
the average electron energy in a given valley on odd

powers of the magnetic Geld. The extreme sensitivity of
the galvanomagnetic properties of hot electrons both
to the band structure and to intervalley repopulation
phenomena is discussed in this section.

1. THE TRANSPORT EQUATION

The time-independent Boltzmann equation for the
distribution function f(P) is given by:

.(E+VXB) V„f=Cf, (1)

where E and B are the electric- and magnetic-field
vectors, C is the collision operator, and p and V are the
momentum and velocity vectors, respectively. The
distribution function f is written as the sum of an
isotropic term $(e), depending only on energy e, and
an anisotropic term A. Ke consider first the case of
spherical constant-energy surfaces for w'hich the
following relation between S and A has been derived, '

ds
A= r V——

eE+ (esrs/nts) BB~ eE+ (er/nt)eEX B

1y (osr2/nts) +2
~ M. 8. 8odha and P. C. Eastman, Phys. Rev. 110, 1314 (1958).
E. M. Conwell, Phys. Rev. 123, 454 (1961).' H. F. Budd, Phys. Rev. 131, 1520 (1963).

'P. Das and B. R. Nag, Proc. Phys. Soc. (I.ondon} 82, 923
(1963}.' H. F. Budd, Phys. Rev. 134, A1281 (1964).

e H. F. Budd, in Proceedings of the Internationoi Conference on the
Physics of Senucondnctors, Paris, 1964 (Dunod Cie. , Paris, 1964),
T2—4.' D, Matz and F. Garcia-Moliner, Phys. Status Solidi 5
495 (1964).

w'here m is the effective mass. In obtaining this result
it has been assumed that the effect of collisions on the
anisotropic part of the distribution function may be
represented by an energy-dependent relaxation time
r(e)

CA = A/r(e) . —
The isotropic part of the distribution function 5 satisfies
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the following equation':

2 (eE)' d dS /1+y p'(u'r'i
r»312

3m»'" d» d»k 1+co'r' I

where

(x)= »3~'(dS/d») X(»)d» »'i'(dS/d»)d». (8)

J=ne(V) =ne VAdy Sdy.

where y» is the direction cosine of 8 with respect to
E and»o=eB/m.

It is important to realize that the electric Geld which
appears in these equations is not simply the applied
field, but is the sum of the applied and Hall fields. This
total field is determined from the condition that the
current be constrained to Qow in the direction parallel
to the applied electric Geld. The self-consistent deter-
rnination of the total electric field is complicated by the
fact that the isotropic part of the distribution function
is Geld dependent, whereas it is merely the thermal
equilibrium distribution in the case of weak electric
fields, i.e., Ohmic conductivity.

Ke take the magnetic field to be in the s direction of
a Cartesian coordinate system and the applied electric
Geld to be in the x direction. Thus, the electric and
magnetic fields have the following components:

E= (E„E„,O), B= (0,0,8), (4)

where E and E„are the applied and Hall fields,
respectively. For this configuration yo vanishes. The
current density is simply given by

+o/+e P12/@11 ~ (9)

Since from Eq. (3) S depends on the magnitude of the
total electric field E'=E '+E„», Eq. (9) is an implicit
equation which must be solved in order to determine E„.

The qualitative effect of the Hall field may be seen
from the following simple picture. The Lorentz force
arising from the magnetic field deQects the carriers
away from the x direction and thus diminishes the power
input due to the applied field. Ke note in fact, from
Eq. (3) that for very large magnetic fields (&or))1) the
electric and magnetic fields appear only in the ratio
(E~/B)2 for our conhguration (p» ——0). If E were simply
the applied field, i.e., if there were no Hall field, this
ratio would tend to zero for large 8, and the isotropic
part of the energy distribution would approach the
field-independent thermal-equilibrium distribution.
This corresponds to the charge carriers drifting in the
E&& 8 direction and thus receiving no power from the
electric Geld. The Hall field counteracts the Lorentz
field on the average and assures that there be no net
current normal to the applied electric field, thus allowing
the carriers to receive power from the applied field.

The constraint of zero current in the y direction
requires:

Inserting Eq. (2) in Eq. (5) we obtain the following
expressions for the average velocity:

@11 P 12

(V)=p E, p= —pi»

0 0 @11.

m ]. %2&2 SS $ d T

II. THE DISTMBUTION FUNCTION

Let us first consider the case where the principle
energy losses are due to acoustic-phonon interactions
and further assume that the phonon distribution
remains in equilibrium. Hot-electron phenomena for
nonequilibrium distributions have been recently dis-
cussed by Conwell and Zylbersztejn. ' '

For the case of phonon equipartition, the author' has
obtained the following solution to Eq. (3).

S=exp
(d»/kT)

1+E2 (eE) r/3mCi»'")((1+y»'»o'r')/(1+»o'r'))

where C1 is related to the electron-phonon coupling
constants and is detailed in Ref. 3. We consider only
the configuration discussed above, where go= 0.

Momentum relaxation by acoustic phonons and
impurities will be treated, the latter process by the
Conwell-Weisskopf" model. The energy-dependent re-

SA. Zylbersztejn and E. M. Conwell, Phys. Rev. Letters 11,
417 (1964).

9 E. M. Conwell, Phys. Rev. 135, A814 (1964).
Ester M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388

(1950).

laxation time is then given by

1/r= 1/r, +1/rz, r,=C2/»iI, 'ri=I» i, (11)

where C2 and J are given by the usual expressions.
We shall not consider impurity scattering in detail

since we wish to emphasize the negative magnetoresis-
tive eGects associated with the hot-electron regime. As
the electric field is increased, and correspondingly the
mean electron energy and relaxation time for impurity
scattering, the role of acoustic phonons rapidly in-
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creases. Conwell" has treated the role of impurity
scattering in warm-electron phenomena at low tempera-
tures and modest electric Gelds where it is of primary
importance.

Upon inserting Eq. (11)into Eq. (10) and performing
the necessary integration, one obtains a rather unwieldy
expression for the energy distribution function. We
shall not follow this procedure here, but shall limit our
considerations to several special cases of interest.

where

S= e $x'+ px+n)»'e &&'/2», —

x= e/k T, n= Cm/I(kT)',

2 ( 2m+ p
tan 'I

L4n —p )'/ 'E$4n —p')'/'J

(14)

1 2m+ p [p' 4n—)'/'—ln, 4n(p'.
I

P2 4n)1/2 2g+ p+ I
pm 4n)1/2

When there is no impurity scattering n= 0 and Eq. (14)
reduces to the Yamashita-Katanabe distribution. For
large electric Gelds we neglect the constant term in the
denominator of the integrand in Eq. (10) and we
obtain the following result for nonzero magnetic Geld;

(x+o/'Cm'/k T)'
S=exp

2

exp((co'Cp/pkT)n'/' tan 'I x/ ' n')/)

X (15)

The first term in Eq. (15) is the high-electric-field

"E.M. Conwell, Phys. Rev. 90, 769 (1953).
~ J. Yamashita and M. Watanabe, Progr. Theoret. Phys.

(Kyoto) 12, 443 (1954).

A. Acoustic Scattering Only

In this case the integration of Eq. (10) yields:

S=e '/~ $e/kT+p+~2C 2/kT)& (12)

where p= (3~/16) (E/i /s)'. Here /i is the low-field
mobility for acoustic phonon scattering and s is the
sound velocity.

This is the magnetic-Geld generalization of the
Yamashita-Watanabe" distribution and reduces to the
latter when or=0. The distribution function for an
arbitrary angle between the electric- and magnetic-field
vector has been derived by the author. '

It should be re-emphasized here that p is a function
of the magnetic Geld by virtue of the Hall Geld:

P=POI:1+(&v/&*)') ' Po= (3~/16)(& / /&)' (13)

B. Imyurity and Acoustic-Phonon Scattering

We Grst consider the case of zero magnetic Geld, and
obtain the following distribution function from Eq.
(10):

distribution function in the absence of impurity scatter-
ing and the second term takes account of this additional
scattering mechanism. We note that for large electric
Gelds the contribution of impurity scattering diminishes
rapidly.

C. Large Magnetic Fields

When o/r)&1 Eq. (10) may be simply evaluated for
combined impurity and phonon scattering; we obtain

S=exp( —x/(1+n))exp(u/(1+n)) (tan 'x/a), (16)

where
~= L~/(1+~))'", ~= 3(&/»)'

In the absence of impurity scattering (n=0) the
energy distribution approaches a simple Maxwellian
with an effective temperature T*=TI 1+n).

III. THE MAGNETOCONDUCTIVITY TENSOR

In this section we shall compute the conductivity
and Hall mobilities for hot electrons and acoustic-
phonon scattering. Let us Grst consider the case of small
magnetic Gelds and discard all but the lowest order
terms in or. We shall write the conductivity and Hall
mobilities in the following form for small magnetic
fields:

/. =&l'*)I&*=/'L1+~( '&)')
/ ~=&./~~. =/ ~'I:~+k(/ ~'B)') (17)

For the case of intense electric Gelds and spherical
constant-energy surfaces we merely insert Eq. (15)
into Eq. (6) and obtain the following results:

r(5/4)/ (2po)"'r(l)
//, , = 2er7r /~/3 (/2nP )/ 0r(~~), r=C2/(kT) /, —

k=
I 2(r (-;)/r(5/4)) (1/r (-;)—3r (-;)/r (-;))——;)

= —0.031, (18)

~ =9/8(r (-;)/r (-;))2(r (5/4)/r(-;) —1/r (-;))
+-'(r (5/4)r (7/4)/r'(l))'=+0 oo76.

The negative magnetoresistance character shown in
Eq. (18) is comprehensible when one considers the
"cooling" eGect of the magnetic Geld. The Lorentz
force results in the deQection of carriers from the X
direction, and is only cancelled on the average by the
Hall field; thus one has an increased resistance in the
presence of a magnetic Geld. For hot electrons, however,
one has, superimposed on this normal effect, a reduction
of the average electron energy by the magnetic Geld
and consequently an increase of the average relaxation
time. It is this latter phenomenon which results in
negative magnetoresistance.

In the limit, of large inagnetic fields (tor))1) and no
impurity scattering, one obtains the follow'ing asymp-
totic results from Eqs. (16) and (6):

~
—efkTg

7

T,/T= 2(1+I 1+~~ (9ir/32)'(/i~, /s)')i/'} . (19)
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The approximate expressions for large and small
electric 6elds are given below:

T,= T[1+-', (9m/32)'(p, E,/s)'],
p, =p~ ——(9'/32) p,[1—

p (9~/32) P (p~ /s)P],
p~,&&s; (20)

T /T = (1/3'") (9~/32) ( &./s)

p, =IJ~=3~~4(9m/32)~~P(s/pdE )~~Pp„p,E&)s. (21)

We note again the negative magnetoresistance
associated with the hot-electron regime:

p, (B-+ ~)/p, '= (27/64)m' 'I'(-') (32/9m-)' '= 1.0054.

Thus for large magnetic fields the distribution func-
tion and galvanomagnetic properties saturate, as is the
case for Ohmic conductivity with the neglect of Landau
quantization.

IV. MANY-VALLEY BAND STRUCTURE

The calculation of the magnetoconductivity tensor for
the case of a many-valley band structure such as
occurs in e-type germanium or silicon is extremely
complicated and we consider only the simple case of
silicon with the electric field in the 110 direction and
the magnetic 6eld in the 111direction. We shall include
the possibility of repopulation effects among the
valleys in a semiquantitative manner.

W'e merely sketch here the method of calculation
since the general expressions are extremely unwieldy
even for the simple case considered. After transforming
the ellipsoidal constant-energy surfaces to spheres and
introducing effective electric and magnetic fields, one
expresses the total current in terms of an arbitrarily
oriented electric 6eld and the applied magnetic 6eld.
The constraint that current Qow only in the direction
of the applied electric field then provides the necessary
relations between the applied Geld and the Hall and
anisotropy 6elds. These must again be determined
self-consistently as was discussed in Sec. I. In carrying
out this last procedure, one expands all averages in
powers of co.

(r'/(1+(o' r')) = rp'[1+a'(g+ b'oP

/n~ =(ep''/n 'p~ )[1+ x "a&+y''& pp ~ ~ ], etc'. (22)

where the superscript refers to the valley under con-
sideration and the last equation describes the ratio of
the number of carriers in the i and j valleys.

The presence of odd powers of co in these expansions
may be understood by considering the manner in which
the energy distribution depends on the electric field in
the many-valley case. For ellipsoidal constant-energy
surfaces the energy distribution depends on the follow-
ing mass-weighted electric 6eld. 4

(E'/m)*= (1/mr) [(E.Ir,)'(1/E —1)+E'], (23)
K=—fpsl, mp)

where II, is a unit vector parallel to the major axes of

the ellipsoid and ml, and m, ~ are the longitudinal and
transverse effective masses.

Recalling that E is the sum of the applied 6eld E~
plus the orthogonal Hall and anisotropy Acids E' we
obtain

I .=I'[I+~(l'~)'], I ~= I ~'[1+k(y~»)'],
p= uo /pa, p~p= [eel'(5/4)/m, (2pp)'I'I'(p)]Z, (25)

where r=Cp/(kT)'I' and pp is the value of p (Fq. 13)
for the 100 valley in the absence of a magnetic field.
The constants a, h, p, 2 are given in Table I.

TABLE I. Variation of Hall and conductivity mobilities
for small magnetic fields.

Single
spherical

band
0

—0.031

-0.073
+0.041—0.157

+0.0076

—0.2176—0.3568—0.1247

0.943

1.04
0.991
1.09

0.628
0.651
0.609

(E'/m)*= (1/mr) {[(EgIr)'+ (E' I~)'+2(E~ IL)
&&(E' I.)][1/&—1]+E~'+E"). (24)

This quantity will generally contain both even and odd
powers of ~ due to the first term in the angular bracket
of Eq. (24). Thus, it is only in the case of isotropic
effective masses that one has a variation of the energy
distribution function which is quadratic to lowest order
in the magnetic field. Even in the high symmetry
direction we are considering these odd terms in au

contribute significantly.
In our con6guration the anisotropy Geld is zero in the

absence of a magnetic 6eld and is of the order of only
1—

2%%uq of the Hall Geld in the presence of a magnetic
held and will therefore be neglected. Even with the
neglect of the anisotropy Geld there still remain odd
terms in the magnetic 6eld in Eq. (24), namely the last
term in the inner bracket.

When one computes the magnetoconductivity tensor
one obtains the usual quadratic dependence on the
magnetic 6eld for small 6eMs. This does not imply that
the odd terms discussed above mutually cancel when
one computes the galvanomagnetic coefficients; they
merely combine in such a way as to result in the usual
forms exhibited in Eq. (17).

Intervalley repopulation effects were treated simply
by assuming intervalley transition rates proportional
to c", where m=&-,' roughly characterize phonon and
impurity-assisted intervalley processes, respectively.
Although this is a great oversimplification we include
these two cases for the purpose of illustrating the
extreme sensitivity of the hot-electron galvanomagnetic
properties to intervalley processes.

The results of this calculation are conveniently
expressed in the following form:
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It is important to note the extreme sensitivity of the
galvanomagnetic properties to the many-valley struc-
ture, not merely with respect to magnitudes but
particularly with respect to the signs of the mobility
variations. A realistic calculation of the galvanomag-
netic properties of hot electrons in many-valley semi-
conductors would necessitate a rather accurate treat-
ment of intervalley repopulation processes and could

furnish considerable insight into the details of these
processes.
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The varjatjpn of the electrical resistivity of pure gallium has been investigated as a function of specimen
size in priented single crystals for current Row along the A and 8 axes. An analysis of the data, based on the
iree electron model and assuming diBuse scattering at the boundaries, gives (osier)g R~js =2.30X10 "o cm',
and (oi „)e, ;,=g.17X10 "0cm'. The longitudinal magnetoresistance was measured for 6elds uP to 1400 6
and was fpund tp be dependent upon the dimensions of the wires. The resistivity of the wires was also found
tp be a functipn pf measuring current, and this variation is attributed to the perturbation of carrier tra-
jectories by the magnetic Geld of the current.

I. INTRODUCTION
' 'N a previous paper' (hereafter referred to as YC), we
~ - have investigated the low-temperature variation of
electrical resistivity of 99.9999%%u~ pure gallium single

crystals as a function of temperature and size for current
Qow along the C axis. The present paper is an extension
of the same work for current Qow along the A and 9
axes. As before, the crystals investigated are in the form
of square wires and their dimensions vary from 0.5 mm
to 0.1 mm in six steps, which are more or less uniformly

spaced as a function of 1jd, where d is the side of the
square. In order to determine the mean free path of the
charge carriers for conductivity along these axes, the
results are analyzed in exactly the same way as for the
C axis. A full discussion of the theory used is given in
YC.

II. EXPERIMENTAL DETAILS AND THE
PRECISION OF THE MEASUREMENTS

The method of preparing oriented single crystals, the
determination of their dimensions in order to calculate

*This research was partly supported by the Advanced Research
Projects Agency under Contract SD-90, and partly by the
National Science Foundation.

~ M. Yaqub and J. F. Cochran, Phys. Rev. 137, A1182 (1965).

the resistivities, the measuring technique employed for
the electrical conductivity, and the various corrections
applied are discussed in great detail in YC. The crystals
were oriented to an accuracy of about 1'.The dimension
of the smallest crystals could be ascertained to about
1%.The resistance measurements for the largest B-axis
specimens which had the smallest resistance were accu-
rate to about 2%%uo for the lowest temperatures and the
smaller specimens could be measured with a much
greater precision. Since the greater accuracy of the con-
ductivity measurements for the small crystals was
offset by a less accurate determination of their dimen-
sions and vice versa, the result is that for most speci-
mens the accuracy with which the resistivity could be
determined is a little better than 1%%uq, except for the two
largest specimens in which the errors may be con-
siderably higher. As for the C axis, the resistance of all
the crystals was found to be strongly dependent on the
measuring current. It was therefore necessary to ex-
trapolate the resistance to zero measuring current. Con-
sequently, an additional error of about 1% could easily
be introduced into the resistivities.


