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The normal modes of vibration in an ionic crystal of Rnite thickness are found both by using lattice dy-
namics and by using electrodynamics, and neglecting retardation. If the wavelength is much larger than the
lattice parameter, both methods give coupled integral equations involving the ionic displacements and the
normal-mode frequencies. There are two classes of normal modes; those with an oscillatory spatial de-
pendence and frequencies equal to vro and vLo the usual transverse optical (TO) and longitudinal optical
(LO) frequencies at 0=0 in an inlnite crystal, and those with an exponential dependence on distance across
the slab and frequencies between vTo and vz, o. A qualitative connection between the normal modes and
optical absorption in a slab is presented.

I. INTRODUCTION

HERE has been considerable interest of late in
determining the fate of the optical frequencies in

ionic crystals in the long-wavelength limit. ' Rosen-
stock' concluded that in the limit X —&~ the longi-
tudinal (LO) and transverse optical (TO) frequencies
should be equal, whereas Kellermann's' calculation
agreed roughly with the Lyddane-Sachs-Teller relation.
Maradudin and Weiss' treated a finite spherical crystal
of radius R and argued that these results were in
accord if one recognized that the limits k (wave vec-
tor) —+0 and R —+co could be taken in either order.
Taking k~0 for a crystal of fixed R yielded Rosen-
stock's result, whereas the Lyddane-Sachs-Teller result
was obtained if one took the R —&~ limit before the
k -+ 0 limit.

We have examined the optical modes of vibration for
an ionic crystal slab extending to infinity in the two
lateral directions and of finite thickness. Since the
region of greatest interest is that for which the wave-
length is very long, we have examined the wavelength
region 'A»ro where ro is the interionic spacing. In
contrast to previous work dealing with crystals which
had at least one finite dimension, we have obtained the
actual normal-mode distribution in this wavelength
range.

Barron4 has commented on the fact that the k-+0
modes should have frequencies dependent upon the
geometry of the specimen due to the presence of de-
polarization fields. We have obtained results which
differ significantly from those of Maradudin and Weiss. '
In particular, under no conditions do the transverse and
longitudinal optical frequencies coalesce as k —+ 0. This
is a consequence of the fact that in the X —+~ limit the

II. STANDARD LATTICE DYNAMICS

We investigate in this section the information which
can be obtained about the normal modes of the slab
from a standard lattice dynamics treatment, or the
"single-cell" point of view. We denote the position
vector of an ion in the static crystal by

x(l;j)= x(l)+x(j), (2 1)

where x(l) specifies a unit cell and is given in terms of
the basis vectors a&, a2, a3 by

x(l) —rtiSt+Nstts+038s (2.2)

with rti, rts, and rts integers. x(j) gives the position of
the jth ion within the unit cell; j=1, 2 in the present
case. Representing a displacement of the ion at x(l; j)
by u(l; j), the equation of motion corresponding to the
cr component of u(l; j) is

-(l' )= —Z C'- (l,l ', ) (l ' ) (2.3)

surface charge distributions for the two types of vibra-
tion dier in the case of a slab.

Since the presence of a finite dimension in general
precludes the use of the customary lattice dynamics
approach, we discuss in Sec. II the information which
can be obtained from this point of view. The actual
normal-mode distribution is obtained in Sec. III both
for a point-ion model and a model including electronic
polarizability. Section IV includes a discussion of the
optical properties of the slab in which it is shown that
in the limit k-+ 0 our conclusions reduce to those of
Berreman~ who first demonstrated that optical absorp-
tion can occur at the ordinary k=0 LO frequency.

+ Work was performed at the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1739.' H. 3.Rosenstock, Phys. Rev. 121, 416 (1961).

2A. A. Maradudin and G. H. Weiss, Phys. Rev. 123, 1968
(1961).' H. B.Rosenstock, Phys. Rev. 136, A761 (1964).

4 T. H. K. Barron, Phys. Rev. 123, 1995 (1961).' E, W. Kellermann, Phil. Trans. Roy. Soc. London A238, 513
(1940).

'l R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).

~

~

824
c'-t (i,i"j,j')=

8N (l;j)ctsttt(l'; j') e

(2.4)

~ D. W. Berreman, Phys. Rev. 130, 2193 {1963).' We ignore the small deviations from the equilibrium spacing
near the surfaces.

where rtt; is the mass of ion j and C e(l, l'; j,j'), the
coupling parameter of second order, is defined by
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where C is the potential function for the system and the
subscript 0 denotes that the derivative is evaluated at
the equilibrium position. Assuming the displacements
to be of the form

No(l; j)=m; ' 'iieo(k) e'("'* '(& —) "'),

Eq. (2.3) becomes

'~- (k) =Z C-e(k; j,j')~e'(k),

(2.5)

(2.6)

z=b'

with

C e(k; j,j') = (m,mp) 'i'

&&2 C'-e(V" j,j')e '"'*""' *"""' (2 7)

C e(k; j,j') is divided into two parts, C 8'(k; j,j') cor-
responding to the Coulomb interactions and C e'(k; j,j')
corresponding to the short-range interactions.

The system which we are interested in is the slab of
ionic crystal of the NaC1 type as sketched in I'ig. 1.
It is immediately apparent that the s direction does not
possess the translational invariance of the assumed
solution (2.5). However, it is precisely this point to
which the discussion of the present section is directed.
We restrict our attention to the long-wavelength region
P))rp, where rp is the nearest-neighbor spacing in the
crystal, and consider that one of the equations (2.6) for
which x(t; j)=(0,0,s). Clearly the matrix elements
C 8'(k; j,j') depend on the value of s; their evaluation
for point ions neglecting retardation is discussed in
Appendix A.

The matrix elements C es(k; j,j') have been deter-
mined by Kellermann for nearest-neighbor interactions
only, with the result, in the limit )))rp,

gggp8~p
C p'(k; j,j')= (A+28),

2rp'(m, m')"'
(2 g)

4rp' dy8—
8 dr

4rp' d'y

dr r=rp

(2 9)

Having now the matrix elements C es(k; j,j') and
C 8'(k; j,j'), we proceed in a purely formal manner to
determine the "eigenvalues" po' in (2.6). Orienting the
crystal such that the wave vector k, here defined by
i ki =2w/X, has components

k,=k coso,

k =k sin0,

k„=0]
(2.10)

where, considering po(r) to be the nearest-neighbor re-
pulsive interaction,

FIG. 1.Diagram of the coordinate system and various parameters
used in discussing the ionic crystal slab.

the secular equation corresponding to (2.6) becomes

6=0,
where the terms of 6 are displayed in Table I.

m+ and m are the cation and anion masses,

F=-', (we'/rps),

(2.11)

(2 1-')

i

=p Slne{e&L'(i oos8-sin8 —i8)

&Qj

and
~ekLs( —i oos8 sin8+i8)-1 I'2 13))

E= (e'/2rp') (A+28) . (2.14)

Because of our coordinate system orientation, we see
that that portion of the secular equation corresponding
to the y direction separates yielding values of oP,

GP= 0 7

(p'= y,
—'(E—F), (2.15)

where p, is the reduced mass. The former we recognize
as an acoustic mode and the latter is the ordinary long-
wavelength, ininite-crystal transverse frequency with
the associated eigenvector

0
0

—(m+/m )"'
0
0

(2.16)

I
—(m+/m )its

0
0
0
0

(2.17)

The coupled x-s elements of the secular equation are
of particular interest here. We address ourselves solely
to the question of the optical modes. In the case 8=0
corresponding to the wave vector normal to the slab,
P=Q=O, the x-s coupling ceases to exist, and we find
the ordinary ininite-crystal, long-wavelength result,

~'= (I'/u —~/~),
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the second transverse mode, and

'= (Elf +2F/t ),
r

0
0
0
0

.—(m+/m )'I'

(2.18)

the longitudinal mode.
Suppose we consider 8&0. Now the condition that

must be met for the approach under discussion here to
be valid is that the eigenvalues are independent of s.
This condition can be obtained by considering kL))1,
which leads us immediately back to the situation for the
infinite crystal or

~ =E/~ —Flt

aP =E/p+2F/tr, to cc

—(m+/m )'"
0
0

—tan8

, (m+/m )»s «ng.

1
—(m+/m )'"

0
0

cote
—(m~/m )'" cote i

(2.19)

Alternatively we can obtain s-independent values of co

by considering kL&(1.' In this case, we find

E 2P 3P
~2 + kL sine,

jX Jtl 2 jtl

with W given by (2.18), and

8 Ii 3F
s)'=— + kl sing,

p p 2 JL4

(2.20)

(2.21)

with W given by (2.17). Note that when k,—=0, the
"LO" frequency (2.20) corresponds to transverse mo-

tion, and the "TO" frequency (2.21) corresponds to
longitudinal motion.

These solutions will be discussed in detail in Sec. III
where it will be seen'. that these frequencies are those
which result from taking the k —+ 0 limit of the general

9 The conclusion that we can obtain a generally valid solution
from the single-cell point of view for normal incidence /see Eqs.
(2.15)—(2.18)g would suggest that we would only have to assume
k,I.«1. 'That this is not the case is a consequence of the fact that
the points (0,0,s) and (0,0, —s) are equivalent physically, but his
equivalence is not manifest by our original supposition that the
displacements are of the form e'"'. By taking the displacements
to be superpositions of e+'"', we would only require k I,«i.
However since we are investigating the ordinary lattice dynamics
treatment here we persist with our original hypothesis. 'The con-
clusion fsee Eqs. (2.20) and (2.21)j will be seen to correspond to
the condition k L«1.

result. Thus, we conclude that ordinary lattice dynamics
in the long-wavelength region provides a legitimate
solution, in the present case, for arbitrary k, when k =0
and for k»1/I- or k((1/I= when k,%0. In this connec-
tion, a further point should be made. By taking L&——L2,
i.e., examining the conditions corresponding to the
center of the slab, one can obtain what appear to be
valid expressions for the frequencies over the entire k
range within the long-wavelength region. That this is
an invalid procedure can be seen by examining the
eigenvectors. The eigenvectors are, in this case, s-de-
pendent, which is not permitted since all s dependence
in the displacements was assumed to occur in the expo-
nential s'"'. Only in the limits k))1/1., k((1/I- can this
s dependence be ignored. Thus the apparent elimination
of the s dependence of the frequencies resulting from
examining conditions at the center of the slab leads to
invalid conclusions.

IIL OPTICAL VIBRATIONAL MODES
FOR THE SLAB

Prom the discussion of Sec. II, it is clear that the
difEculty with the "single-cell" point of view is the
assumption that the displacements have a s dependence
of the form e'"". If we replace Eq. (2.5) by the
expression

N~(l;j)=m; "w~;(k,s)e's'*""'e's»" »e '"', (3.1)

one can derive, from the lattice dynamics point of view,
a set of integral equations which yield the normal modes.
This derivation is sketched in Appendix B.We choose
here, however, to derive this set of integral equations
from the standpoint of electrodynamics.

Consider once again the ionic crystal slab sketched
in Pig. 1;it extends to infinity in the x and y directions,
and its surfaces lie on the planes 2= ~a. The optical
modes of vibration will be found in the long-wave
approximation; i.e., the displacements u+ and u of
the positive and negative ions are slowly varying func-
tions of position, and it is meaningful to introduce a
macroscopic polarization P(r, t) and an average electric
Geld E,„(r,t). Thus we require that the thickness 2a
of the slab be much larger than an interatomic distance,
otherwise even the normal mode with the longest
wavelength could not be treated in this approximation.

Because of translational symmetry in the x and y
directions, the polarization P(r, t) for any normal mode
contains the factor e'~**e'~»; for simplicity, imagine
that the x and y axes have been rotated so that k„=0.
Then the general form of the polarization for a normal
mode with frequency co is

p(r, t) = F(s)e'is" "'& (3 2)

where F(s) is an unknown function. This polarization
produces an electric field, which we evaluate at the site
of an ion located at the point (0,0,s). It is convenient
to divide the crystal into three regions, marked I, II,
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and

E„'=E '«+4vrF /3=4r7F„/3.

Since P= F(z) at the point (00s) and at t=0,

E '= —(8z./3)F, (s), (3.13)

E '= (4n./3)F (s)

E„'=(47r/3)F„(s) . ,3.15)

The total local Geld is found y
'

gb adding the three
n b E s. (3.6), (3.8), (3.13 ancontributions giveIl y qs.

(3.10), (3.11), (3.14), taking the 'rmts -+ z
b' —+ z in the integrals over s'.

ponents of E, Eq. (3.23) becomes

8pr

3
G (s,s')F,(s')dz'

a

G, (s,z')F.(s')dz', (3.25)

a

G (s s')F, (s')dz', (3.26)

i ~.—-~ iF.()=- G(,")F.(")d"
3 )

a

E,= — F,(z)y —G(s,s')F, (s')dz'
3 —a

(Xp—4s/3 —X)F„(z)=0. (3.27)

a

+i Gg(s, s')F, (s')ds', (3.16)

a

E.=—F,(s)— G(.,s')F.(s')d"
3 a

E„=(4 /3)F„(s),

where

a

G (s,s')F, (s')dz', (3.17)
—a

(3.18)

and
G(s,s') = 2sk, e

—'*~'—' ~,

G~(z,s')=a2m. k,e P'~* ' ~,

(3.19)

(3.20)

for 2,"&s and the minusin which the plus sign is taken d'or 2;

ximation the equations of

relative displacement u= u+—u an t e re
mass p, .

tea'u/Btp= pppp'u+qE, — (3.21)

o tical-mode frequency which the lattice
1 bf bt

e '"' time dependence, 82ug8t2= —~ u. n a
is related to the polarization by

47rk, ' 4z.k,k,
I&+—~IC=

3 ) k,'+k«P
(3.28)

4mk ' 4z-k,k,

kg'+k, ' k,'+k,'

we find the TO mode,Solving the secular equation for, w

These are the basic coupled in g q
'

te ral e uations whic
'on 3.27 which is not coup emust be solved. Equatio
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and Eqs. (3.25) and (3.26) become

P(r t) = F(z)e'&"~""=mqu(r, t),7 (3.22)

number of ion pairs per unit volume.
E (3 21) bAtm=, ==0, t=0, F(s) =nqu. Therefore, q.

written as

4x
X=) 0

——,3'

and the LO mode,

C, k,
with

C.
(3.30)

—(tire'/mq') F=—ti(pip'/eq') F+ (3.23)
Sx C

X=Xp+—, with3' C,
(3.31)

If we introauce e id th d'mensionless frequencies
'th the solution of the integral
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e ore roceeding wi
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d' '

less variables for distance, f=z a,duce imensionXp= tiptop /Bq2 2
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ue = X—Xp /2s- —p. Equations . an3.17 and (3.18) for the corn- value, y=and use Eqs. (3.16), (3.17), an
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symmetry property of the eigenfunctions and eigen-
values: (i) If f,(f) and f,Q') are eigenfunctions with
eigenvalue y, then f,(f)=f, ~(t') and f,(f)= f,*(f') are
eigenfunctions with eigenvalue y= —y. Therefore, the
eigenvalues occur in pairs which are symmetrically
situated about y=0. If we find an eigenvalue y belong-
ing to the function f„with even parity, and f„with
odd parity, for example, then we immediately know
that there is another eigenvalue at —y, and we can
write down the corresponding eigenfunction,

The reality of the eigenvalues and the orthogonality
of the eigenfunctions also follows from the integral
equations: If f (f) and f"(f') are two solutions belonging
to different eigenvalues y and y", then

0.0
I

0.5
I

I.O
I

1.5

f ' f"di'=0. (3.35)

sx = (kxa)

Fio. 2. Frequencies of the normal modes in a slab. The dimen-
sionless eigenvalue y is related to the frequency ca by the expression
y=[jg(aP —cup')/2s. rig'j —-,'. In Fig. 2(a), the sinusoidal modes
exist only for integral values of the index m. Figure 2(b) shows
the eigenvalues of the surface modes as a function of the g com-
ponent of the wave vector s .

A partial solution to the integral equations can be
found by converting them to a differential equa, tion.
We note tha, t

&(H')f(I')4'=s. &~(I',I')f(t')&I' (3.36)

become and

+i E.(u')f*(I')di', (332)

where

+i E~(W')f. (I')di', (3.33)

where f(I) is an arbitrary function. If Eq. (3.32) js
differentiated once with the use of Eqs. (3,36) and
(3.3'I), it becomes

Vfg'= f.'—+s. E—~ddt'+is, Kf dt' 2f, —

and

E(f f')=s.e
—"~r—r'

E (I,t')=as, e "~& r'~. f(+) «r f')—f't-
&(—) «r f'«i

(3.34)

or
=—f,'+i(y —1)s,f,

f,'= is,f„ if y~+1—.

f,'=is f,, if yN —1.

Similarly, Eq. (3.33) gives

(3.38)

(3.39)

The new eigenvalue y has been chosen so that the
infinite-crystal TO and LO modes at X=Xs—(4'/3)
and X=Xs+(8ir/3) correspond to the values y= —1

and 'y=+1.
Since the slab is symmetric with respect to the plane

f=0, it is convenient to choose the functions f,(f) and

f,Q') to have definite parities. The kernel E(i,f') does
not change the parity of a function on which it operates,
but It&(f',f') changes the parity. Therefore, if f,(I) and

f, (I) satisfy the integral equations, they must be of
opposite parity. It is not diQicult to prove the following

From Eqs. (3.38) and (3.39), we find

therefore, the general solutions are of the form

(3.40)

f =Cie'*r+Cse '*r,

f,= i(Cie'*r —C,e "&)— — (3.41)

The eigenvalue y and the constants Cq and C2 are found
by requiring that f, (i') and f, (t) satisfy Eqs. (3.32)
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TABLE II.Eigenvalues and normalized eigenfunctions for polarization waves in a slab. The normalization constants C= (s,/sinh2s, ) &,
h =(s '+(zsszzr)z)'~' have been chosen so that J' z'([ f, (i') (z+ ( f, (i') ~z)d&=1. The sinusoidal standing waves are labeled TO or LO
because they can be formed by taking appropriate linear combinations of TO or LO traveling waves with i' dependence exp(&zs, i'),
where s,=$zzzzr.

Type of
mode

Eigenvalues
v

Kigenfunctions Allowed values
of m

Surface
Surface

TO
LO
LO
TO

28'

+g 28~

—1
+1
+1—1

Ccoshs f
iC sinhs g—(m7i-/2h ) COS-,'nS7I-g

z(—s, /Iz ) sinznzzrf
(s /h ) cos-', m7i-g

i (z—zzzr/2h ) sin-,'zzzzri'

—iC sinhs, g
Ccoshs f
z(s, /h ) sin-', zzzzri—(mzr/2h ) coszmzri
i (zzzw/2Iz ) sinzzzzz~i

(sg/hm) coszzzzzrf

~ ~ ~

2, 4, 6,
2, 4, 6, ~ ~ ~

1, 3, 5, ~ ~ ~

1, 3, 5, ~

f,= ,'iC(e'*-r e "r)—,

f,= ', C(e"r+-e "&), with y=+e—'" (3 43)

These eigenfunctions and eigenvalues satisfy the general

symmetry requirement (i). If s&)1, these solutions are
localized at the surfaces. Therefore, they will be called
surface modes, even though they extend through the
entire crystal when s &1.

Equations (3.38) and (3.39) were obtained by can-
celling factors of y —1 and y+1 which occurred on both
sides of the equations. This implies that solutions exist
for which &=&1; accordingly, we try sinusoidal solu-
tions of the form

f, (t') =C, cos,'mzrf, -

f, (l )= iC, sin-,'mzri,
(3.44)

where m is an unknown constant. The kernels E and
Ez, when operating on these functions, yield not only
the same sinusoidal functions, but in addition, ex-
ponential functions e+'&. When these trial functions
are inserted into the integral equations (3.32) and
(3.33), the result is

LC, (y —1+2s 'h —')—C,mzrs, h„—'j sin-', mzrf
—V (e'*r e "&)=—0, (3.45)

I C.(y+1 2s.'h„-—') C,mzrs,—h„—'j cos-', mzri

+V(e' r+e-"&)=0, (3.46)
where

V= s,e—'*LC,(s, cos-', mzr ——,'mzr sin-', mzr)

+C, (-', mzr cos-', mzr+ s, sin-,'mzr) j/h„'
and

and (3.33). The results are

f,= ', C(e'*&+-e "&)

f,= ',iC (e'~r —e—'*r), w—ith y = —e "~ (3.42)

The condition that the coeKcients of sin-,'mzri and
coszmzrt vanish gives two equations involving C„C„
and p, which are of essentially the same form as Eqs.
(3.28) and (3.29). The eigenvalues are the same as for
the case of an infinite crystal: y= —1, with C,/C,
=—mzr/2s, and y=+1, with C,/C, =2s,/mzr. These
ratios of C,/C, must agree with Eq. (3.47), which gives
C /C, = —mzr/2s, when m is an even integer, and
C /C, =2s,/mzr when m is an odd integer. Therefore
the eigenvalues and ratios of coefFicients are

m=2, 4, 6, 8, ~ ~ ~;
2$g

C, 2s,
v=+1,

C, mm
m=1, 3, 5, 7, ~ ~ ~ .

(3.48)

For each of these solutions, there is a related solution
with eigenvalue of opposite sign, by (i). The f depend-
ence of the solutions (3.44) is such that there are exactly
m half waves across the thickness of the slab, from
l = —1 to f=+1.Table II summarizes the eigenvalues
and normalized eigenfunctions. Figure 2(a) shows the
TO and LO frequencies, which are the same as in an
infinite crystal; the only effect of the finite thickness is
to quantize the wave number s,. The surface modes can
be considered as the missing m=0 modes in Fig. 2(a).
Figure 2(b) shows how the frequencies of the surface
modes converge to a single value lying between the
usual TO and LO frequencies as the slab thickness 2u
increases, with k constant. On the other hand, when
k,u —+0, the frequencies approach the usual TO and
LO frequencies. In this limit, the polarization associated
with the surface modes extends uniformly over the
entire thickness of the slab; i.e., f, (f') —+ const, f,(f) ~ 0
for the low-frequency mode, and f,(t) ~0, f, (f) —+

const for the high-frequency mode. "
If the surface-mode eigenvalues y=&e 2'~ are ex-

panded in powers of s, the erst-order approximation
y =& (1—2s,) agrees with Eqs. (2.20) and (2.21),

The condition V=O gives

C, szmzr coszzmzr+s, sinzmzr

C, ~mz sin~mz —s cos~m+
(3.47)

"R. A. Ferrell, Phys. Rev. 111, 1214 (1958), has discussed
plasmon surface modes in a thin metallic slab; these are very
similar to the surface modes in ionic crystals. I'"errell's treatment,
which is based on'la dielectric constant e(ca), can also be used to
derive the results found in this section.
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obtained by conventional lattice dynamics in the limit
kL«1. The relationship between the dimensionless
eigenvalue p and the angular frequency cv' is

the result is
)p—)'

(3.51)

~'=~p'+ (4~~q'/3t ) (pv+ p)

=&/t +(Flt ) (ps+i), (3 49)

where E=p~p2 is the short-range force constant and
F=4ireq'/3=2sq'/3rp' is the Coulomb force constant.
Equation (3.49) reduces to Eqs. (2.20) and (2.21) when
the eigenvalues y= & (1—2s,)=~ (1—kL sin8) are
inserted. The "eigenfunctions" for the high-frequency
mode in a thin slab (kL«1) found by standard lattice
dynamics, when expressed in terms of the polarization,
are F,~e'p~*e'" =const&(e'"~~ F =0 LEqs. (2.5) and
(2.18)j.These functions are a zero-order approximation
to the true eigenfunctions for the high-frequency surface
mode, E,~coshk, se'~~*, E' ~sinhk~e'~~, and become
identical to the true eigenfunctions when kI.~ 0 and
k,L, —+ 0. This shows why, when k )0, the approximate
eigenvalues given by (2.20) agree with the exact eigen-
values to first order in k,. Similar arguments apply to
the low-frequency mode.

In a thick slab (kL»1), on the other hand, the
"eigenfunctions" obtained by standard lattice dynamics
are transverse or longitudinal polarization waves LEq.
(2.19)j; since they have very little overlap with the
surface modes, they can be expressed primarily as linear
combinations of the true sinusoidal modes, with fre-
quencies vTo and vLo. For this reason, standard lattice
dynamics applied to a thick slab does not yield the
surface mode frequencies.

For a slab of arbitrary thickness, the frequencies of
all normal modes are either vTo or vLo when k =0.
This occurs because the volume and surface contribu-
tions to the local field from the distant regions I and II
vanish, leaving only the contribution from region III.
Then G(s,s') =Gz(s,s') =0, and Eqs. (3.25) and (3.26)
give the eigenvalues immediately. It is clear that the
eigenvalues obtained for k =0 by standard lattice dy-
namics LEqs. (2.17) and (2.18)j must be correct, since
if we expand the assumed solutions with s-dependence
e'~" in terms of the true eigenfunctions, only the fre-
quencies vTo and i Lo can enter. By setting k, (or s,)=0
in Table II, we also see that motion in the x direction
involves only vTo and motion in the s direction, only vz, p.

Inclusion of Atomic Polaxizabilities

It is not dificult to include the atomic polarizabilities
n+ and a of the positive and negative ions, which have
been neglected in the foregoing derivation of the normal
modes and frequencies. e+ and 0, do not enter explicitly
into Eqs. (3.2) through (3.21). When atomic polariz-
ability is included, Eq. (3.22) becomes

P= F(z) =e(qu+nE) (3.50)

at x=0, t=0 uis the total. polarizability ~+n, and
E is the local field at the ionic sites. If the relative dis-
placement u is eliminated from Eqs. (3.21) and (3.50),

where
Xp= pp~pp/itqp,

V= tip~"/mq'.
(3.52)

The primed quantities X' and co' refer to this case in
which polarizability is included. The only difference
between Eq. (3.51) and Eq. (3.23),

P„—x) F= E, (3.23')

is that the quantity (Xp—X')/L1+nu(Xp —Y)) appears
instead of Xp—X. The basic integral equations (3.25),
(3.26), and (3.27) are modified in the same way. The
equation Xp—X= P,p

—X )/L1+stx(Xp —X')j can be solved
for X', giving

V= Xp/P. —Xpj/$1 jnnP —Xp)j. (3.53)

If we know the eigenfunctions and eigenvalues X without
atomic polarizability, then the eigenfunctions with po-
larizability are unchanged, and the new eigenvalues X'

are given in terms of X by Eq. (3.53). The eigenvalues
for the TO and LO modes in an infinite crystal become

4m-/3

1 4mnn/3—
(3.54)

8ir/3Sx
LO: y=+1, X—Xp=—, X'=Xp+

3 1+8vrma. /3

The only quantitative change is that the relationship
between y and X, which was linear, becomes nonlinear.
Thus, the eigenvalues for the surface modes in the limit
of large k,a, which approached y=0 or X—Xp ——+2~/3,
a value exactly halfway between the TO and LO eigen-
values, now approach X'= Xp+ (2 /s3)/D+27rrsu/3$,
which lies nearer to the LO than the TO eigenvalue.

IV. OPTICAL ABSORPTION

Let us assume that absorption of light by a crystal
slab can be ascribed to the excitation of the normal

Slab on a Conducting Substxate

Those normal modes in a slab of thickness 2a for
which the polarization F,(s) or Fp(s) is an odd function
of s are also normal modes for a slab of thickness a on
a perfectly conducting substrate at s=0. For if F,(s)
and F„(s) are odd functions of s, then F,(z) is an even
function of s; from Eqs. (3.16), (3.17), and (3.18), the
local Geld components E,(s) and E„(s) are odd func-
tions of s, and so are the average fields E; (s) and
E„'v(s). Therefore, the coinponents of the average field
parallel to the conducting plane at s= 0 vanish, as they
must. Of the normal modes listed in Table II, only
those on lines 2, 4, and 6 are present. It is interesting
that the low-frequency surface mode is absent.



OPTICAL MODES OF VIBRATION IN IONIC CRYSTAL SLAB A2085

modes. If reQection and refraction at the surfaces of
the slab are disregarded, so that the additional electrical
6eld inside the slab is the same as the 6eld of the
incident wave, the absorption due to a particular normal
mode is proportional to the square of the overlap inte-
gral of the field of the incident wave and the polariza-
tion for that mode. For a very thin slab, in particular,
this Geld is essentially constant over the thickness of
the slab and couples only to the "surface" modes.
Equations (3.42) and (3.43) show that in the thin-slab
limit (s, —& 0), the x polarization of the low-frequency
mode is constant and the s polarization is zero, whereas
the reversed situation holds for the high-frequency
mode. Thus when light polarized in the g-s plane is
incident normally on the slab, it excites only the low-

frequency mode at vTo, but if it is incident at an

angle 0&0', there is a component of the Geld in the s
direction which excites the high-frequency mode at
vLo. It follows that the absorption at vLo is propor-
tional to sin'8.

This result for optical absorption in a very thin slab
essentially agrees with that of Berreman. ~ He intro-
duced a complex dielectric constant e(to), applied Max-
well's equations with appropriate matching conditions
at the surfaces, and derived expressions for the trans-
mission and reaction coefficients. As Berreman has
pointed out, since e~~ at vTo (for no damping),
there must be a normal mode with polarization per-
pendicular to the surface at this frequency. Also, a
normal mode with polarization perpendicular to the
surface at vLo is consistent with the fact that &=0 at
this frequency. These two modes are precisely our
"surface" modes in the thin-slab limit.

The concept that the normal modes give rise to
optical absorption happens to yield the correct result
only for a thin slab and is actually not valid. When
retardation is included, one finds that the radiative
solutions to Maxwell's equations, with Qelds extending
to infinity, are distinct from the localized solutions,
with fields decreasing exponentially at inanity. Thus,
the problem of transmission, absorption, and reaction
of light by the slab, which involves the radiative solu-

tions, has no immediate relation to the normal modes,
which involve localized solutions. A detailed account of
the effects of retardation will be published in the future.

and

C*.'(k 'ii ')
—gg 82

(m;m/)'ts BxBy I
r—a„ I

8 )
ik (a22—r&&r)

(A3)

where a„generates the fcc lattice of either anions or
cations and r;,' is the vector connecting the two atoms
in the unit cell"

In the limit )&)ro, Cohen and Keffer" have shown
that the sums in (A2) a,nd (A3) become

1 lr42r~ ( 3k;h;~

2rss(3) E Os 3
(A4)

we must evaluate the integrals

d f
s outside

for n=3 and 5, recognizing that the desired quantity
will result from S5 upon taking derivatives with respect
to the components of k.

Consider

ei7c~z&i k&y&i k~e

dxdyds. (A6)
(x2+y2+ 22) 2/2

for an infinite crystal, the coordinate directions here
represented by the subscripts i and j. The simplest
way to obtain the matrix elements of interest in the
present case is to subtract from (A4) the contribution to
the sums from outside the slab, which means, since we
are considering the equation corresponding to the posi-
tion (0,0,2), a subtraction of the contributions from
2)Ir and s(—I2 (see Fig. 1). For long wavelengths,
this can be accomplished by an integration over the
region outside the slab. It should be noted, however,
that in the small k region, the same results can be
obtained by a direct integration over the slab itself.
Since

82 1

Br;Br; I r—a„I

C'=—2 (A1)
tt'.

I x(I; i)+u(f; i)—*(t'; i') —u(t', i')
I

it can be shown that'

~.o'(& f'i) =
—tIt;2 82 1

~i k~ a22

tN; ~ BxBy I
r- a„I, 2

(A2)

APPENDIX A: EVALUATION OF THE
COULOMB MATRIX ELEMENTS

Starting with the Coulomb energy (we neglect
retardation)

The integrals over x and y can be performed using
Fourier transform tables'4 with the result

1'(2) E rts(k&s)e
Ss——(22rk, )'ts ds,

r(2) Z,, QZ
"There is an additional term entering (A2) which is given as

(y„„0) „in the paper of Kellermann (Ref. 5).This term is zero for
an inhnite crystal but not for a Qnite crystal. Since this term will,
in practice, contribute to (A2) only when one is evaluating the
Coulomb coeKcients very near a surface, we neglect it here."M. H. Cohen and F. KeGer, Phys. Rev. 99, 1128 (1955).

'4 See, for example, W. Magnus and F. Qberhettinger, Formulas
and Theorems for the Fgrtcteorts of ilfathemattca/ Fhystcs (Chelsea
Publishing Company, New York, 1954), pp. 118-120.
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S3 becomes

where

Z,).(x) = (~/2x)'(2e-*,

Sp= 2)rF{(ik, —k,),L)),

~(i7cg I(:p) LI
5

where k, = (k '+k„')'" and E' i(2 is the Bessel function S; becomes
of the second kind. Since 1 (ik, —k,)

2Lg2 2Lg

(ik,—k )'
+ F{(ik, —k p),I.)), (A9)

F(~,L )= ds.
, gs

(pr) i/2 I' (-)
&2(2(k.s)«

&2i
'

r(-;) „s(
and) since

)~ "(2 (1+x)
&2,2(*)= I— -e ',

(2 $3I2

We can evaluate Ss in much the same way. The
integrals over x and y give

where F((,L2) is defined by (AS). Adding the quantity
—l);;Sp to —3(82Sp/Bk, 8k;) and dividing this sum by
2ro' gives the contribution of the upper excluded region
to be subtracted from (A4). It is easy to show that the
contribution of the lower excluded region, from —I.2 to
—~, to S3 and S5 is given by that from the upper
region by replacing Lj by L2 and k, by —k,.The evalua-
tion of the sums, in the case where the derivatives are
to be evaluated at ra, can be shown to yield identical
results with the above case corresponding to the evalua-
tion of the derivatives at r=0. The results are

prq. 2 —2( k 2) k 2 e(ikr kz)L& e( ikz kp)—L2-
-l1-3—, I+— . +

rp"'re) 3 k k' ) k, (k p ik,)— (k,+ik, )

—~n 2 2 k 2i k 2 e(ik» kp)LI e(—sk» kp)L2
(((( ) vC„(k;j,j)=, — 1—3—, I+— . +

rp22)ii -3 O' I kp (k p ik.)—(kp+ ik.)

C„(k;j,j)=
prq2-2( k 2 e(ikz kz)L& e( ikz kz)L2- —

—I1—3——kp +
rppi)), 3k k' (k,—ik, ) (kp+ik, )

C,„(k;j,j)=
—xq-'k k —2 $ e'~» ~p)L' e( '~~~p)

+ +
rppi)2; k' k, (kp —ik,) (k,+ik,)

C„, (k; j,j)=
t'o' m&

8

tII
(sag kp) Ll g(—&7C»—kp) L2

(k, ik, ) —(k,+ik,)

C.*'(k; j,j)=
ro' m,. k' (k p ik, ) (k„+ik—,)

&g .2k 2k g(ik» —kp) LI g(—ikz I(:p) L2

C„'(k;j,j)=C„'(k;j,j)*and likewise for C„,(k; j,j) and C,„(kz j,j).The matrix elements C„()'(k;j,j ') can be
obtained from C ()(k; jj) by , replacing q,'/2)2; by q;qi'/(m, rN )'(2

APPENDIX B: INTEGRAL EQUATIONS FROM LATTICE DYNAMICS APPROACH

With the assumed displacements of the form given by Eq. (3.1) the equation analogous to (2.6) becomes

(p22e.;(k,s)=P P D (2(l„l,'; j,j')we@(k,s'),
l»' 7'P

where /, is the s component of lattice vector l,

(B1)

D~(2(l»lz'; j,j')=(r)im, .) '( P C~(2(l, l'; jzj')e'k~(~*&"") ~'&"'))e'kzz(~zz&"'(') ~p&'')),
r$ I

and C (2(l,l'; j,j') is defined by (2.4). We separate D into two parts, D (2'(l„l,'; j,j') corresponding to the Coulomb
interactions and D s (l„l,'; j,j') corresponding to the short-range interactions.
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we will examine in detail the termC lomb interactions. For illustration, we wiConsider the case of tlie Cou om ii

6 p

({ (/) (/')}'+{x (/) x (/')}'+{x,(),(')})(~' &&)

3{x.(/) —x.(/') }{xe(/)—xp(/') }
L{&*(/)—&*(/')}'+{&.(/) —&.(/') }+{&.(/) —~.(/') }'j'"-

we are interested in the long-wavelength range
and the sums are over all l, an~ .„,we
origin to ion an ind 'ntegrate. The erst term in the sum
in (83) then can be written

radius e about the origin is

x dxdy
I

2r 2 Lg2+y2+~2 j5/2rp
0

cc

S3—— ei~»dy
2r0 ao

eik~zgg

(84)

where we have for convenience placed the two ions in
a unit cell in the x-y plane and

n'= {**(/)—**(/')}'=—{—'}',
For g&0, (84) can be integrated (see Appendix A)
with the result

(85)Sa——(7r/i/rp')e &",

7r

r 2~ r 2(e2+~2)i/2

so that, for g= 0,

Sg—S3'= (m/ro'e) —(mk„/ro') . (87)

The second term in (83) can be obtained by evaluat-
ing the integral

—'k '+k ')'/ Considering for the time beingwhere k, = q

that thesumon, in &/
' '

(81) retains its discrete character,
it will be an integral multiple of ro. Thus (8 ) is va i
for all allowed g except q=0.

Wh =0 the condition /'N/ in (83) means we
must exclude the ion at the origin. We do this y sub-
tracting from S3 the contribution S3' from a circle of
radius e rp in the x-y plane,

so for q=0, we have
q,~ m.k,2 x

D.:(/.,/. ; j,j)=—'
f8~ rp k& 2rp

(812)

D.;(/„/, ', j,j)=
—

q&' 'r.2

e
—pie p

m, rp 2
'

q x k,k„
~ ~ —gkpD,„(/„/,';jj)=D„:(/„i,;~',~ =——

m~ rp k&

(813)

rs k~
D*'(/. , *;jj =)=D*.'(/. ,/*" j,j)=———(s—z')e ""',

Mj fp 'g

The erst term is clearly the value of (8870 for =0.
We call the second term the coplanar coeS.cient and
denote it by D„"(/„/„j,j), recognizing it to be the

—l'excess contribution to D' for l,=l, .
The remain er o

'
d f the Coulomb coeScients can e

evaluated in a simi ar a,d
' ' 'l fashion with the result, vahd

or all

S5= e"»dy
2rp —oo

which is equal to

ei k~xdg
7' ky

D"'(/ /' j j)=D*:(/*/' j,j)= ( —')———
m~ rp 'g

The coplanar coefficients are

Sq= (n./3ro'i/') (1+r/k, )e & "I'.

For p~0, we can then obtain D„,.„,, j,j, y
0

b
taking 38~S&/Bk,~, adding (85), and multiplying by

gg~ x' k~
D '(/ /' j j)=———e &"~.

8$~ rp
(810)

For g=0 there is an additional contribution to D which
must be considered. That quantity which must be
subtracted from 38'Sg/8k, ' coming from a circle of

D..'(/. ,/. ; j,j)=
, =D-"(/ /* j j),

m& 2rp 6

(814)
7l

D "(/„/. ; j,j)=—'

pbj rp f

all others being zero. The coefEcients for jj becoming

j./2

It somewhat tedious though not difBcu t tas ot is a somew
show that the nonzero short-range coe cients in
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15long-wavelength range are
q,
' (2+28)

D e'(l„l,',jj )=hi, z;b~zz—

I
gjgjt' ''—D„'(l„l,';j,j ') =D»z (l„l, ;j,j (&+8)+(lB)(~ .. .',.+~ .. . ,.)1,4 z'

(mm )ifz

I ~ zID,;(l„l,'; g,y g
——

1sgss j& r p

w er g
We now use (81), letting Pi,.~ ( /,1 rp) J'ds', an consi er n=

suiting equa

2~~i.4 +—(~4.4 p;+&4, 4 —;)
2

tion is

(—e') zr k,'
rp slab

(—e)

(—e') zrik, (s—s')

m+ rp 2 2)

(A+8)w (k,s) — — — w (, s rp)"'2r ' 4rp' (m+m )''(m~m ' rp

07 R~ )S

les+ 2rp

e2

w (k,s) = —(m+/m )'i' +w(,s),
(816) becomes

w k s w (k,s), (816)
(m m )'@2r'p4rp' (m+m )"' m~2rpzp m„m

rms whose arguments are s~rp and eliminating814) and (815).Expanding those terms whose argumen s arewhere we have used (813), (814', an
the anion displacements, sin p

'
ce for o tical modes

ppzw~ (k,s) =
P p p

e' zrik, (s—s') — e' (2+28)
e—[z—z)

J kz

p rp

R e' x k,k„

r'rp slab

2

w~(k, s) —— w~(k, s), (817)
p, 2rp6

ned b 2.12) and. (2.14) this can be rewritten aswhere p, is the re uce mh d d mass. Using E and F de6ned by (2.12 an

k-'E~' &ll +-'(«Plz p)—1

I
$(~/z) slab

(z—s')
r I ~ e-) z-z') ad ' ik ',k e—i'—*'i'*+w~(k, s)zk, eds zv~, z e

/z —s'slab
(819)

p (~/u)

which is identical to Eq. (3.26).

nts which occur for surface ions."We neglect the changes in these coefBczents w ic

z—z)(kz (81g)),k '~ e ~
' ~"z+w,+(k,s)zk,wz)+ )s

[s—s'kp

d in a similar manner. By considering an infiniteand m, can be obtaine in a simi ar
e and orienting the

dd't' l pair of equations for m„+,+
known one cans ow a 6=~ p.h th t =—'r. Using thisvalueo ecrystal for which the eigenfrequencies are n

(~'—&/z+~/z )
wz)+ )s


