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Isotoye Effects Induced by Local Modes in the U Band~
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'7he experimental investigation in the temperature range from 4 to 400'K of the ultraviolet U band in
KCl, KBr, and RbCl crystals containing I and D ions has revealed the following isotope effects: (a) The
half-width of the Un band is from 4 to 8% larger than that of the Un band. (b) The Un band occurs at
energies 0.02 eV smaller than those of the UD band. In order to describe these results the method of
moments, in the harmonic and Condon approximations, has been applied. From the symmetry of the defect
it is shown that only the vibrational modes which transform according to the I'» representation of the full
cubic point group can be responsible for the isotope effects; these modes are just those active in the infrared.
It is found that during optical transitions, allowed in dipole approximation, the 1 I5 modes suer, via the
electron-phonon interaction, only a frequency shift, and that only the local mode has to be taken into ac-
count in order to predict the observed isotope effects, since the contribution coming from the I'I5 con-
tinuum is negligible. Finally, the local-mode frequency of the excited U center has been estimated.

1. INTRODUCTION

N recent years considerable attention has been given.„ to the theory of many-phonon processes associated
with the absorption or emission of light by impurities
in solids. ' ' Nevertheless a quantitative evaluation of
the optical absorption band shape was always per-
formed on the basis of introducing ad hoc models, such
as the well-known conGgurational coordinate model. 4

The imperfect-crystal phonon spectrum, indeed, is so
complex that accurate calculations can be done either
in very simpliGed schemes, such as the linear chain, or
by considering particular phonons, such as the localized
ones. Furthermore, the modihcations of the phonon
Geld coming from the change of the electron-phonon
coupling during the electronic transition increase the
difliculty of the computations. In this work we have
succeeded in isolating both experimentally and theo-
retically the effects which are due only to the interaction
of the impurity electron with the infrared-active local
mode.

Experimentally, the presence of this interaction is
shown by different peak energies and half-widths of the
absorption bands of H and D ions (Un and Un
centers) in alkali halides. A very similar behavior, dis-

played by the Is-2p transitions of H and D atoms di-
luted in solid Ar, has been reported recently. '
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Experimental procedures and results are reported
in Sec. 2. The theoretical analysis of isotope effects is
developed in Sec. 3, where it is shown that isotope
eGects occur only if the impurities give rise to an in-
frared-active local mode in the imperfect-lattice dy-
namics. In the same section, by means of the method
of moments, it is shown that the isotope effects depend
only upon the interaction of this local mode with the
impurity bound electron, both in the ground and in the
upper state. This isotope effect does not concern the
vibrational continuum, so that it is not necessary to
introduce an ad hoc model, as one needs to do (Sec. 3c)
in the evaluation of the absolute value and the tempera-
ture dependence of the band parameters. Finally, the
theoretical results and experimental data are compared
and discussed in Sec. 4; in the same section an evalua-
tion of the infrared-active mode is made, when the im-

purity electron is in the excited state.

2. EXPERIMENTAL

KCl and KBr single crystals were supplied as nomi-
nally pure by Dr. K. Korth (Kiel, Germany) and RbC1
crystals by Semi-Elements, Inc. (Saxonburg, Pennsyl-
vania). The U-centers, i.e. , negative hydrogen or deu-
terium ions in substitutional lattice sites, were produced
in the crystals by the following procedure. Firstly, the
crystal was additively colored in a Pyrex vial which
contained distilled potassium. The crystal was kept in
an oven at a temperature of approximately 550'C for
3 h, subsequently cooled to room temperature, and
cleaved into plates whose thickness was approximately
1-2 mm. Then colored plates, obtained from the same
single crystal, were introduced into a stainless steel
container and kept for 20 to 30 min at a temperature of
approximately 600 C in the presence of pure H2 or D2
gas at a pressure of 2 to 6 kg jcm'. In order to minimize
the concentration of foreign gases, the H~ or D2 gas in
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TABLE I. Experimental results for peak energies and half-widths at T=6+2'K. The theoretical results are deduced
from Eqs. (9) and (10).The units are eV and (eV)'.

Kcl
KBr
RbCl

5.86&0.005
5.5 1.~0.005
5.48+0.005

6D

5.88&0.005
5.53~0.005
5.50&0.005

5&X 10'
expt.

2.0~0.2
1.9~0.3
2.0~0.2

&~X10'
theor.

2.1
1.7
1.9

0.25 ~0.005
0.255a0.010
0.215+0.005

0.24 ~0.005
0.235~0.010
0.20 &0.005

QV'X 104
expt.

49a35
98&70
63+30

&8'X 10'
theory

24
28
28

the container was renewed a few times during the
If' —+ U conversion.

Optical measurements were performed using a Tropel
grating monochromator equipped with an open Hanovia
lamp which was operated with hydrogen at low pressure.
The absorption spectra of the U centers were obtained
by comparing I, the intensity of the light transmitted
by the crystals, with Io, that of the unabsorbed beam,
the detector being an EMI 6256-B photomultiplier.
The I and Io signals were recorded continuously, as a
function of vravelength, on a 4-sec-response Brown re-
corder. The spectral range, 1800 to 2SOO A, was ex-
plored a,t a rate of 100 A/min with a resolution of

2 A, while the lamp output was stable to better than
1/o over a time interval of -', h. The temperature of the
crystals, held in thermal contact vrith the copper block
of a metal cryostat, could be varied from 4 to 400'K
and vras measured with a AuCo-AgAu thermocouple
attached to the crystal.

In Fig. 1 are shown the optical absorption spectra of
the UH and UD centers in KCl, KBr, and RbC1 crystals
at liquid-helium temperature. The absorption bands
have been normalized to the same height after sub-
tracting the contribution to the absorption coming
from the pure crystal in the region of the U band; this
contribution is assumed to be a linear function of wave-
length. The data of Fig. 1 refer to samples with U-band
optical density at the peak ranging from 1.9 to 3.1 and
thickness from 0.2 to 0.7 mm. An estimate of the U-
center concentration was made by taking for both the
UH and UD centers the oscillator-strength value
evaluated by Martienssen for the UH center. The con-
centration was found to be from 2 to 6.5)&10'~ centers
per cm' for the samples of Fig. 1.

Two isotope effects occurring in the U band of the
crystals investigated here are easily seen in Fig. 1:
(a) the absorption of the UH centers falls at energies
lower than those of the Un centers, and (b) the half-
width of the UH band is larger than that of the UD
band. In Table I are reported the values of the peak
energy and the half-widths of the U bands at 6&2'K.
Both effects have been studied in the temperature range
4 to 400'K, as illustrated by the following figures. In
Fig. 2 the peak energies of the two U bands are reported
as functions of temperature. The peak position was
determined by successively halving the band widths in
approaching the band maxima. The band is fairly sym-

W. Martienssen, Z. Physik 131, 488 (1952).
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FIG. 1. Normalized optical density spectra of the U band of
KCl, KBr, and RhCl crystals containing H (full line) and D
(dotted line) ions.

metric, at least for values of the absorption constant
larger than 0.3 times the peak value, so that the energy
difference between the center of the band measured at
one-half of the peak value and the position of the peak
is very small (&0.005 eV).

The experimental points of Fig. 2 shovr that the
energy difference between the peaks of the UD and UH
bands is independent of temperature within the accu-
racy of the data, and we And for its value 0.020~0.002
eV for the two chlorides and 0.019~0.003 ev for KBr.
The larger uncertainty of the KBr data is due to the
fact that only three temperatures have been considered
for this crystal.

Figure 3 shows the values of the half-widths of the
UH and UD bands versus temperature in a double
logarithmic plot. The half-widths are measured with an
uncertainty of ~0.005 eV, with the exception of KBr,
which has a larger error because few data were available.
As the temperature increases the half-widths of the
UH and UD bands broaden and become approximately
equal within the error on the experimental measures.

As shown in Sec. 3, Eqs. (8) and (9), the peak energies
and the half-widths of the U bands depend upon the
temperature through the angular frequencies co~ and co2,

respectively. The experimental data 6tted with the
above expression yield the values of cv& and ~2, as shown
in Table II. The other parameters appearing in the two
equations are derived from the data of Fig. 2 and Fig. 3
and are shown in Table II and Table III. A discussion
of the data will be given in Sec. 4.
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3. THEORETICAL

The effects which an isolated impurity in a crystal has
on the electron and phonon states can be summarized

as follows:

(i) 3Eodification of the electron field. The imperfection
can give rise to localized electron states, usually in-

terpreted as one-electron states of the electron which

is more weakly bound to the impurity. This electron,
responsible for the optical absorption or emission of the
impurity, is often called. the "optic" electron. Optic
electron states are classified according to the representa-
tions of the point group of the symmetry operations
which leave the total Hamiltonian invariant. In the
case of the U center, the bound levels of the optic
electron are classified according to the representation
of the O~ point group and fall in the forbidden gap
between the valence and the conduction band.

(ii) 3fodhgcation of the vibrational field. It is possible
to show4 that a different modification occurs for every
optic electron state. In the framework of the adiabatic
and harmonic approximations any solution of the
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FIG. 2. Peak position versus temperature of the U band in KC1,
KBr, and RbC1 crystals containing H and D ions.

normal-mode equation of the imperfect crystal is given7

by a plane wave plus a diffused wave, if the normal-
mode frequency belongs to the vibrational continuum,
or by a diffused eave only, if the normal-mode fre-
quency lies outside the continuum, i.e., the normal
mode is localized. The amplitude of the localized mode
falls off exponentially from the defect, while the ampli-
tude of the diffused wave in the continuum is inversely
proportional to the distance from the defect. The
diffused wa, ve which appears in all the imperfect informal

modes is strongly characterized by the structure of the
imperfection itself. It follows that imperfect normal
modes are best classified according to the symmetry of
the diffused-wa, ve rather than the plane-wave com-
ponent, when one is interested in the defect properties.

In the present work this classification is made accord-
ing to the irreducible representations of the defect
point group. Symmetry operations of the U center are
those of the Otr point group (the full cubic point group).
Since the O~ point group contains the inversion, the
imperfect normal modes can be divided into even and
odd modes. By analyzing the perturbation on the dy-
namical matrix induced by the U center, it turns out
that the even F~+, F~2+ and F~5+, and the odd F25

—and
Fj5 irreducible representations characterize the normal
modes. Moreover the Cartesian coordinates of the dis-
placement of the foreign atom are involved in the F~5
mode only. Therefore, according to this classification,
isotope effects can be accounted for by considering the
odd F~~ modes corresponding to the two isotopes.
These modes are just the infrared-active ones. '

A. The Role of the Defect Symmetry in the
Many-Phonon Transitions

Following Pekar" and Perlin, ' the quantum states of
the optic electron and the states of its coupled vibra-
tional field in the imperfect la, ttice are defined in the
scheme of a suitable a,diabatic approximation. This
approximation enables us to separate an eQ'ective
Hamiltonian from the coupled systems even if the elec-
tron and the phonons cannot be regarded as weakly
interacting systems.

The optic electron, indeed, in several color centers is
coupled so strongly with the phonons that many pho-
nons are involved during a transition. In the present
approach, the electron-phoDon interaction is taken into
account in a self-consistent way in both the electron
and phonon Hamiltonia, ns. Thus the electron energy

7 A. A. Maradudin, in Phonons und Phonon Inteructions, edited
by T. A. Bak (W. A. Benjamin and Company, Inc. , New York,
1964).

G. F. Nardelli and N. Terzi, J. Phys. Chem. Solids 25, 815
(&964),

R. J. Elliott, in Proceedings of the InternutionuI Conference on
Lattice Dynamics, Copenhagen, 1963 (Pergamon Press, Inc. ,
New York, j.964).

~0 S. I. Pekar, Unterslcbgngen N'her die E/ektronentheorie der
Kristatte (Akademie-Verlag, Berlin, 1954l.
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levels are functions of the normal coordinates and, vice
versa, the "adiabatic" potential in the vibrational
Hamiltonian is different for different states of the optic
electron. Every electron energy level, when considered
as a function of normal coordinates, just represents the
adiabatic potential in the corresponding vibrational
Hamiltonian. The vibrational Hamiltonians corre-
sponding to two different electron states v and v' will be
diagonalized by two different systems of normal co-
ordinates Q„z and Q„.i . It can be shown easily that no
system exists which is common to the two electron
states. However, it is possible to connect these two
systems by a canonical transformation. In the simplest
case, when the mixing of the normal coordinates is
neglected (i.e., Q„.q.=—Q„.i), this transformation can be
written as

Qu'X ~vi, v'X+ (~v'X/~vi) Qvi

if the transition occurs from the ground state v to an

upper state v'. Here or, q and ~, q are the ) normal mode
frequencies in the v and v' electron states, respectively,
and h„q, „q is the shift in the value of the X normal co-
ordinate at which the adiabatic potential (i.e., the elec-
tronic level) has its minimum, owing to the change in
the electron quantum numbers.

It can be seen from (1) that the two systems of normal
coordinates differ for two different reasons.

The erst is the displacement h„q,„.q relative to the X

normal coordinate, here called the "displacement
effect." From a static point of view, neglecting an-
harmonicity effects, this effect arises from the different
equilibrium positions that the imperfect lattice ions
have when the v or v' state is ulled by the optic electron.
Therefore, A„q „.q is a measure of the contribution of
every normal mode to the elastic relaxation which
occurs after any radiative transition between the v and
p' states. The displacement of a ) mode belonging to the
continuum is proportional to X '~', Ã being the number
of unit cells in the crystal, while it has a finite value for
the local modes,

In Perlin's approach, the displacement effect is due
only to the change of the value of II; &, the electron-
phonon interaction, as evaluated in the ground or in the
upper electron states. %hen only the term linear in the
normal modes is retained in the expansion of this
interaction, the expectation value of II;„&in a v electron
state is

(2)

So far we have summarized the main qualitative con-

clusions of Pekar and Perlin's approach. Next we look
into the role that the symmetry of both the electron

wave function and the normal modes plays in the dis-

placement effect. On analyzing the A„z coefficient ac-

cording to group theory, it follows that A„z is different
from zero if

i.e., if the reduction of the product representation
I'2I'i contains (Q) the identity representation I'i.
Here I"„,I'q and F~ indicate the representations accord-
ing to which the v electron state, the ) normal mode,
and the identity transform, respectively. In the case
of the Olr group symmetry the condition (3) is satisfied
for the U center only when the even A mode occurs.
Therefore, the elastic relaxation which follows a transi-
tion from v to v' electron states involves even modes

only, since for the odd modes

A„g=A„.),—=0.

The second reason for a difference between Q„i and

Q„.i consists in the "frequency effect, " i.e., the change
in frequency from or„z, in the v electron state, to co„z in
the v' state, for any X normal mode. Indeed, the optic
electron wave function is generally more localized
around the impurity site when the electron is in the
ground state; therefore, soon after the transition and
just before the relaxation process takes over, the re-
pulsive forces are weakened, while locally the Coulomb
forces can be either strengthened or weakened; however,
the over-all effect presumably consists of a weakening of
the force constants in the upper electron state when

compared with those in the ground state. Rayleigh's
theorem" states that, under these conditions, every
normal-mode frequency in the upper state is smaller
than the corresponding one in the ground state. The
frequency shift is proportional to E ' for continuum
modes, while it is finite, and frequently relevant, for
localized. modes. Note that the frequency of the local
mode may d.ecrease at most to coL,, the maximum of the
vibrational continuum. "As we shall see later, it is just
this frequency effect which accounts for the isotope
effect in the U band.

In conclusion: During the transition the odd modes
suffer only the frequency effect, while the even ones
suffer both frequency and displacement effect. In other
words, in any electron transition allowed in the dipole
approximation only even phonons are created or de-

stroyed; therefore, only even phonons participate
directly in the many-phonon process, while the odd
ones participate indirectly, through the frequency
effect. This rule holds also for a more general defect, be-

longing to the OII or another symmetry group, when its
optic electron undergoes a dipole-allowed transition, in-
sofar as one takes into account the generalization of
expression (3). By means of transformation (1) and
remembering (3), the difference AH between the
Hamiltonians II„, relative to the electron ground state,

"A. A. Maradudin, E. %'. Montroll, and G. M. gneiss, Theory
of Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc., New York, 1963).
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experimental results, the method of moments' ' is em-
ployed here. It is well known that by means of this
method one can calculate the characteristic parameters
such as the mean value, the dispersion, or the asym-
metry of a distribution (the absorption band in our
case), without knowing directly the distribution law
itself (the absorption coeKcient in our case). The
moments of the absorption band in the Condon ap-
proximation are given by the average value of the
operator hH and its powers with respect to the vibra-
tional states corresponding to the ground electron level.
By assuming a nearly Gaussian absorption band, one
obtains

b)

2h 4P»(47»

2
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Fin. 4. (a) The adiabatic potential versus an even X normal
coordinate corresponding to the ground electron state (lower
parabola) and to the upper state (upper parabola). (b) The
adiabatic potentials versus an odd ~ normal coordinate corre-
sponding to the ground electron state (lower parabola) and to the
upper state (upper parabola).

e(T) = (e(T)).„=(AH)p

for the peak energy e(T) of the absorption band, and

W'(T)/8 ln2 = (Le(T)—e(T)j'),
= (ae')r —&ae),' (7)and H„, relative to the upper state, can be written as

~a/h= (a„. a„)/h-
=&"/h+ s Z ~"~LQ"~'+ (~/~Q "~)'j

—&,/h —l 2 ~.~LQ.x'+ (~/~Q. ~)'j

(+)
~lvv'+ s 2 ~vx, v'x &v'x

X
(+)

c(T)/h= 0„„+gh„g,„)P(u„g(+)
2 ~A, V'X

X

&v'X

Q.d.Qvx+ s
&~X X

for the squared half-width 8"(T).Here ( ), means
the average over the band, and ( )z means the
average on the vibrational states at thermal equilib-
rium at temperature T, when the optic electron is in
the ground state. Denoting by n~ the phonon occupation

(S) number Lexp(hco„q/kT) —ij ' for the X normal mode,
and remembering (S), one obtains

0„„.= (E„2„)/h is the fre—quency of light in a pure
electron transition; Pq&+&. and Pq&+ &. . indicate
that the summations have to be carried out on the even
modes only and both the even and odd modes, respec-
tively. Note that the above operator DB, when de-
scribed in the normal coordinate system Q„z of the elec-
tron ground state, consists of the difference of potential
energy only, since in the Q„z system the lattice kinetic-
energy operators, corresponding to v and v' electron
states, are the same.

The graphics, l interpretation of Eq. (S) yields an ex-
tension for any P normal coordinate of the well-known
configurational diagram, i.e., the plot of both y and v'

states versus any single P normal coordinate; this is
possible because one has neglected the mixing of the
normal modes. The plots are essentially of two types:
one for the even modes, the other for the odd modes
Lsee Figs. 4(a) and (b)). In the first case the potential-
energy minimum for the upper state is shifted with
respect to that of the ground state, while in the second
plot these minima occur at the same value of the normal
coordinate.

(+)
flvv'+Z ~vx;v'X ~v'x

(«)

(+—)
L(&vx ~v't )/esvx]

(+—)
+-', P L(~,~' —~, ~')'~,x'$(»~+&)'

(+)
~VX, V'X (~v'X /a V4)

(7a)

Xcoth (hem„x/2k T)
(~)

+s Q P(&vx ~v'x ) /revk j

Xcoth(her„g/2kT);
(+)

W'(T)/h'&»2=s g ~vx. , ~'(a "2/~.~)(»x+&)

B. The Method of Moments

In order to study the properties of the U bands in
absorption and to compare theoretical predictions with

&(coth'(hn „)/2kT) .
Let us consider the right member of (6a). The first
summation, indicated by Qz&+& ., involves only the
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even modes, which are determined only by the change
of force constants and not by the change of mass, the
r»- representation being excluded. Moreover, this
summation does not depend explicitly on temperature;
a very small dependence, here disregarded, could arise
from the change of the crystal parameters with
temperature.

Both odd and even modes are involved in the second
summation of (6a) (indicated by Pz&+ &. ), which
accounts for the frequency effect on both continuum
and local modes. The temperature variation of the peak
energy ~ (T) is brought about by this second summation
via the temperature dependence of nz. By means of the
experimental results (see Fig. 2), which show that
e(T) shifts toward the red when the temperature rises,
the sign of the frequency effect is con6rmed as predicted
earlier, i.e., the X normal mode frequency or„.z of the
upper electron state is smaller than the corresponding
co„q in the ground state. This temperature shift of c(T)
over a wide range of temperatures is accounted for by
the continuum modes and by the eventual gap local
modes (such as might occur in NaI and KI), because
the phonon occupation numbers of these modes depend
strongly upon temperature. The local modes well above
the continuum are not easily occupied. It is worth
noting that this temperature dependence is predicted
to be the same for the UH and UD peaks. In fact the
contribution coming from the even modes and from
the I'~5 modes is the same for the two centers. More-
over, on the basis of a diatomic linear chain, it is possible
to show that the frequencies of the continuum I'~5

modes differ by a negligible quantity when H and D
are present at small concentrations, and that the fre-

quency effect coming from a possible gap mode is too
small to be detected.

Let us consider now the half-width given by Eq. (7a).
The second surrunation is essentially carried. out over
the localized modes only, since for the continuum modes
every term is O(E '). Therefore, the second summation
does not change appreciably with temperature, and the
thermal dependence of the half-width can be accounted
for only by the 6rst summation, which concerns the
even modes only.

From the above symmetry considerations it follows
that we can separate the contribution to c(T) or W'(T)
due to the even modes of the vibrational continuum
from that of all the remaining modes, and specify the
terms that give rise to the temperature dependence.
However, in order to make a more precise calculation
of the coeKcients of the E-fold summations appearing
in (6a) and (7a), it is necessary to know the interaction
law between electron and phonons and to solve the
laborious normal-mode equation for the imperfect
crystal. This eva, luation is beyond the aim of the
present work. So, in order to 6t the experimental data
with an expression containing a 6nite number of
parameters, we have isolated the contribution coming
from the F&z local mode and tentatively replaced the

other terms in (6a) and (7a) with suitable averaged
values, by introducing two effective frequencies or& and
F2. In other words, these two effective frequencies repre-
sent in a concise way all the modes but the F&q local
mode, and could be interpreted in the framework of a
con6gurational coordinate model with two frequencies.
One obtains

e(T) =E—8 coth(hrui/2kT)
—-'k[((u '—~„')/(v, 7 coth(h(u, /2kT), (8)

W'(T) =A' coth(&2/2kT)
+3 ln2 k [(u —co~ )/u, 7' coth'(ha) g/2kT) (9)

=22 coth(Puo2/2kT)+C'.

Here, E stands for the energy of the pure electronic
transition plus the mean energy of the even phonons
produced during the transition. The energy factor 8
and the frequency or& have been substituted as effective
values in the third term in the right member of (6a),
where the sum was performed over all the modes but
the I'~5 local one. Furthermore, A and or2 are the effec-
tive values introduced in the 6rst term of the right
member of Eq. (6a), and ce, and cv„are the frequencies,
in the ground and in the upper electron state, respec-
tively, of the F» local mode. We have taken into
account the fact tha, t this mode is threefold degenerate.
The two frequencies or& and F2 are certainly not identical
because they represent effective values of two different
distributions, averaged on two different sets of normal
modes. The expressions (8) and (9) are also better
suited than (6a) and (7a) for use in comparing the
isotope effects with experimental results, because the
contribution of the F» local mode is isolated in the
last terms of the right members.

C. Isotope EBects

The isotope effects occurring in the absorption band
of the U center are accounted for in terms of the prop-
erties of the infrared-active local mode only. From
Eqs. (6a) and (7a), or Eqs. (8) and (9), it turns out
that the isotopic shift of the peak energy is given by

en(T) —eH(T) =8~(T)
=k{43[(so,'—&u ')/co, 7 coth (to,/2kT)) H

—A{a[((u '—(o ')/(og7 coth(Puv /2kT))n
(10)

and the isotopic difference between the squared half-
widths is

WH'(T) —Wn'(T) = 8W'(T)
=k'{3 ln2[(s)g' —a)~')'/(ag'7

&(coth'(h~, /2kT)) H

—k'{3 in2[(co '—a&~')'/cv '7
Xcoth'(h(ug/2kT))n. (11)

The symbols { )I and { )n mean that the expressions
in brackets refer to H and D isotopes, respectively.
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~H
a.o-

TABLE III. Infrared active local-mode frequencies for the UH
and UD centers, in the ground state, at liquid-helium temperature.
The last column shows for comparison the maximum theoretical
value cop, of the vibrational continuum. The values of the frequen-
cies are given in eV/k.

go1

f 1
cv a

CD
l

sa

Kar
0.5- ov

X g
KCl
KBr
RbCl

6.19~
5.51.
5.88~

4.45b

3.90b
4.16'

2.60

2 Pc

243

A(cog)rr X 10' A(cog)n X10' Mr, X 10'

CD

I 0.2-
Rb Cl 0

a G. Schaefer, J. Phys. Chem. Solids 12, 236 (1960).
~ Values obtained from Ref. 12.

A. M. Karo and J. R. Hardy-see Ref. 14.
~ Values obtained by putting (60&)p =(cog)8/~2.
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(3) the isotope effect is very slightly dependent upon
temperature, in the temperature range investigated
here, since n, ~1or coth(ku, /2k')~1.

FIG. 5. Half-width of the UH and UD bands after subtracting
the isotopic contributions Cn and Cn' Lace Eqs. (9)j.

From (10) and (11) it follows that isotope effects are
found only if the imperfection gives rise to an infrared-
active local mode, and they can be experimentally de-
tected only if the frequency lies well outside the vibra-
tional continuum.

The I"» local-mode frequency for the UH and UD
centers in the ground state is well known, both from
experimental data" and from theoretical approaches. "
It was found that, within a wide range of temperatures
and to a good approximation, the relation (co,)H
=%2(~,)n is verified. "In con.trast, the I'~s local mode
in the upper electron state apparently has not been
studied. As found earlier, owing to the frequency effect,
the local-mode frequencies of the upper state (ce )I and

(~„)n are smaller than those of the ground. state. There-
fore, it is also expected" that 1&(&o„)H/(&o )n(42
rather than (ce )H/(M„)n ——V2 since for the excited state
of the U center at least the nearest neighbors are likely
to participate to the F»,- local mode.

According to Eqs. (10) and (11), and following the
above considerations one can deduce:

(1) 8e)0:the peak of the Un band is placed at higher
energies than that of the UH band.

(2) bW') 0: the UH band is wider than the UD band;

TABLE II. EGective constants in eV determined by Gtting
Eqs. (8) and (9) to the experimental data. co„is the local-mode fre-
quency of the upper electron state.

M~)& 10 E 8 2, X10 ~IX10 pe)2& 10

KCl 4.1 5.94 0.055 24.2~0.5 1.81 1.24
KBr 2.7 5.57 0.04 24.1~1 1.55 1.12
RbC1 3.3 5.56 0.05 20.3&0.5 1.72 0.93

~ A. Mitsuishi and H. Yoshinaga, Progr. Theoret. Phys.
(Kyoto), Suppl. 23, 241 (1962); D. N. Mirlin and I. I. Reshina,
Fix. Tverd. Tela 6 3078 (1964) )English transl. : Soviet Phys. —
Solid State 6, 2454 (1965)j."R. Fieschi, G. F. Nardelli, and N. Terzi, Phys. Rev. 138,
A203 (1965).

4. CONCLVSIONS

The most interesting feature of the theoretical pre-
dictions discussed above is that the isotope effects
appear in a straightforward way from the method of
moments, in the usual framework of harmonic, adia-
batic, and Condon approximations, without introducing
an ad hoc model. A comparison with experimental data
allows us, therefore, to gain some insight, through the
value of the local-mode frequency before relaxation,
into the dynamical properties of imperfect crystals
when the optic electron lies in the bound excited states.
Moreover, from the strength and the range of the per-
turbation on the dynamical matrix, which accounts for
the local-mode frequency, some information can be
drawn on the adiabatic potential corresponding to the
electron in the excited state.

As is shown by Eqs. (8) and (9), the local-mode con-
tribution to the peak position and half-width are re-
lated to each other. From the requirement that be(T)
and 8W'(T) be equal to the corresponding experi-
mental values (see Table I), one can estimate the I'rs
local-mode frequency for both the UH and UD centers
in the upper electron state soon after the transition.
Unfortunately this evaluation is affected by a large
error, because the S%%uo uncertainty in the measured
half-width turns out to give an uncertainty up to 70%%uo

in the difference between the squared half-widths. The
6tting of the experimental data has been attempted
with the two following assumptions: (~„)H——(ru„)n or
(ce„)H=v2(~„)n. The first assumption agrees with the
experimental data and the excited-state frequency cv„

is found to fall above cur. (see Tables II and III). On the
other hand, the second assumption does not 6t with the
data and we are led to the conclusion that both centers
have approximately the same behavior in their excited
states.

The temperature dependence of the isotope effects,
as shown by Eqs. (10) and (11), is negligible, owing to
the high energy of the localized modes. This result. is in

good agreement with the experimental data on both
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isotope effects: The experimental effect on the peak
energy is constant and approximately equal to 2)&10 2

eV; on the other hand, the effect on the half-width at
temperatures higher than 100'K probably disappears
only in appearance. If we subtract the isotopic contri-
bution, i.e., the last term in the right member of
Eqs. (8), from the experimental values of the half-
widths 8"H' and 8"D', we obtain the data of Fig. 5; it
can be seen that both the points due to the UH and UD
centers can be made to fall on the same curve, within
the limits of the experimental error.

Finally, we have studied the temperature dependence
of the peak energy e(T) and the half-width W(T). We
know the symmetry properties of the continuum modes
which give rise to the temperature dependence, but u
priori, it is difficult to estimate the values of displace-
ment or frequency effects. We have estimated the over-
all eGect by means of two effective frequencies ~& and
~2, which, together with the infrared-active local mode,
describe the whole electron-phonon interaction t see

Eqs. (8) and (9)].The values of the two effective fre-
quencies and of the coefficients E, 8, and A of Eqs. (8)
and (9), determined from the experimental data of
Figs. 2 and 3, are reported in Table II. From the fre-
quency distribution reported by Karo" for the perfect
crystals, one finds that the two frequencies co1 and ~2
fall around the maximum in the transverse optic branch
and in the longitudinal acoustic branch, respectively.
The considerable difference between A&1 and or& suggests
that a configurational coordinate model with one fre-
quency is not sufIicient to describe the optical absorp-
tion of the U center or, perhaps, of other centers.
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The lattice thermal conductivity of GaAs and InSb has been calculated in the temperature range 2—300'K
taking into consideration the details of phonon dispersion relations resulting in the separate contributions
of the longitudinal and transverse phonons. This analysis gives a much better Gt to the experimental data
throughout the whole range of temperature than is given by Callaway's formulation which is based on
Debye s phonon spectrum, a choice of relaxation time for phonon-phonon scattering relaxation time which
is valid for longitudinal phonons, and the use of the average phonon velocity.

1. INTRODUCTION

HE problem of lattice thermal conductivity of
substances in which heat is primarily carried by

phonons, has been thoroughly investigated in recent
years. '—"An exact treatment of the problem, however,
is hampered by the lack of knowledge of the crystal
vibration spectra and the anharmonic forces, and by the

' P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).' P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955).' P. G. Klemens, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7.

4 P. G. Klemens, Phys. Rev. 119, 507 (1960).
6 P. G. Klemens, Westinghouse Research Report No. 929-8904-

R3, 1961 (unpublished).
e J. Callaway, Phys. Rev. 113, 1046 (1959).
7 J. Callaway and H. C. Von Baever, Phys. Rev. 120, 1149

(1960).
s J. M. Ziman, Electrons and Phonons (Clarendon Press Inc. ,

Oxford, England, 1960).
~ P. Carruthers, Rev. Mod. Phys. 33, 92 (1961)."H. Bross, Phys. Status Solidi 2, 481 (1962).

difFiculty of obtaining exact solutions of the Boltzmann
equation. A much-simplified model was proposed by
Callaway assuming a Debye phonon spectrum consist-
ing of one average (acoustic) branch and making several
assumptions as to the form of the three-phonon-scat-
tering relaxation times. This model has been success-
fully applied to a number of substances. ""

Holland" has studied lattice thermal conductivity
of GaAs and InSb in the temperature range 1.7' to
300'K and compared the experimental results with the
analysis based on Callaway's model which could not
explain the entire temperature dependence of thermal
conductivity. There is a change in the slope in the ex-
perimental data at about 80'K in InSb and about

"A. M. Toxen, Phys. Rev. 122, 450 (1961')."B.K. Agrawal and G. S. Verma, Phys. Rev. 126, 24 (1962).
'e B.K. Agrawal and G. S. Verma, Phys. Rev. 128, 603 (1962).
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