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The normal modes of vibration in an ionic crystal of finite thickness are found both by using lattice dy-
namics and by using electrodynamics, and neglecting retardation. If the wavelength is much larger than the
lattice parameter, both methods give coupled integral equations involving the ionic displacements and the
normal-mode frequencies. There are two classes of normal modes; those with an oscillatory spatial de-
pendence and frequencies equal to »1o and vro, the usual transverse optical (TO) and longitudinal optical
(LO) frequencies at £~0 in an infinite crystal, and those with an exponential dependence on distance across
the slab and frequencies between »1o and »ro. A qualitative connection between the normal modes and

optical absorption in a slab is presented.

I. INTRODUCTION

HERE has been considerable interest of late in
determining the fate of the optical frequencies in
ionic crystals in the long-wavelength limit.!~* Rosen-
stock! concluded that in the limit A —c the longi-
tudinal (LO) and transverse optical (TO) frequencies
should be equal, whereas Kellermann’s® calculation
agreed roughly with the Lyddane-Sachs-Teller relation.®
Maradudin and Weiss? treated a finite spherical crystal
of radius R and argued that these results were in
accord if one recognized that the limits k (wave vec-
tor) — 0 and R— could be taken in either order.
Taking k— 0 for a crystal of fixed R yielded Rosen-
stock’s result, whereas the Lyddane-Sachs-Teller result
was obtained if one took the R— o limit before the
k — 0 limit.

We have examined the optical modes of vibration for
an ionic crystal slab extending to infinity in the two
lateral directions and of finite thickness. Since the
region of greatest interest is that for which the wave-
length is very long, we have examined the wavelength
region N>>7o where 7o is the interionic spacing. In
contrast to previous work dealing with crystals which
had at least one finite dimension, we have obtained the
actual normal-mode distribution in this wavelength
range.

Barron? has commented on the fact that the k— 0
modes should have frequencies dependent upon the
geometry of the specimen due to the presence of de-
polarization fields. We have obtained results which
differ significantly from those of Maradudin and Weiss.?
In particular, under no conditions do the transverse and
longitudinal optical frequencies coalesce as k — 0. This
is a consequence of the fact that in the A — oo limit the
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surface charge distributions for the two types of vibra-
tion differ in the case of a slab.

Since the presence of a finite dimension in general
precludes the use of the customary lattice dynamics
approach, we discuss in Sec. II the information which
can be obtained from this point of view. The actual
normal-mode distribution is obtained in Sec. III both
for a point-ion model and a model including electronic
polarizability. Section IV includes a discussion of the
optical properties of the slab in which it is shown that
in the limit k— 0 our conclusions reduce to those of
Berreman” who first demonstrated that optical absorp-
tion can occur at the ordinary 2=0 LO frequency.

II. STANDARD LATTICE DYNAMICS

We investigate in this section the information which
can be obtained about the normal modes of the slab
from a standard lattice dynamics treatment, or the
“single-cell” point of view. We denote the position
vector of an ion in the static crystal by

x(; ) =xO)+x(), 2.1

where x(J) specifies a unit cell and is given in terms of
the basis vectors aj, as, a; by

x(!)=martnea,+nsa;, (2.2)

with 71, #2, and n3 integers.® x(j) gives the position of
the jth ion within the unit cell; j=1, 2 in the present
case. Representing a displacement of the ion at x(; 7)
by u(l; 7), the equation of motion corresponding to the
a component of u(l; 7) is

myia(l; J)=— 2 Pap(l'; 5,7 )us(l';7")  (2.3)
l’jlﬁ

where m; is the mass of ion j and ®.5(,0; 7,57), the
coupling parameter of second order, is defined by

9%®
———), e
- dua(l; 7)ous(l'; 5')/ o
7D. W. Berreman, Phys. Rev. 130, 2193 (1963).

8 We ignore the small deviations from the equilibrium spacing
near the surfaces.

Qdﬂ(kl, 3 j:j,) =<
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where @ is the potential function for the system and the z
subscript 0 denotes that the derivative is evaluated at s
the equilibrium position. Assuming the displacements } o n
to be of the form Ly ei >~/ " T

: —1/2 (ke x (b )—wt) e e S (YT e S
wa(L; 7)=mji?wq;(k)eilexb D—ot) (2.5) -t 17— — z=b
X

Eq. (2.3) becomes L L n

W waj(k) = Zﬁ Cap(k; 7,5 )wsy (k) (2.6)

]I

with
Cap(k; 4,5")= (mmy)1*
XS ®ag (Ll 7,7 xGD=x5) - (2.7)
ll

Cas(k; 7,7 is divided into two parts, Cag®(k; 7,5") cor-
responding to the Coulomb interactions and Ceg®(k; 7,5)
corresponding to the short-range interactions.

The system which we are interested in is the slab of
ionic crystal of the NaCl type as sketched in Fig. 1.
It is immediately apparent that the z direction does not
possess the translational invariance of the assumed
solution (2.5). However, it is precisely this point to
which the discussion of the present section is directed.
We restrict our attention to the long-wavelength region
A>3>7, where 7o is the nearest-neighbor spacing in the
crystal, and consider that one of the equations (2.6) for
which x(; 7)=(0,0,2). Clearly the matrix elements
Cas°(k; 7,7") depend on the value of z; their evaluation
for point ions neglecting retardation is discussed in
Appendix A.

The matrix elements C.s°(k; 7,7)) have been deter-
mined by Kellermann for nearest-neighbor interactions
only, with the result, in the limit A>>7,,

4ii0ap

Cap*(k; §,7)=
’ 28 (mjm )12

(4+2B), (2.8)

where, considering ¢(r) to be the nearest-neighbor re-
pulsive interaction,

4:7’02 d(p
- et dr T=,.,’
(2.9
dr® d?o
- e drtl,—n

Having now the matrix elements Cus°(k; 7,7) and
Cag*(k; 7,5"), we proceed in a purely formal manner to
determine the “eigenvalues” «? in (2.6). Orienting the
crystal such that the wave vector k, here defined by
| k| =27/), has components

k.=Fk cost,
k,=Fk sind,
ky=0,

(2.10)

2=-Q

FiG. 1. Diagram of the coordinate system and various parameters
used in discussing the ionic crystal slab.

the secular equation corresponding to (2.6) becomes

A=0, (2.11)
where the terms of A are displayed in Table 1.
my. and m_ are the cation and anion masses,
F=3§(xe"/rs"), (2.12)
P
( )=F Sino{eka(i ¢osf—sinf—:0)
Q :Fechz(—i cosOv—sin9+i0)} , (213)
and
E=(¢*/2rs®) (A+2B). (2.14)

Because of our coordinate system orientation, we see
that that portion of the secular equation corresponding
to the v direction separates yielding values of w?

w?=0,

W=y~ (E~F),

where u is the reduced mass. The former we recognize
as an acoustic mode and the latter is the ordinary long-
wavelength, infinite-crystal transverse frequency with
the associated eigenvector

(2.15)

0
0
1
WEN (g /m)| - (2.16)

0

The coupled #-z elements of the secular equation are
of particular interest here. We address ourselves solely
to the question of the optical modes. In the case =0
corresponding to the wave vector normal to the slab,
P=(Q=0, the x-z coupling ceases to exist, and we find
the ordinary infinite-crystal, long-wavelength result,

w'=(E/u—F/u),

1

— (my/m)1
0 , @.17)

0
0
0
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the second transverse mode, and

w*=(E/p+2F/u),

0
0

we (2.18)

0 b
1
— (my/m)"

the longitudinal mode.

Suppose we consider 65£0. Now the condition that
must be met for the approach under discussion here to
be valid is that the eigenvalues are independent of z.
This condition can be obtained by considering 2L>>1,
which leads us immediately back to the situation for the
infinite crystal or )

1
— (my/m_)'?
0
0 ’
—tand
(my/m_)\? tand

w*=E/u—F/u, wo

(2.19)

~

1
— (my/m_)*

0
cotd
| — (my/m_)2 cotd

w'=E/u+2F/p, we

Alternatively we can obtain z-independent values of w
by considering 2L<1.° In this case, we find

E 2F 3F
wt=—+————kLsing, (2.20)
b ou 2p
with W given by (2.18), and
E F 3F
@=———t——kLsing, (2.21)
L u 2u

with W given by (2.17). Note that when %,=0, the
“LO” frequency (2.20) corresponds to transverse mo-
tion, and the ‘“TO” frequency (2.21) corresponds to
longitudinal motion.

These solutions will be discussed in detail in Sec. III
where it will be seen that these frequencies are those
which result from taking the %, — 0 limit of the general

9 The conclusion that we can obtain a generally valid solution
from the single-cell point of view for normal incidence [see Egs.
(2.15)—(2.18)] would suggest that we would only have to assume
k,L<K1. That this is not the case is a consequence of the fact that
the points (0,0,3) and (0,0, —z) are equivalent physically, but his
equivalence is not manifest by our original supposition that the
displacements are of the form ¢***. By taking the displacements
to be superpositions of et T we would only require k;L<K1.
However, since we are investigating the ordinary lattice dynamics
treatment here we persist with our original hypothesis. The con-
clusion [see Egs. (2.20) and (2.21)7] will be seen to correspond to
the condition k,L<K1.
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result. Thus, we conclude that ordinary lattice dynamics
in the long-wavelength region provides a legitimate
solution, in the present case, for arbitrary k, when k,=0
and for ©2>1/L or k<1/L when k,540. In this connec-
tion, a further point should be made. By taking L;= Lo,
i.e., examining the conditions corresponding to the
center of the slab, one can obtain what appear to be
valid expressions for the frequencies over the entire &
range within the long-wavelength region. That this is
an invalid procedure can be seen by examining the
eigenvectors. The eigenvectors are, in this case, z-de-
pendent, which is not permitted since all z dependence
in the displacements was assumed to occur in the expo-
nential ¢#r, Only in the limits £3>1/L, k<&1/L can this
z dependence be ignored. Thus the apparent elimination
of the z dependence of the frequencies resulting from
examining conditions at the center of the slab leads to
invalid conclusions.

III. OPTICAL VIBRATIONAL MODES
FOR THE SLAB

From the discussion of Sec. II, it is clear that the
difficulty with the “single-cell” point of view is the
assumption that the displacements have a z dependence
of the form e If we replace Eq. (2.5) by the
expression

Ua(l; ) =mi V2w ai(k,z)eitas i Deikuutti Dg—ivt  (3.1)

one can derive, from the lattice dynamics point of view,
a set of integral equations which yield the normal modes.
This derivation is sketched in Appendix B. We choose
here, however, to derive this set of integral equations
from the standpoint of electrodynamics.

Consider once again the ionic crystal slab sketched
in Fig. 1; it extends to infinity in the x and y directions,
and its surfaces lie on the planes z=--¢. The optical
modes of vibration will be found in the long-wave
approximation; i.e., the displacements ut and u— of
the positive and negative ions are slowly varying func-
tions of position, and it is meaningful to introduce a
macroscopic polarization P(r,f) and an average electric
field Eu(r,f). Thus we require that the thickness 2a
of the slab be much larger than an interatomic distance,
otherwise even the normal mode with the longest
wavelength could not be treated in this approximation.

Because of translational symmetry in the x and y
directions, the polarization P(r,?) for any normal mode
contains the factor e®*=7¢éw¥; for simplicity, imagine
that the x and y axes have been rotated so that k,=0.
Then the general form of the polarization for a normal
mode with frequency w is

P(r,t)= F(z)eitk==—er, 3.2)

where F(z) is an unknown function. This polarization
produces an electric field, which we evaluate at the site
of an ion located at the point (0,0,2). It is convenient
to divide the crystal into three regions, marked I, II,
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and IIT in Fig. 1. The field at the observation point is
produced by the volume polarization charge p=—Vv+P
in regions I and II, by the surface charge p’=P-n on
the upper and lower surfacesof these regions and by the
polarization in the thin slab ITI.

Break region I into infinitesimal slabs of thickness dz’.
Each slab can be divided into uniform line charges ex-
tending in the y direction, with charge density pdxds’
per unit length. A line charge produces an electric field
of magnitude 2pdxdz’/r at the observation point, where
p is of the form po(z)ei*s>, Therefore the total z com-
ponent of the field due to the slab at 2’ is

0
dE,=—2d3' / poe**=7r~1 cos pdx

© cos (k.x)
= —4potds’ / dx
0o £
(region I),

= — 2mrpoe*=tdz 3.3

where
t=g'—3.

Similarly if the slab is in region II, below the observa-
tion point,

dEz= +21rpoe—kz|€|dz’ (region II)- (3-4)

The total field E,® due to the volume polarization
charge is

Y a
Er= / 2mpock=tds’ — / 2mpoeFetdy’ . (3.5)
—a b

But po can be found from Eq. (3.2): p(z’)=po(2")e*=*
=—V.+P=—[ik,F,+dF,/dz Je*== at t=0. Thus

po(z")=—[ikoFotdF./dz']

and

E’=2”[ik’/ Fule Yo r 9!
b

b asz
—ika / Fo(2)er==—2dz' + / — gk gy
b dZ’

¥ dF,
_/ ekz(Z'—Z)dz':l
o d7

a b’
=21rk,|:i / F e k== g/ —; / F ek=te'—2)dg!
b

-—a

a 124
-I-/ F,e‘k”(z"z)dz'—l-/ er"“("“)dz':l
b —a

a

Y
b

b

25 F o ke (3.6)

—-—a
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The surface charge density can also be broken into
line charges in the y direction with charge density p’dx
per unit length. p’ is also of the form p’= p¢'e?*==, There-
fore the contribution of a surface at 2’ to E, is

2>z
<z,

Ey'=—2mpe ks,
_ ’ ,_
= +27rp0 e+kz(z z)’

3.7

in analogy with Egs. (3.3) and (3.4). Since po'¢®+#= P+n,
po takes on the values F,(a), —F.(b), F.(?'), and
—F.(—a) on the surfaces at a, b, &, and —a. The total
surface contribution to £, is

Ep=2a[—F . (a)e "=\ =+ F,(b)e k(02

+F. ()¢t —F,(—a)et==2].  (3.8)
This surface contribution exactly cancels the last two
terms in Eq. (3.6).

Similarly, the volume contribution to E, from slabs of
thickness dz’ in both regions I and II is

00
dE,=—2d3 / poe™*=7r~1 sin pdx
—00

= —2mipodz e FelEl (3.9)

Equation (3.9) differs from Egs. (3.3) and (3.4) only by
a factor of ¢ and by a minus sign for region II. Thus
E.¥ can be found simply by changing the appropriate
signs in Eq. (3.6) and multiplying by ¢:

a b
Ep= 27rik,|:i / Foekez—2)gs g / F k== g
b —a

a b
+ / F e he(Z—a gy — / F,e’“z(z'“”dz']
b —a

a 14

2P o=
b

+ 20 F ka2 (3.10)

—a

Similar changes of Eq. (3.8) give the surface con-
tribution to E,,

E,*=2mi[ —F,(a)e 4 F, (B)e k==
— F,(t') =¥~ 4 F,(— g)er=—o-27, (3.11)

which again cancels the last two terms in Eq. (3.10).
The component P, produces no polarization charge;
therefore E,’=E,*=0.

The contribution from region III can be found in
the limit as the thickness of this region approaches zero.
In this limit, the variation of polarization in the «x
direction can be disregarded, and the region can be
treated as uniformly polarized slab, for which D,=0
and E,*v=E,*v=0.19 The local field at a lattice site is

E}=E,+4rP,/3= — (4xP,)+4rP,/3= — (8x/3)P,,
Ej=E+4xP,/3=4xP,/3, (3.12)

10 M. Born and K. Huang, Dynamical Theory of Crystal Lattices,
(Oxford University Press, London), Chap. II, Sec. 9.
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and
E/}=E,*+4xP,/3=4xP,/3.
Since P=F(z) at the point (00z) and at {=0,

EJi=—8r/3)F.(2), (3.13)
E}l= (4”"/3)Fz (Z) ) (3-14)
E,l= (4x/3)F,(2). (3.15)

The total local field is found by adding the three
contributions given by Egs. (3.6), (3.8), (3.13) and
(3.10), (3.11), (3.14), taking the limits d— 2z and
b’ — z in the integrals over z'.

8r ¢
===+ [ Gl

—a

—l—i/ Ga(z,2)F.(2")ds, (3.16)

—a

4 a
E,=—3—F,(z)—/ G(2,7)F.(z)d7

+i/aGA(z,z’)Fz(z’)dz', (3.17)

—a

E,=(4n/3)F,(2), (3.18)
where
G(3,5")=2mk e ¥l ==#1 | (3.19)
and
Ga(z,8)=2nk e sl =21 | (3.20)

in which the plus sign is taken for 2>z, and the minus
sign, for 7'<z.

In the long-wave approximation, the equations of
motion of a pair of ions can be written in terms of the
relative displacement u=wu,—u_ and the reduced
mass u:

w020/l =—uwutqE, (3.21)
where w is the optical-mode frequency which the lattice
would have in the absence of Coulomb forces between
the ionic charges =-¢.!° Since all quantities have an
et time dependence, 9%u/dr*=—w?u. In addition, u
is related to the polarization by

P(r,)) = F(2)e?*Fzz—ot = pqu(r,s), (3.22)

where » is the number of ion pairs per unit volume.
At =0, t=0, F(z)=nqu. Therefore, Eq. (3.21) can be
written as

— (uw*/ng®) F= —p(wi/ng?) F4-E. (3.23)
If we introduce the dimensionless frequencies
A= pw?/ng?,
was/ng (3.24)

No= pewe?/ng*,

and use Egs. (3.16), (3.17), and (3.18) for the com-
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ponents of E, Eq. (3.23) becomes

()\o-l-il"’\)F S(2)= _/ aG(%z')Fz(z’)dZ'

-—a

+i/ Ga(2,2)F.(d)dz, (3.25)

-—a

(M—i’;l'—x)z«*,(z>= - R XY,

—a

+i/aGA(z,z')F,(z’)dz', (3.26)

-—a

(No—4m/3—N)Fy(2)=0. (3.27)

These are the basic coupled integral equations which
must be solved. Equation (3.27), which is not coupled
to the other equations, can be solved immediately : The
eigenvalue is A=Ao—4x/3, and F,(z) is an arbitrary
function of z. This eigenvalue Ao—4w/3 is equal to the
usual to £=~0 frequency for an infinite crystal. Since the
y component of the polarization does not produce
polarization charges on the surfaces, the finite slab
behaves as if it were an infinite medium. All transverse
polarization waves of the form P(x,2)=et+%¢"*s2j are
solutions, and they all have the same TO frequency.
Therefore, the function F,(z)e?*+7j can be thought of as
an arbitrary linear combination of such transverse
waves, keeping %, fixed.

If we let a — 0, Egs. (3.25) and (3.26) give the usual
solutions for an infinite crystal. In this limit, the trial
functions F,(z)=C,e****, F,(z)=C,e**+* are appropriate,
and Egs. (3.25) and (3.26) become

8 Ak drkok,
Aot——2)C,= Ci— Coy  (3.28)
3 T
4 Ark? drkok,
(xo————x)cﬁ— Co— C.. (3.29)
3 S+k.2 St+kE

Solving the secular equation for A, we find the TO mode,

4 C: k.
)\=>\o—?, with —=——, (3.30)
and the LO mode,
8 Cs
)\=)\o+—3—, with —=— (3.31)

Before proceeding with the solution of the integral
equations for a finite crystal, it is convenient to intro-
duce dimensionless variables for distance, {=z/a, the
wave vectors, s,=k,e¢ and s,=k.¢, and a new eigen-
value, y= (A—No)/27—%. Equations (3.25) and (3.26)
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F16. 2. Frequencies of the normal modes in a slab. The dimen-
sionless eigenvalue v is related to the frequency w by the expression
y=[u(w?—wd)/2rng*]—%. In Fig. 2(a), the sinusoidal modes
exist only for integral values of the index m. Figure 2(b) shows
the eigenvalues of the surface modes as a function of the x com-
ponent of the wave vector s.

become
1

—vf:()=—F£6)+ | KE§)f0)ds’

+i| KaG)f=0ds", (3.32)

-1

—vf()=f()— | K@) (s’

-1

1
+i| KaG$)f:)dg", (3.33)
-1
where

f2()=Fa(a), f:()=F.(z)

and

K(§,8) = s,e oot (3.34)

Ka@8)=speee 881, ((-i—) for §">§)
(—) for ¢'<¢

The new eigenvalue v has been chosen so that the
infinite-crystal TO and LO modes at A=X\o— (47/3)
and A=+ (87/3) correspond to the values y=—1
and y=-1.

Since the slab is symmetric with respect to the plane
¢=0, it is convenient to choose the functions f.({) and
f=(¢) to have definite parities. The kernel K ({,¢’) does
not change the parity of a function on which it operates,
but K4(¢,¢") changes the parity. Therefore, if f({) and
f2(¢) satisfy the integral equations, they must be of
opposite parity. It is not difficult to prove the following
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symmetry property of the eigenfunctions and eigen-
values: (i) If fz({) and f,(¢) are eigenfunctions with
eigenvalue v, then fo(§)=f*(¢) and f.(§)=f*(5) are
eigenfunctions with eigenvalue 7= —~. Therefore, the
eigenvalues occur in pairs which are symmetrically
situated about y=0. If we find an eigenvalue v belong-
ing to the function f,, with even parity, and f,, with
odd parity, for example, then we immediately know
that there is another eigenvalue at —v, and we can
write down the corresponding eigenfunction,

The reality of the eigenvalues and the orthogonality
of the eigenfunctions also follows from the integral
equations: If ##(¢) and f7({) are two solutions belonging
to different eigenvalues 4™ and v, then

1
7 frdr=0.

—1

(3.35)

A partial solution to the integral equations can be
found by converting them to a differential equation.
We note that

d 1 1
p K $NfENde'=s. | Ka$)f(dg"  (3.36)
—~1 -1

and

d 1
— | Ka()fENds’
dg

—1

=sx[ K(f,s“’)f(f’)ds“’~2f(§“)], (3.37)

where f(¢) is an arbitrary function. If Eq. (3.32) is
differentiated once with the use of Egs. (3.36) and
(3.37), it becomes

~'Yfz'=—fz'+sz/KAfzds“’+isx[/fods“’—2fz}

= —'fz,+i('y'°° 1)s;cfz

o f/=—idsofz, H y=£+1. (3.38)
Similarly, Eq. (3.33) gives
fo=ts,f, i yx#—1. (3.39)
From Egs. (3.38) and (3.39), we find
J"'=sifz; (3.40)
therefore, the general solutions are of the form
fo=Ciresst+Coeost .41

fo= —i(Creosf—Caeost) .

The eigenvalue v and the constants Cy and C, are found
by requiring that f;(¢) and f,(¢) satisfy Eqgs. (3.32)
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TasLe II. Eigenvalues and normalized eigenfunctions for polarization waves in a slab. The normalization constants C= (s,/sinh2s,)1?,
Iim= (s2+ (3mm)?)2 have been chosen so that /Zi(|f2(§) |+ f=(¢)|9dt=1. The sinusoidal standing waves are labeled TO or LO
because they can be formed by taking appropriate linear combinations of TO or LO traveling waves with ¢ dependence exp (=4s.¢),

where s,=3mr.

Type of Eigenvalues Eigenfunctions Allowed values
mode ¥ f=(©) S=(%) of m

Surface —¢ 28 C coshs.¢ —1C sinhs;¢ .
Surface 428 #C sinhs,{ C coshsz¢ .-

TO -1 — (mw/2hm) cosimny 2(55/bm) sindmal 2,4,6,

LO +1 —1(s2/hm) singmm{ — (mw/2hm) cosimmy 2,4,6,

LO +1 (s2/hm) cosymmi t(mw/2hp) singmwrs 1,3,5, -

TO —1 —1(mw/2hm) singmny (52/hm) coszmmy 1,3,5,

and (3.33). The results are
fe= 3o,

fo=—C(e =t —ese8) | with y=—e2=, (3.42)
and

fe=HiC(e=t—ee),

fi=3C(e=f+e=f),  with y=+e2=. (3.43)

These eigenfunctions and eigenvalues satisfy the general
symmetry requirement (i). If 5,531, these solutions are
localized at the surfaces. Therefore, they will be called
surface modes, even though they extend through the
entire crystal when 5,51,

Equations (3.38) and (3.39) were obtained by can-
celling factors of y—1 and y-+1 which occurred on both
sides of the equations. This implies that solutions exist
for which y==1; accordingly, we try sinusoidal solu-
tions of the form

f2(§)=C, cosymy,
f 2 (g- ) = 1Cz Sin%m'”'g‘ )

where m is an unknown constant. The kernels K and
K 4, when operating on these functions, yield not only
the same sinusoidal functions, but in addition, ex-
ponential functions e+*=f, When these trial functions
are inserted into the integral equations (3.32) and
(3.33), the result is

[Cz (7_ 1+2s zzhm_2) - C_,;’WI,WS:hm—2] sin-%’rmrg‘

(3.44)

—V(e=t—eset)=0, (3.45)
[Co(y+1—252hm~2) — Coma s hu 2] cosimm(
+V(ets¥+4e8)=0, (3.46)

where

V=s.6%[C,(s, cosymn— Lmm sinimm)
+C,Gmr cosimm—+ s, singma) |/ b
and
hn?= 52+ Gmr)?.

The condition V=0 gives
Ce
C.

Imm cosymm+s, singmar
= . (3.47)

2mw singmw— s, cosymar

The condition that the coefficients of sinimwx¢ and
cosjmm{ vanish gives two equations involving C,, Cj,
and v, which are of essentially the same form as Egs.
(3.28) and (3.29). The eigenvalues are the same as for
the case of an infinite crystal: y=—1, with C,/C,
=—mn/2s, and y=+1, with C,/C,=2s,/mn. These
ratios of C,/C, must agree with Eq. (3.47), which gives
C./C,=—mm/2s, when m is an even integer, and
C./C,=2s,/mw when m is an odd integer. Therefore
the eigenvalues and ratios of coefficients are

Cs mm
y=-—1, =TT, m=2:4y 67 g, Tt
C, 252
(3.48)
Cs 25,
=41, —=—, m=1,3,57,---.
C., mmr

For each of these solutions, there is a related solution
with eigenvalue of opposite sign, by (i). The ¢ depend-
ence of the solutions (3.44) is such that there are exactly
m half waves across the thickness of the slab, from
{=—1to {=+1. Table IT summarizes the eigenvalues
and normalized eigenfunctions. Figure 2(a) shows the
TO and LO frequencies, which are the same as in an
infinite crystal; the only effect of the finite thickness is
to quantize the wave number s,. The surface modes can
be considered as the missing 72=0 modes in Fig. 2(a).
Figure 2(b) shows how the frequencies of the surface
modes converge to a single value lying between the
usual TO and LO frequencies as the slab thickness 2a
increases, with &, constant. On the other hand, when
k,a— 0, the frequencies approach the usual TO and
LO frequencies. In this limit, the polarization associated
with the surface modes extends uniformly over the
entire thickness of the slab;i.e., f,(f) — const, f,()— 0
for the low-frequency mode, and f.(¢) — 0, f.(¢) —
const for the high-frequency mode.!

If the surface-mode eigenvalues y=--e2%= are ex-
panded in powers of s,, the first-order approximation
y=~=%(1—2s,) agrees with Egs. (2.20) and (2.21),

HR. A. Ferrell, Phys. Rev. 111, 1214 (1958), has discussed
plasmon surface modes in a thin metallic slab; these are very
similar to the surface modes in ionic crystals. Ferrell’s treatment,
which is based on'la dielectric constant e(w), can also be used to
derive the results found in this section.
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obtained by conventional lattice dynamics in the limit
kL<L1. The relationship between the dimensionless
eigenvalue v and the angular frequency w? is

w*=we+ (4rng?/3u) Gv+3)
=E/u+F/u)Gv+3), (3.49)

where E=puw¢® is the short-range force constant and
F=4rng?/3=2n¢*/3rs is the Coulomb force constant.
Equation (3.49) reduces to Egs. (2.20) and (2.21) when
the eigenvalues y=~=(1—2s,)==4(1—kLsinf) are
inserted. The “eigenfunctions” for the high-frequency
mode in a thin slab (2L<1) found by standard lattice
dynamics, when expressed in terms of the polarization,
are P, eihszeiherx const X eth=?, P,=0 [Egs. (2.5) and
(2.18)]. These functions are a zero-order approximation
to the true eigenfunctions for the high-frequency surface
mode, P,«coshk,ze®s?, P,c«sinhkgze*s* and become
identical to the true eigenfunctions when 2L — 0 and
k,L — 0. This shows why, when £,>0, the approximate
eigenvalues given by (2.20) agree with the exact eigen-
values to first order in %,. Similar arguments apply to
the low-frequency mode.

In a thick slab (RL>>1), on the other hand, the
““eigenfunctions” obtained by standard lattice dynamics
are transverse or longitudinal polarization waves [Eq.
(2.19)7]; since they have very little overlap with the
surface modes, they can be expressed primarily as linear
combinations of the true sinusoidal modes, with fre-
quencies »7o and vro. For this reason, standard lattice
dynamics applied to a thick slab does not yield the
surface mode frequencies.

For a slab of arbitrary thickness, the frequencies of
all normal modes are either »1o or vLo when k,=0.
This occurs because the volume and surface contribu-
tions to the local field from the distant regions I and IT
vanish, leaving only the contribution from region IIIL
Then G(z,5")=Ga(3,2)=0, and Egs. (3.25) and (3.26)
give the eigenvalues immediately. It is clear that the
eigenvalues obtained for k,=0 by standard lattice dy-
namics [Egs. (2.17) and (2.18)] must be correct, since
if we expand the assumed solutions with z-dependence
e+ in terms of the true eigenfunctions, only the fre-
quencies »to and v1o can enter. By setting &, (or s;)=0
in Table II, we also see that motion in the « direction
involves only »1o and motion in the z direction, only »ro.

Inclusion of Atomic Polarizabilities

It is not difficult to include the atomic polarizabilities
a; and a_ of the positive and negative ions, which have
been neglected in the foregoing derivation of the normal
modes and frequencies. a;. and e do not enter explicitly
into Egs. (3.2) through (3.21). When atomic polariz-
ability is included, Eq. (3.22) becomes

P=F(z)=n(qu+cE) (3.50)

at ¥=0, t=0. « is the total polarizability ay-+a_, and
E is the local field at the ionic sites. If the relative dis-
placement u is eliminated from Egs. (3.21) and (3.50),
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the result is

Ao—N
(—)F=E, (3.51)
14-na(Mo—N)
where
No= pwdi/ng?,
o=wad/ng (3.52)

N =uw"/ng?.

The primed quantities N and o’ refer to this case in
which polarizability is included. The only difference
between Eq. (3.51) and Eq. (3.23),

(—NF=E, (3.23")

is that the quantity (\o—\')/[1+na(o—N\')] appears
instead of No—A\. The basic integral equations (3.25),
(3.26), and (3.27) are modified in the same way. The
equation Ag—A= (N\o—\")/[1+na(Ao—\’)] can be solved
for N, giving

N =No+[A—Ao]/[14+na(A\—Xo)]. (3.53)

If we know the eigenfunctions and eigenvalues A without
atomic polarizability, then the eigenfunctions with po-
larizability are unchanged, and the new eigenvalues A’
are given in terms of A by Eq. (3.53). The eigenvalues
for the TO and LO modes in an infinite crystal become

4r 4r/3

TO: y=—1, A—Ne=——, N=\p0—m——;
3 1—4nna/3
(3.54)
8 8r/3
LO: y=+4+1, A—=—, N=At——m.
3 1+4-8rna/3

The only quantitative change is that the relationship
between v and A, which was linear, becomes nonlinear.
Thus, the eigenvalues for the surface modes in the limit
of large k.a, which approached y=0 or A—\p=+42x/3,
a value exactly halfway between the TO and LO eigen-
values, now approach N =g+ (2r/3)/[1427na/3],
which lies nearer to the LO than the TO eigenvalue.

Slab on a Conducting Substrate

Those normal modes in a slab of thickness 2a for
which the polarization F,(z) or Fy(z) is an odd function
of z are also normal modes for a slab of thickness a on
a perfectly conducting substrate at z=0. For if F,(z)
and F,(2) are odd functions of z, then F,(z) is an even
function of z; from Egs. (3.16), (3.17), and (3.18), the
local field components E,(z) and E,(z) are odd func-
tions of z, and so are the average fields E,*(z) and
E,2v(3). Therefore, the components of the average field
parallel to the conducting plane at =0 vanish, as they
must. Of the normal modes listed in Table II, only
those on lines 2, 4, and 6 are present. It is interesting
that the low-frequency surface mode is absent.

IV. OPTICAL ABSORPTION

Let us assume that absorption of light by a crystal
slab can be ascribed to the excitation of the normal
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modes. If reflection and refraction at the surfaces of
the slab are disregarded, so that the additional electrical
field inside the slab is the same as the field of the
incident wave, the absorption due to a particular normal
mode is proportional to the square of the overlap inte-
gral of the field of the incident wave and the polariza-
tion for that mode. For a very thin slab, in particular,
this field is essentially constant over the thickness of
the slab and couples only to the ‘“surface” modes.
Equations (3.42) and (3.43) show that in the thin-slab
limit (s;— 0), the x polarization of the low-frequency
mode is constant and the z polarization is zero, whereas
the reversed situation holds for the high-frequency
mode. Thus when light polarized in the x-z plane is
incident normally on the slab, it excites only the low-
frequency mode at »ro, but if it is incident at an
angle 6%0°, there is a component of the field in the z
direction which excites the high-frequency mode at
vro. It follows that the absorption at »ro is propor-
tional to sin%f.

This result for optical absorption in a very thin slab
essentially agrees with that of Berreman.” He intro-
duced a complex dielectric constant e(w), applied Max-
well’s equations with appropriate matching conditions
at the surfaces, and derived expressions for the trans-
mission and reflection coefficients. As Berreman has
pointed out, since e— at »ro (for no damping),
there must be a normal mode with polarization per-
pendicular to the surface at this frequency. Also, a
normal mode with polarization perpendicular to the
surface at vro is consistent with the fact that e=0 at
this frequency. These two modes are precisely our
“surface’” modes in the thin-slab limit.

The concept that the normal modes give rise to
optical absorption happens to yield the correct result
only for a thin slab and is actually not valid. When
retardation is included, one finds that the radiative
solutions to Maxwell’s equations, with fields extending
to infinity, are distinct from the localized solutious,
with fields decreasing exponentially at infinity. Thus,
the problem of transmission, absorption, and reflection
of light by the slab, which involves the radiative solu-
tions, has no immediate relation to the normal modes,
which involve localized solutions. A detailed account of
the effects of retardation will be published in the future.

APPENDIX A: EVALUATION OF THE
COULOMB MATRIX ELEMENTS

Starting with the Coulomb energy (we neglect
retardation)

99§
=1x . e —, (A1)
[ |x(; H4ul; H—=;7)—ul’; )|
it can be shown that®
N o 1 .
Cont (k3 4.1)= z[ { }] g (A2)
mj n70L.0xdy Il’— anl 1=0

IN ITONIC CRYSTAL SLAB A 2085

and
Ca(k; 4,5

~qqu, Z[ 9 4 1 }:l ike (an—rjj)
= etk (@n—rjit) |
(mgmi )12 n Loxdy || r—an|) deeryy

(A3)

where a, generates the fcc lattice of either anions or
cations and r;; is the vector connecting the two atoms
in the unit cell.’?

In the limit A>>7, Cohen and Keffer'® have shown
that the sums in (A2) and (A3) become

1 /4rn 3kikj
2793\ 3 k?

for an infinite crystal, the coordinate directions here
represented by the subscripts ¢ and j. The simplest
way to obtain the matrix elements of interest in the
present case is to subtract from (A4) the contribution to
the sums from outside the slab, which means, since we
are considering the equation corresponding to the posi-
tion (0,0,2), a subtraction of the contributions from
2z>L; and 3<—L, (see Fig. 1). For long wavelengths,
this can be accomplished by an integration over the
region outside the slab. It should be noted, however,
that in the small % region, the same results can be
obtained by a direct integration over the slab itself.

Since
3(an)i(an); 8

lan|®

(A4)

92 [ 1 ]
ar,-arjl_lr—a,.l ,.:o—

|aa|s’

we must evaluate the integrals

ezk T
/ / / d3r
z outside ll' "

x=—ow y=—

(AS)

for n=3 and 5, recognizing that the desired quantity
will result from .S5 upon taking derivatives with respect
to the components of .

Consider

s |1 ] e

x==—00 y==—

e@kxzetkyyetkaz

dxdydz. (A6)

x2+y2+z2) 3/2

The integrals over x and y can be performed using
Fourier transform tables'* with the result

T3 [° Koya(k,z)et=
Sy= (2mk, )12 dz
INCNSA Vs
12 There is an additional term entering (A2) which is given as
(@xd)zy in the paper of Kellermann (Ref. 5). This term is zero for
an infinite crystal but not for a finite crystal. Since this term will,
in practice, contribute to (A2) only when one is evaluating the
Coulomb coefficients very near a surface, we neglect it here.
18 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
14 See, for example, W. Magnus and F. Oberhettlnger, Formulas
and Theorems for the Functions of Mathematical Physics (Chelsea
Publishing Company, New York, 1954), pp. 118-120.

)
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where k,= (k2+%,2)"? and K_y2 is the Bessel function S becomes
of the second kind. Since

S5—_—e(ikz—kp)L1{ 1 +M]

K_y5(x) = (/2x)" %=, 2L2 2L,
Ss becomes (hoeh)?
Ss=2xF{(ik,—k,),L1}, A7 tka— .
where =2l wfal (A7) +— _p“F{ (k—k,), L1}, (A9)
0 e.fz
F(EL)= | —ds. (A8)  where F(g,L,) is defined by (A8). Adding the quantity
LV —5;S3 to —3(32Ss/0k:dk;) and dividing this sum by

2r¢® gives the contribution of the upper excluded region
to be subtracted from (A4). It is easy to show that the
contribution of the lower excluded region, from — L, to

We can evaluate S5 in much the same way. The
integrals over x and y give

m\2  T'(3) [ et — o, to S3 and Sj is given by that from the upper
Ss= (”) ko®* s / a2 Ky2(k,2)dz region by replacing L, by L, and %, by —k.. The evalua-
. 2 r®)/n s tion of the sums, in the case where the derivatives are
and, since 12 (142) to be evaluated at r;;», can be shown to yield identical
Ks2(x)= (f) e, results with the above case corresponding to the evalua-
2 X312 tion of the derivatives at r=0. The results are

.. _qu2—2 kz2 k;,;? e(lkz—kp) L1 p(—ike—kp) L2
Cut(k; 7,7)= —{1-3— 4 — . 4 ‘ ’
rém; L3\ B/ R, \(ky—ik) (R, tik.)

N B2\ k2 (eCkekLll  pl—ikakp) L2
Cot (k5 s 7)=— —(1—3—)+_{ — : }:I
ro'm; L3 B/ b, U(k,—iks)  (k,tiks)

— g2 k.2 oCikrkp) L1 p—ikrkp) L
szc(k; j)j)= [~<1~3_>_kP{ . = . }jl’
roém;L3 k? (kp—1ik,) (R, +ik.)

N _TQjZkzkyI—_Z 1 (elkekp Lt  g(—ikekp)Ls

Cae(16 7:) = P e 1 |
roém; B kU (k,—ik,) (R, +ik,)
 —mgPk =2k, (elReROl kbl

Cost(k; o) =— 1’ : : H,
rém; L k2 (ky—1ik.)  (k,+ik.)
. —~1rqj'2kz_—2kz ) e(ikz—kp)Ll ¢(tkz—kp) L2

Curr (s ,7) = e 1],
rom; L R (ko—1k.)  (k,+ik.)

C..°(k; 7,7)=C..°(k; 7,7)* and likewise for C,,(k; 7,7) and C,,(k; 7,7). The matrix elements Cos°(k; 7,7") can be
obtained from C.s(k; 7,7) by replacing q?/m; by q;q;/ (mm; )2,

APPENDIX B: INTEGRAL EQUATIONS FROM LATTICE DYNAMICS APPROACH

With the assumed displacements of the form given by Eq. (3.1) the equation analogous to (2.6) becomes

Wi (k2) =2 2 Dag(ll'; 5,7 Ywsy (k') (B1)

1 i'8
where [, is the 2 component of lattice vector /,

Daﬁ (lz7lz, ; j}jl) = (qun]’)-—llz Z Qaa(l7ll ; j’jl)eikzlxz(l’;i')_zz(l: 1)l eiky{Zﬂ(l';j,)_lﬂ(l;i)) b (Bz)

Io' Ly

and ®.5(LV; 7,7) is defined by (2.4). We separate D into two parts, D4s°(l.,l."; 7,7') corresponding to the Coulomb
interactions and D.g*(l.,l."; 7,7") corresponding to the short-range interactions.
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Consider the case of the Coulomb interactions. For illustration, we will examine in detail the term

0aB

N
Daﬁc(lz,lz§]7])_'- 2 [

mj Ly

{0 (D)= (1)}+{y () — 2, (1) {2 () — ()}
3{wa(D)—xa(I)}{as(D) —x5(1)}

() — 2 ()} {0y () — 2, (1)} s (D — (1)}

Since we are interested in the long-wavelength range
and the sums are over all /,’ and /,/, we can move the
origin to ion / and integrate, The first term in the sum
in (B3) then can be written

e‘tkzxdx
Si=o— ] citovdy / (B4)
o [yt Jor”

where we have for convenience placed the two ions in
a unit cell in the -y plane and

2——{952(1) xz(l’)}2~{z Z !EI

For 970, (B4) can be integrated (see Appendix A)
with the result
Sy= (w/nr¢*)e e, (BS)

where k,= (k2+k,2)2 Considering for the time being
that the sum on .’ in (B1) retains its discrete character,
7 will be an integral multiple of 7. Thus (BS) is valid
for all allowed 5 except 9=0.

When 5=0, the condition >4/ in (B3) means we
must exclude the ion at the origin. We do this by sub-
tracting from S; the contribution .S3’ from a circle of
radius e~7¢ in the x-y plane,

™ ™
YA S— (B6)
rén 1o (E4P)H
so that, for =0,
Sa—Sz (7!'/7’0 6) (7l'k /7'02) (B7>

The second term in (B3) can be obtained by evaluat-
ing the integral

1 0 0 eikzzdx
Sg=—| ettvyd ———  (BY)
2] —o [Py I
which is equal to
Ss= (x/3rc'n") (1+nk,)e . (B9)

For 970, we can then obtain D.°(,l.";7,7) by
taking 30%S5/0k.% adding (BS), and multiplying by
¢/mj. Thus,

g Tk
Dot (Il 5 §,9) =—— —e e, (B10)
mire® kp
For =0 there is an additional contribution to D which
must be considered. That quantity which must be
subtracted from 362S5/0k.2 coming from a circle of

Jeik;(zz(l’)—zz(l)]eilcy{zy(l’)—zy(l)}' (B3)

radius e about the origin is

syl [

3w [ -1 | 1 ' (B11)
- 27’0211[. 1+ 62/7]2)1/2T3 1+ 62/112)3/2TS] ’

x*dxdy
x2+y2+,,]2:|5/2

so for n=0, we have
A I 2
Dt (125 5,5) =~—[ - } .

m; 1‘02,3,, 27’026

(B12)

The first term is clearly the value of (B10) for =0.
We call the second term the coplanar coefficient and
denote it by D,,* (l.,l.; 7,7), recognizing it to be the
excess contribution to D¢ for I,=1,’.

The remainder of the Coulomb coefficients can be
evaluated in a similar fashion with the result, valid
for all g,

g T R}
Dyye(l,1) :];])—*__“3 ko
mired k,
—g’w
D.2(l,l hi)= —k,e e,
mj 1’02
(B13)
g2 7 kiky
Doy (L)l 5 3,7) =Dyt (Ul 5 §,7) =—— e,
mire: k,

2

q; ik
Dzz (l27l2 7]v]) D, (lz7l2 ,],])———"—(Z“‘Z/>6 "kp
m; 7’0 n

9 i ky

Dyz (lzylz 1] .7) Dll/ (lzilz )]1])—‘_——(2_2’)6 ko,
m;ve" m

The coplanar coefficients are

2

, L. 4T , ..
D, (lz,lz;]yj)z =Dy (Leylz3 1,7)
m; 2roe
(B14)
, L T
D" (lole; §,7) =——,
m,'7’02€

all others being zero. The coefficients for jj becoming
74’ can be obtained from (B13) and (B14) by replacing
45%/m; by qsqjr/ (mim)!2,

It is a somewhat tedious though not difficult task to
show that the nonzero short-range coefficients in the
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long-wavelength range are!®

. g/ (A+2B)
Daﬂ! (lz,ls, 5 j}j) = alsla'aﬂﬁ—;' .
m;  2ro3

o /A

Dzzs(lz;lzl;])],)__‘le‘(lhlz, ’ .77.7’)=—~ [5l,l,' (A+B)+(%B) (6l,,l,’+ro+8l,,lg’—-ro)] ) (Bls)
2re® (mjm;)'*

o 997 1 4

Dzzs(lz)lz,; .7;.7,)': d _|:ZBalzls"'l"—(alz,lz’+ro+5lz,lz’——ro):, ’
(mgm; ) 21 2

where 4 and B are given by (2.9).
We now use (B1), letting 37, — (1/7)/'d%’, and consider a=x and j=+ corresponding to a cation. The re-
sulting equation is

ey (—&) 7 k2
W,y (k,2)=— dz’[w,.,.(k,z’ )—— —e kot (kg )——— — —e |1k
70 slab My 1o k, (mem Y2y E,
& kb, (—&) 7 kb,
+wy (kg )—— e 1= kot (Kk,5") — a2 1kp
myre: k, (mym_ )2 E,
¢ wik, (3—2) (—e®) wik, (3—3")
+w=+ (k)z,)—— e “"”‘F—i—w,_(k,z’) ke k,,]
my ré |z—2| (mym P2y |z—7|
& (4+2B) e 1 ¢ B
} w41 (K,2) —(44B)w,—(k,z) ——— ————w,_(k, z+7)
my 2r¢? (mym Y12 27} 47 (mym_ )2
S P LA . (kg), (B16)
—_— (K, 2—79)— s3 Wa—K,2
47 (mym_ )12 ’ my2r e - h (myam )12 27 2¢ ’

where we have used (B13), (B14), and (B15). Expanding those terms whose arguments are s=7 and eliminating
the anion displacements, since for optical modes

Wa— (k,Z) = (m+/m—)1/2wa+ (k7z) ’
(B16) becomes
1 2 3;2 ™ xky
o' w,,.(k,2) =——/ dz’liwﬂ.(k,z')— — —e 1= kbedgy (kg )— — ——ela ke
¥oJ slab M s kp M 7‘02 kp
& wik, (2—2) e (A+2B) e
+w2+ (kyzl)—' 6—Iz—z’lkp]+__ T Wayt (k72)_ T Wet (k,Z) ) (B17)
poré |z—7| b 2rg u 2rde
where y is the reduced mass. Using £ and F defined by (2.12) and (2.14) this can be rewritten as
w*— E/u~+3(roF/ue) kZ
- - :]w,,+ kyz)={ d7 [wﬂ(k,z’ )—e 171k
%(F/l‘) slab P ok ( I)
z3—2
Ho syt ik ] 19
P 2—3

An additional pair of equations for w,, and w,, can be obtained in a similar manner. By considering an infinite
crystal for which the eigenfrequencies are known, one can show that e= 2o. Using this value of € and orienting the
crystal so k,=0, we have finally

(W*—E/p+F/u)
$(F/w)
which is identical to Eq. (3.26).

!

(z—=z
o (2) = dz'[w(k,z')kze—'w"kz+w,+<k,z'>ikzI ,)le—'“'“m], (B19)
slab

2—3

15 We neglect the changes in these coefficients which occur for surface ions.



