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The lattice thermal conductivity for monatomic crystals is discussed for high temperatures, above and
around the Debye temperature. While this problem cannot be treated in a suitable way by conventional
methods for calculating transport coefEcients, it represents an excellent example of the use of correlation-
function techniques. By splitting the total anharmonic interatomic lattice potential into its diagonal and
nondiagonal contributions, V= Vd+ V d, the eGect of the equilibrium and nonequilibrium properties of the
crystal lattice on the thermal conductivity can be studied separately. The current-current correlation
function is calculated to second order in V in a single-phonon-lifetime approximation. While U d only con-
tributes in this approximation to the space-time-dependent part of the correlation function, Ud contributes
as well to the space-time-independent part. The latter contribution Vd' represents a temperature-dependent
Hartree approximation of the lattice potential and determines the equilibrium properties of the crystal
lattice. At constant pressure Vd' gives rise to the thermal expansion of the system, which causes a decrease
of the Debye frequency with increasing temperature, resulting in a depression of the conductivity below the
1/T behavior. Even in the case of constant volume, the temperature dependence ot Ve' causes a decrease
of the phonon frequency with increasing temperature. This again gives rise to a depression of the conduc-
tivity below the 1/T behavior and leads to a T' term in the resistivity in the region around the Debye tem-
perature. This latter eGect is studied by taking into account the entire anharmonicity of the lattice potential
which leads to Vd and calculating the space-time —dependent part of the correlation function in lowest order
in the atomic displacements. Thus Peierls expression for the conductivity is rederived in terms of the
renormalized phonon frequency and group velocity due to Vd', rather than the pure harmonic approxi-
mation of the lattice potential. The entire dissipative mechanism of the system, which is given by the space-
time —dependent part of the correlation function, calculated to second order in U, cancels partially the effect
of Vd' on the conductivity. For temperatures around and just above the Debye temperature the temperature
dependence of the lattice thermal conductivity is given by 1/T(l+nT). With increasing temperature the
conductivity reaches a minimum, which is followed by a steep rise as one approaches a dynamical instability
of the system.

I. INTRODUCTION

S INCE Peierls' application of Pauli's raster equa-
tion' to nonequilibrium properties of crystal lattices,

there has been considerable interest in the question of
how the perturbed distribution of the system relaxes to
its equilibrium distribution. The problem of lattice
thermal conductivity was then mainly the problem of
ending an appropriate relaxation time. Models for re-
laxation processes have been studied' and were discussed
in view of general statements one could make on the
nature of Peierls' equation. ' 4

The usual formulation of transport coeKcients repre-
sents another problem in the case of the lattice thermal
conductivity. In recent years the use of correlation
functions for transport coefficients has been studied in
great detail' and proved to be more general than the
use of transport equations. However, the validity of
such a formalism which is based on a mechanical formu-
lation of the problem has been questioned in the case

of lattice thermal conductivity. Kubo's formula' for the
electric conductivity describing the response of the
system to an external electric field can be derived by
means of the exact Hamiltonian alone. In the case of
lattice thermal conductivity the external disturbance is
represented by a temperature gradient and so statistical
properties of the system have to be taken into account.
Local variables or local equilibrium have then to be
assumed in order to derive a correlation function in the
usual way. ' Theoretical investigations have so far
mainly been concerned with the problems of lattice
thermal conductivity as outlined above.

Recently, the occurrence of anharmonic terms in the
expression for the energy current was pointed out by
several authors. ' The simple-harmonic expression for
the energy current (which is diagonal in the phonon
variables' and is expressed in terms of the number of
phonons, the group velocity, and phonon frequency) is
corrected by diagonal and nondiagonal elements of
higher order in the phonon variables. Their effect on
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530 (1965);J. A. Krumhansl, Proc. Phys. Soc. 85, 921 (1965). occur because of different polarizations. Their effect on the con-
4 For a detailed review of this aspect of the problem of lattice ductivity has been discussed in Ref. 8. Being of entirely diGerent

thermal conductivity see P. Carruthers, Rev. Mod. Phys. 33, 92 nature than the nondiagonal elements of the energy current
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lattice thermal conductivity has been discussed to
lowest order" and led to the beginning of a power series
in the absolute temperature. For high temperatures,
where the fluctuations of the lattice atoms become very
large, the higher order corrections in the energy current
become very important and lead not to a diverging but
rather to a very badly converging expansion for the
conductivity. The usual adequate way of treating such
a problem is to try to re-sum the terms of the power
expansion.

Cboquard has succeeded in this manner in treating
the equilibrium properties of monatomic crystals in a
proper way. "A self-consistent equation for tbe phonon
frequencies was obtained yielding a dynamical insta-
bility of tbe system at a certain critical temperature T,.
A perturbation expansion of tbe internal energy could
be re-sumxned and the speci6c heat C, was discussed
for all temperatures up to T,.

The present paper will deal with nonequilibrium prop-
erties of lattice dynamics and in particular with the
calculation of the lattice thermal conductivity. A corre-
lation-function formalism for the conductivity is used.
A consistent treatment of tbe perturbation expansion
of the current-current correlation function enables one
to sum over the time-dependent and time-independent
contributions of the correlation function separately.
The effect of nonequilibrium and equilibrium properties
of the crystal lattice on tbe thermal conductivity can
thus be studied independently. The equilibrium prop-
erties, as far as they play a role in transport phenomena
in crystal lattices, will be brieQy reviewed.

Tbe mathematical devices developed in Ref. 11 which
have proved to be particularly useful in describing equi-
librium properties of lattice dynamics merit an extension
to the nonequilibrium case which will be incorporated
in this paper.

We will deal with the construction of an energy-
current-density operator to in6nite order in the atomic
displacements in Sec. II of the present paper. In Sec. III,
the lattice thermal conductivity will be expressed in
terms of the current-current correlation function. A
pair approximation will yield a closed form for the con-
ductivity in terms of time-dependent and time-inde-
pendent displacement-displacement correlations. The
latter are known as the mean-square fluctuations of the
lattice vibrations. An exact treatment (within the pair
approximation) will be given for the time-independent
part of the correlation function in Sec. IV. The resulting
renormalized lattice potential and its effect on the con-
ductivity will be studied by making a harmonic approxi-
mation for the time-dependent part of the correlation
function. A formally equivalent expression to Peierls'
expression for the conductivity is obtained. "

' See also F. Benin and L. Blum, Bull. Classe Sci. Acad. Roy.
Belg. 46, 862 (j.960).

n P. Choctuard, Selected To&cs in Lattice Dyttamics (W. A.
Benjamin, Inc. , New York, to be published).

'2 A preliminary report on this topic was given at the Ameri-

In Sec. V the time-dependent correlations are treated
exactly (within the pair approximation) and the elfect
of equilibrium and nonequilibrium properties of lattice
dynamics on the thermal conductivity is discussed. The
temperature behavior of the thermal conductivity is
given for a temperature regime from the Debye tem-
perature up to a dynamical instability.

A correction to the lattice energy current which bas
the features of a diffusion current will be studied in its
effect on tbe thermal conductivity in Sec. VI.

II. LATTICE ENERGY CURRENT

In order to treat transport phenomena in the correla-
tion function formalism it is necessary to deGne the
relevant quantities, i.e., energy density and energy-
current density, as continuous functions in space. This,
however, is not possible for crystal structure without
introducing some means of continuity in such systems.
As we know the correlation-function treatment is based
on a phenomenological equation for tbe transport co-
eKcient which gives a relation between two macroscopic
quantities, the temperature gradient and the resulting
energy current. Therefore, looking at the problem from
a more macroscopic than microscopic point of view it
seems to be more expedient not to resolve the crystal
into a set of individual atoms but rather describe it as a
continuum in which the crystal structure is imbedded.
Hardy' bad succeeded in formulating the energy density
and energy-current density as a continuous function in
space by introducing a weighting function A(x—tI,).
This function measures the value of a particular quantity
which is defined at lattice site tl; at an arbitrary point
in the lattice x. In the present paper we shall be con-
cerned with the calculation of tbe homogeneous and
static part of the conductivity which can be described
in terms of the homogeneous part of the energy-current
density alone. The device of introducing a weighting
function turns out to be a good mathematical trick to
evaluate the homogeneous part of the energy-current
density which does not depend on the particular form
of the weighting function.

Let us now define the energy density of a crystal
lattice by

where tp(tI, —tl;) denotes the potential energy between
two atoms with mass M at the lattice sites q; and q,.
Equation (1) differs from the usual expression for the
crystal Hamiltonian by taking for A(x—tI;) a distribu-
tion function (e.g. , Gaussian) with a finite width instead
of a b function. The definition of the total Hamiltonian

can Physical Society Meeting, 1965 (to be published), in Washing-
ton, D. C. ; J. Ranninger, Bull. Am. Phys. Soc. 10, 504 t,

'j.965).
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H= J'd'x e(x) leads to tbe normalization of h(x) will be used to derive an expression for the energy-
current density J(x). Using the equation of motion

d'x h(x) =1.

The continuity equation

Be(x)/Bt+div J(x) =0

Ate; (t)= —P

(3) we finally derive

Bv(Rj;+u;(t) —u;(t))

Be; (t)

Be(x)
P d, (x—q;)6, (t)

Bx'

u s(t)
M+-', P t(Rj;+uj(t) —u;(t))

2

-Bt (Rj~+u, (t)—u;(t))—:Z«( —«;)—~( -«;))
Be, (t)

Bt)(R;,+u;(t) —u;(t))
u'(t) (5)

Be; (t)

where we adopt the convention that a repeated index implies a summation.
u;(t) and R;; are defined by

u;(t) =q;—q R;;=« —q,'= —R;;.

The equilibrium position of the atom at lattice site q; is denoted by q, . After expanding the expression in the
curly bracket in (5) in powers of q;—q; and using Eq. (3) we derive the energy current density

00 8
J'(x)=Z ~(x—«')u"(t)[(lu"(t))~+l 2 e(Rj'+u (t)—u'(t))j+-' Z(0' —vj)' 2 —(I'—5)

i j(AO iwj n 0(n+=1)! Bx

(Bs(R;,+u;(t) —u, (t))
&& ZL(x —q;) ~

u;s(t)—
Be t'(t)

Bs(Rj;+u;(t) —u;(t))
u, ~(t) i. (7)

Bejt'(t)

For the calculation of tbe static and homogeneous part of the lattice thermal conductivity only the homogeneous
part of the energy-current density plays a role. This is obtained by integrating (7) over x and corresponds to the
Fourier transform J'(k) of J'(x) for k=0:

Bs(Rj;+u;(t) —u;(t))
~'(k=0) =2 u"(t)C(lu"(t))~+l 2 ~(R"+uj(t)—u'(t))3+-.' E(q' —qj)' (u;(t)+u'(t)) (g)

The first term in (8) represents a current due to a diffu-
sion process in our system. This term is usually of minor
importance in tbe case of lattice thermal conductivity.
However, for very high temperatures where the atomic
displacements become comparable with tbe interatomic
spacing, the effect of this diffusion term on lattice
thermal conductivity has to be considered and will be
discussed in Sec. VI. The second term in (8) corresponds
to the proper homogeneous energy-current density in a
crystal lattice. It can be written as a sum over individual
energy currents j„.' at each lattice site qi

J„.=c„..P, F,j(g,—gj),

where c„.represents tbe velocity of the lattice atom at
site q;, and Fe—=Bs(R;;+u;—u;)/Bu; is tbe force acting
on tbe atom at q; which is caused by the change of field
of its surrounding atoms due to its ovrn movement.

In the following paragraphs we will only be concerned
with this part of the lattice energy current which can be
vrritten after expanding the interatomic potential in a

power series of the atomic displacements u;(t) as"

J'(k=0) = ——.
' Z(R.+n.e*(t))'8.u'(t) pe"'"""' (R )

'hy P

(10)
Here vie use for simpli6cation of the notation,

R;;—=R„p=B/BR„
rt,u;(t) = (P ' ' *')—1)u;(t) =u;(t) —u;(t),

)),u;(t) = (P~'&'I'&')+1)u;(t) =u;(t)+u;(t),

and we have to keep in mind that the operator p only
acts on the potential t)(R,).

The appearance of the term (R,+t),e;(t))' rather than
R,' in expression (10) for the energy current arises from
the fact that the interparticle energy is not transmitted
between the lattice sites q; and qjs, but between their

» Prom now on we will use J'(h=O, t) to denote the intrinsic
part of the lattice energy current alone. Later on, when we treat
the diffusion current, it will be separately referred to.
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actual positions at q; and q, .For temperatures where the
mean-square fluctuations of the atoms are small corn-
pared to the lattice constant the term tI,u;(t) can be
neglected against R,. For high temperatures where

g,u;(t) becomes comparable to the size of the lattice
constant, we shall see in Sec. V that the sum over p in
(10) has to be carried out over a large range over lattice
vectors R~. Then again R,+ t,tu(t) can be approximated
by R, except for the first few lattice vectors between
nearest and next-nearest neighbors.

III. CURRENT-CURRENT CORRELATION
FUNCTION

In order to construct an expression for the lattice
thermal conductivity we have to ask for the response of
our system to an external disturbance in the form of a
thermal gradient. Such a disturbance applied to our
system leads to a state in which a total net Qow of energy
is observed. Mathematically such a state can be treated
as a perturbation of another state in which the system
is in equilibrium in the absence of a thermal gradient.
If the external disturbance is small (which is the case
in thermal conductivity measurements) a perturbation
expansion to first order in the external disturbance
(known as linear response) will yield a good description
of the system displaying transport phenomena. If we
are able by any means to construct an interaction
Hamiltonian setting up an energy Row in our system it
must be done in such a way that the system is never
brought out of thermal equilibrium while turning on the
external disturbance. This has already been pointed out
by K.adanoff and Martin. "

The expectation value of an operator 0(x,t) in a
system in thermal equilibrium is given by

Trpe et~ t'~&0(x, t)7
(12)(0(x,t))=Tr{p0(x,t) }=

Tr&—P(II—I &)

For a closed system, the term plV in the density matrix
p will vanish. Let us assume that we can define a local
temperature T(x) at any arbitrary point x in the crystal.
Changing the temperature at time t at x by an amount
bT(x, t) the density matrix can again be written in
equilibrium form using the modified Hamiltonian den-
sity e'(x) = e(x)+be(x),

be(x, t) = p(x, t)(bT(x, t)/T), (13)

8
dt' d'x Ket(x x', t—t') bT(x', t'),

(14)
'4 L. P. Kadanoff and P, C. Martin, Phys. Rev. 124, 670 (1961).

(J'(x,t))= —2

which arises from an expansion of P(x, t) =ET(x,t) ' in
terms of bT(x, t). E denotes Boltzmann's constant and
T represents the uniform temperature throughout the
system before the external disturbance, causing a tem-
perature gradient; was turned on.

The familar macroscopic relation,

will serve to de6ne the conductivity Kpt(x, x', t) in terms
of the current-current correlation function. J~(x,t) in
Eq. (14) denotes the energy-current density operator
in the presence of the external disturbance. J(x,t) can
be written in terms of the current density operator in
absence of the external disturbance Jp(x t). Taking into
account only linear terms in the external disturbance
we can rewrite Eq. (14) in the form

(J'(x,t))= i
bT(x', t')

dt' d xp'($Jp'(x, t), p(x', t')7)
T

(15)

d g
eiq (x— ) xkea(t t')~T~kl—(q ~)

(2pr)P

&3/
&iq (I—x )~—ice(t—t')

2pr (2pr)P

and finally obtain
XF "(q ~)(1—e-e ), (17)

2cpTX"(q td) =F&"(q)tp)(1—e e") .

F&"t(q,ep) is given by the Fourier transform of

F&"'(x—x', t—t )=(Jpe(x, t)Jp'(x', t')) for t) t'. (19)

Analogously we de6ne"

F& '(x—x', t—t') = (Jp'(x', t') Jp"(x,t)) for t(t' (20)

which is related to (19) by

F&'t(x—x', tp)=e Fe&(x x', tp). —' (21)

The causal two-point function F"'(x—x', t—t') is then
given in terms of F&pt(x —x', t—t') and F&et(x—x', t—t')
by"

Fp'(x —x', t —t') —= (T{Jpp(x, t)Jp'(x', t')})
=F&"(x—x', t—t') bt(t' —t)

+F&"(x—x', t—t')8(t —t'). (22)

"K.Bautnann and J. Ranninger, Ann. Phys. (N. V.l 20, 157
(1962).

'6Here we have to take the expectation value of the time-
ordered product of the energy currents which is denoted by
T(J~(xt)J'(xV) }.Since in the following calculation of the conduc-
tivity we always will deal with causal Green's functions, we shall
omit the symbol T in front of the operators from now on and
understand under each expectation value of two operators as the
expectation value of their time-ordered product.

The expectation value of the right-hand side of (15) is
to be understood as the average over initial variables
of the system at time t= —~. A comparision of Eqs.
(14) and (15) lnally gives

2i T(8/Bx')X" (x, x', t—t') = (LJp'(x, t) p(x', t')7) . (16)

Using the continuity Eq. (3) we can transform (16)
into the current-current correlation function
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After expressing Eq. (18) in terms of the causal Green's
function F2'(x—x', t—t'), we obtain a Kubo formula for
the lattice thermal conductivity

ReF~'(11=0, u ~ 0)= —2KT2Se"(if= 0, ~ ~ 0) . (23)

Inserting expression (10) for the homogeneous part of
the la,ttice energy current into (22) the current-current
correlation function can be expressed in terms of the
atomic-displacement operators

(q. ;q., + R;t)

(q' q)+Rp'f )

(q. . q. +Rp', e)l' l

(q;q +Rp, t)

16
d(t —t') g ((Rp+ it,u;(t))'2t, u;(t) pe»"'&'&

'VPP

Pro. 1. Diagramatic representation of the current-current cor-
relation function and its pair approximation. The circle represents
the total vertex for n-phonon processes.

X(R'+~'It(t'))'~'ut(t') y'~"'"""")~(R.)~(R').
(24)

The matrix element in (24) will now be calculated in the
pair approximation. This means expressing it as a
product of all possible contractions of operators in (24).
In other words we shall approximate the I-particle
Green's function in (24) by a product of one-particle
Green's functions. This will finally lead to the appear-
ance of the single-phonon lifetime rather than the relaxa-
tion time in the expression for the conductivity. In
order to obtain the relaxation time in the conductivity
we would have to write the e-particle Green's function
in terms of a product of a one-particle Green's function
plus a product of one-particle with two-particle Green's
functions and so on. The procedure of obtaining the
exact current-current correlation function is clear; how-
ever, to calculate it one step beyond our approximation
is already extremely dificult. In Fig. 1 a Feynmann
diagram representation for the exact current-current
correlation function and its pair approximation is given.

As pointed out above, the term R,+g,u;(t) in the
expression for the energy current can be approximated
by R,. Here we shall now calculate the current-current
correlation function by replacing R,+it,u; by R,. The
contribution to the correlation function left out by this
replacement will be discussed together with the diffusive
part of the correlation function in VI.

In this way we obtain for the current-current correla-
tion function

F"'(q=0, (o —& 0)

d(t —t') p Rp'R (2tpu;(t) ye& "'~'& 1'

&&PP

Xit, u;(t') y'e»' r'&'&'2')w(R, )v(R;), (25)

which contains now the effect of the entire anharmon-
icity of the interatomic potential. In order to calculate
the matrix element in (25) let us consider the typical
term

n,u;(t) .«(1/~')(n, u'(t) p)"
X8„.u;(t') y'(1/e'!)(rt, .u;(t') y')"', (26)

from which we have to take all possible contractions.
Contractions of two different types can be made in (26),
those corresponding to operators belonging to the same
time and those belonging to diferent times. Contrac-
tions of the first type lead us to consider the term

8„u;(t).p(1/12!)(2t,u;(t) p)" (27)

&2r)

possible ways of choosing a combination of 2r elements

(2t,u;(t) y) out of a set of 21, the contraction of (27), can
be written

(n,u'(t). y)" '" 1,
it,u;(t) y —(l((n.u'(t) p)'))" (»)

(n —2r)! r!
Contractions of the form (it,u;(t) «1t,u;(t) p) contain
the Fourier transform of 2t,2t „which is an odd function
of the phonon momenta, and vanish therefore.

Having done all the contractions of the 6rst type in
(26) we have to consider now

(e.u'(t) y)L(~ —2r)!j-'(~,u'(t) «)" '"(e"u;(t') p')
(„' 2,') g-l(„u.(t ).y )n'-2r („!)-1(1((„.(,).«)2)),

X(".)-(-,'((, ;(t') y') ))". ( )
In the pair approximation, 22 2r has to be equ—al to
e' —2r'=—u. After doing a similar combinatoric exercise
as carried out above for the contractions of the erst
type, for the contractions of the second kind in (29),
we obtain

$((it,u, (t) y)(it, u;(t'). p'))+((g, u;(t) p)(it, u;(t') .p'))
X((g, ;(t) p)(, ';(t') y')))
X (a!)-'((1t,u;(t) pit, u;(t') p'))
X (") '(-'((~ u (t) y)'))"(~") '(-'((~ u (t') p')'))"' (3o)

by itself. Since 2r is an integer between 0 and the largest
even integer below or equal to 12, the term (2t,u;(t) p)'"
can be contracted in (2r —1)!!= (2r)!/r!2" ways and
we obtain

((2t,u;(t) y)'")= ((2r)!/r!)(2((2t u;(t). p)'))
r

r

Taking into account that we have
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16
d(t —t') E R.'R"L(e,u'(t) pn (t') p'&

'happ

+(n.u'(t) Pifou (t') P')(n.u'(t) P&'u (t') P')j

XexpLs((~.u'(t). p+v, us(t') p')')ls(R. )s(R. ). (31)

IV. THE QUASIHARMONIC CRYSTAL

Tbe anharmonic terms in tbe lattice potential con-
tribute to the current-current correlation function in
essentially two different ways. The first in terms of the
total contribution of the contractions of the first kind,
the second in terms of the total contribution of the con-
tractions of the second kind. Contractions of the 6rst
and second kind occur in the current-current correlation

After carrying out the summations over r, r' and g we
can write the current-current correlation function in the
pair approximation F„s'(q=0, co —& 0) as

F s'(q =0 io ~ 0)

Vp= (rt,g,N; (t)N;p(t))

denotes the contractions of the erst kind and

) „"(t—t') p=(s),g„u; (t)N;p(t'))

(32)

(33)

the contractions of the second kind. The above expres-
sions ),Pp, respectively )» "(t t') pp' —are to be under-
stood as the matrix products X, pp pp, respectively,

,ij(t t~)appaplp

The particular way in which the anharmonic terms of
the interatomic potential enter the correlation function
(31) enables us to study the physical meaning of )I., and

)» "(t t ) on t—he thermal conductivity in a systematic
way. Starting out with the lowest order approximation
to (31)"

function factorized

xpI -'((rt u'(t)'p+& %(t )'p )')j
= expL-'X,pp+) „"(t'—t)pp'+ —'X, p'p'1

where the matrix

+00

F ss'(q=0, io —+ 0)=—
16

d(t —t') P Ro'Ro'{(s),u, (t).prt, us(t') p')
&PP

X(s),u;(t) ysf, u;(t') p')+(s),u;(t) pg, u;(t') y')(rt, u;(t) pst, u;(t') y')) (R,) (R, )

d(t —t') Z R 'R '(e.u'(t) Prt.u (t) Pe"u (t') P'if u (t') P') (R ) (R )
&&pp

(34)

we see from the last part of Eq. (32) that this approxi-
mation corresponds to tbe energy current in a harmonic
lattice

J, '(q=0, t)= ——,
' P R,'st, u;(t) yg, u;(t) y (R,). (35)

$p

The harmonic approximation to the current-current
correlation function (32) has been treated in great
detail and led to Peierls' result for tbe lattice thermal
conductivity.

The immediate next step for the systematical in-
vestigation of (31) is to include now the total contribu-
tions of the contractions of the first kind on top of the
harmonic approximation (32). We thus obtain

see that Jo,,~' corresponds to an energy current in a
harmonic crystal with the modified interatomic potential

V(R,)= e&"»ov(Ro) . (38)

Js,,s' will, therefore, be referred to as the quasiharmonic
energy current and the potential V(R,) will be called
quasiharmonic potential.

From the analogy of the quasiharmonic energy
current to the harmonic one we anticipate that Je,,q'

again can be written in the phenomenological way in
terms of tbe group velocity, tbe pbonon energy, and the
number of phonons. In order to express Js,s@' in these
quantities let us erst take a closer look at the equation
of motion

Mu =(e»"&"'&—1)p s(R ). (39)
00

F @si(q=0 co +0)=
16

d(t —t') P R 'R '
%happ

X(8,u;(t) prt, u;(t). pst, «;(t') y'rt, u;(t'). y')

Xe&"»"e(R,)e&"&'"'o'e(R, ) (36)

and the corresponding energy current operator reads

J»'(q=0 t) = —-'Z R.'e.u'(t) p
Xrt,us(t) ye@»&s(Ro) . (37)

The similarity between (37) and (35) is obvious and we

The approximation to the current-current correlation
function we choose, namely the pair approximation (31),
describes the dissipative properties of the system in
terms of the single-phonon lifetime. Two-particle and
higher order Green's functions which would lead to a
description of the thermal conductivity in terms of a
relaxation time are not taken into account. The dissipa-

"The first term in an expansion of the exponent in (31) is pro-
portional to the stress tensor R,'p~o(R, ). In order to fulfill the
stability conditions, the components of the stress tensor are re-
quired to be zero, see M. Born and K. Huang, Dywamical Theory
of Crystat Latteoes (Oxford University Press, London, 1956),p. 132.
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n; (t)=
~»(t)+~-»t(t) .

Q e» e'"'*'. (41)
MX» (2a)»)'t'

The number of lattice sites is denoted by 1V. The phonon
creation and annihilation operators a»~(t) and a»(t)
fulfill the usual Bose commutation relations

L~»(t) ~~ (t)7=L&~ '(t) ~~ '(t)7=0
(42)

La»(t), ag, t(t)7= B„.Sg,g+.x,

where K can be any reciprocal lattice vector and where
we work in units h = 1. The polarization vectors
e~„=e k„~ obey the orthonormality and completeness
relations

e» ~e». ——8,„., P~e» ~e»t'=8 t'. (43)

In the lowest order perturbation theory we can write
Eq. (40) in terms of the harmonic expectation values

where 9,, indicates that the harmonic expectation values

tion mechanism resulting from such an approximation
is described by the linearized master equation which is
obtained by linearizing the equation of motion. In order
to carry out the appropriate procedure for the lineariza-
tion of (37) and to find its corresponding solutions let
us discuss the equation of motion in terms of the single-
phonon Green's function (u, (t)u;(t')). Multiplying (37)
by Nt (t') and taking the expectation value of the time-
ordered product, we obtain

3II(N'; (t)I (t'))=((e '&"' —1)N (t'))p v(R ). (40)

Before proceeding to an examination of (40) let us go
over to the phonon variables. The most general way of
describing a lattice wave, characterized by the atomic
displacements in a crystal lattice is in the form of the
I'ourier superposition of plane waves

FIG. 2. Diagramatic representation of the equation of motion
in second-order perturbation theory in the anharmonic inter-
atomic lattice potential.

has to be taken in (32). A common factor of both sides
of Eq. (44), namely (I; (t)gt (t'))q can be canceled after
expressing (44) in terms of the phonon variables and we
obtain the equation for the phonon frequency

(vj,~'8„„=3f '-', Qpqp gp
"

)& eq~ e» t'tp. pt' exp(29, ,pp) v(E,) . (45)

The I'ourier transforms of g~ and q, are denoted by

e,~ R~ 1 and q "=e'"'"~+1

From the right-hand side of expression (45) we see that
we obtain this first-order linearization of the equation
of motion by taking the Hartree approximation of the
interatomic potential. This corresponds to a real con-
tribution to the phonon self-energy. In order to obtain a
complex self-energy describing a single-phonon lifetime,
(40) has therefore to be evaluated to higher order in the
interatomic potential. A cancellation of common factors
is again possible if we evaluate the left-hand side of (40)
to second order and the right-hand side to third order
in the anharmonic lattice potential. A diagramatic
representation corresponding to this approximation is
given in Fig. 2 where the cancellation of common f'actors

is made obvious. Analytically we obtain the following
expression for this approximation after having cancelled
the common factors

~~»'=-'& ~ '~ '~» ~»"p p' p(k"~.pp)~(~, )+2 2
Qep'

~«xp(k "~.pp) (expl:"~»'(~)pp'7 —1—"~»'(~)pp')

«xp( '"~"p'p')L~P~. '~-» &»"p p'+nPn" "~'"'cos(~»"~)~» ~»"p p'7~(&, )~(&;), (46)

where ~»" denotes the harmonic-phonon frequency.
The superscript lt on X„and X» ~(7) reminds us that we
have to take the harmonic expectation value in (32) and
(33). From a comparison of (46) with (45) we see that
our second-order corrections to (40) contributed in two
physically distinct ways. The second term in (46) corre-
sponds to a higher order Hartree approximation for the
phonon self-energy and thus yields a correction to the
phonon frequency. The last term in (46) however repre-
sents the lowest order term in the complex phonon self-
energy and thus yields the desired single-pQonon life-

time. Because of the physical distinction between the
different contributions of the phonon self-energy in (46)
and their difference in order of magnitude, an inde-
pendent examination of the real and imaginary parts of
(46) is justified. The equation for the phonon frequency,
given now entirely by the real part of Eq. (46) will be
treated in a self-consistent way. The phonon frequency
k~~ thus obtained will then replace co~„ in the imaginary
part of (43). Such a procedure corresponds to a self-
consistent treatment of Eq. (43) where we consider the
imaginary part of the phonon self-energy as a small
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perturbation correction to the total phonon self-energy.
In other words we treat (46) to all orders in the real part
of the self-energy and deal with the imaginary part in
first-order perturbation theory.

Writing the total phonon self-energy ~» as cu» ——Reco~„
+j Im&o», the following expression for Ima&» is obtained,

Im~» ——Im P dr exp(-', Rppp)
2@kg QPP

X(exp@„o(r)pp'j —1—R„(r)pp')

Xexp(4~p p'p')gpiI p. ~e'~'o cos(~»r)

Xe» e»"p p'~(Rp)~(R').

Here we already substituted dr» for Redo» and the caret
on Xp and Xpp ~(r) reminds us that the appropriate ex-
pectation value which has to be taken in (32) and (33)
is the one corresponding to a crystal Hamiltonian with
the eigenfrequencies &u».

Before going over to a phenomenological formulation
of the energy current let us discuss the self-consistent
equation for the phonon frequency.

A. Equation of Motion in a Quasiharmonic Crystal

In order to examine the self-consistent equation for
the phonon frequency it is convenient to express XP and
Xpp o(r) in terms of the phonon variables. Using the
relations (41) and (43) we obtain

In this paper we are primarily interested in the tem-
perature region where the anharmonic terms in the
lattice potential can be expected to become important
in the calculation of transport phenomena in crystal
lattices. This will be the temperature regime from the
Debye temperature upwards. In this case XP can be
written as

Xp=-', KT Q rPIyp ~coi,„'e» ei,„et
kp

The lowest order self-consistent equation for the phonon
frequencies is obtained from (45) by replacing co»" by
~». A multiplication of Eq. (45) by KT/~»' and a sub-
sequent summation over all wave vectors k and polari-
zations p yields in the high-temperature limit.

KT= ,' P p Xpp-pei"»pv(Rp) .

As we can see from the expression (36) for the current-
current correlation function and from the self-consistent
equation (52), it is more convenient to use I%, p and

Xpp o(r) instead of the absolute temperature T as natural
variables in our problem. The lattice thermal conduc-
tivity will be studied as a function of these variables and
its Anal conversion to an expression in the absolute
temperature will be made by using Eq. (52) to express
XP as a function of T.

The self-consistent Eq. (52) is discussed in great detail
in Ref. 11 for the case where the volume of the system is
kept constant. The following model for the interatomic
potential was there used

~p g Q 'Vp 'imp (~») '(Pi'(~»)+&)e~, e~,
k~

p(R )—die Rp /cl d2e Rp /cn— — (53)

o(r)= —P gPrI "e'+' (oa2&q ) i
ky

(48)

X)G(k,p; r)+G( k, p; r))e»—e»et. —

The propagator for a phonon with wave vector k and
polarization p is defined by

where the parameters di, d2, ci', and c~' can be fitted to
a realistic lattice potential.

Near the Debye temperature we obtain the expected
linear dependence of XP. Increasing the temperature in
(52), a certain critical value T, is reached so that for
any T larger than T. there exists no real solution Xp to
the self-consistent equation of motion (52). The tem-
perature dependance for XP in this region is given by

+ A(k, p; (o). (49)—6—Z8 8~

The spectral function of the one-particle Green's func-
tion is given by

I'(k,p;a)
A(kp; a) = (50)

((u —Rex(k, p; co))'+ t I'(k,p; co)/2j'

I'(k,p; co) denotes the spectral function of the phonon
self-energy Z(k, p; ~) and differs from the expression for
the single phonon lifetime Lgiven by ImZ(k, p; ru) j
by a factor coth(2'&).

where 3 is a constant. X„refers to the maximum value
of the mean. square fluctuation Xp up to which the system
remains dynamically stable. Detailed examination of
(52) shows that the repulsive part of the interatomic
potential (53) plays the dominant role and leads to the
occurrence of the dynamical instability by keeping the
lattice constant fixed. The attractive part of (53) taken
into account causes only a slight shift of X, and does not
change the qualitative picture of the dynamical prop-
erties of lattice dynamics. Even replacing the soft part
of the repulsive part of the potential (53) by a hard core
does not inftuence the occurrence of the dynamical in-
stability. A second root of (52) appears describing a
cellular mode of our system. This, however, occurs for
mean square Quctuations much larger than ),. For a
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Pre. 3. The harmonic
(dashed curve) and the
smeared quasiharmonic inter-
atomic potential (solid curve)
as a function of the inter-
atomic spacing R. The shift
of the lattice constant from
e to e' is indicated.
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thus is directly a measure for the lattice constant. In
this way the thermal expansion of the system is de-
scribed by V(Rp).

Consequently, the second step in this investigation of
the current-current correlation function (36) will deal
with the effect of thermal expansion on the lattice
thermal conductivity.

B. Energy Current in a Quasiharmonic Crystal
and the Corresponding Conductivity

detailed examination of these effects the reader is
referred to Ref. 11.

In this paper we are dealing only with the solid-state
phase of crystal lattices and thus for the above-men-
tioned reasons the model potential (53) will serve to
lead to a proper discription of the conductivity for high
temperature below T,.

Second-order corrections to the Hartree approxima-
tion of the interatomic potential do not change the
qualitative picture of the physical properties of our sys-
tem. " For this reason we shall treat the real part of
Eq. (46) in first order in the interatomic potential and
use second-order perturbation theory only for the
purpose of establishing an expression for the single-
phonon lifetime (47).

Consequently, the carats on o&» and ) p in the expres-
sion for the single-phonon lifetime have then to be
replaced by bars on the same quantities. ~~„will denote
the solution of the self-consistent form of Eq. (45) and
) p reminds us that we have to insert ru» for &u» in (48).

Now what is the physical meaning of the potential
V(R,) which contains already a whole subseries of an-
harmonic ™sof the lattice potentials As pointed out
above V(R,) corresponds to a Hartree approximation
of the interatomic potential. In other words, it describes
the average effect of the fluctuating lattice atoms around
their equilibrium position in terms of the bare potential
v(Rp), which can be looked upon as describing the inter-
atomic potential of a rigid lattice. Once the lattice atoms
start to wiggle around their equilibrium positions they
will create an effective potential which is given in lowest
order perturbation theory by V(R,).

Using the simple model potential for s(Rp) given in
(53), we obtain

( c 2 ) 2/2

V'(R ) d
i ~

c Rp/(cp+4xp)—
kc,2+4),,)

c,'
Rps/(c22+4Xp) (55)

i,c,2++,,i
With increasing temperature ) p in (55) increases and
causes a smearing and a shift of the minimum of the
potential. A comparative illustration of v(Rp) and V(R,)
is given in Fig. 3. In the case of constant pressure the
minimum of the potential corresponds to the equi-
librium position of the nearest-neighbor lattice site and

Taking the derivative of the self-consistent equation
(45) with respect to k'

OGDEN& Z 1
8», =——PR 77 gp 8» cg& p p

Bk' 4 3f p

Be~„
Xel"»"V(R,)+(~»2—~2„')e2„

8k'
we can rewrite Eq. (56) in the form

2o, , '(@=0,t)=P „(8 „/Bk')a „(t)a „t(/)

(57)

) 1/2

—V 2 (~»2—~»')
&an' G)»~)

Beg„r~t

X „-„(/) „t(&). (58)
Bk'

The erst term in (58) represents Peierls' original ex-
pression for the energy current density in terms of the
phonon frequency, the group velocity Vk„' ——B~z„/Bk'
and the number of phonons. However, we have to keep
in mind that these quantities in (58) are now the re-
normalized ones due to the self-consistent Eq. (45)
rather than the harmonic approximated ones used by
Peierls. The different polarizations of lattice vraves in
crystals give rise to the second term in (58). In the
expression for the static conductivity the only contribu-
tions to the second term in (58) will arise from points of
degeneracy in the phonon dispersion and therefore will
be neglected here against the dominant erst term. The
quasiharmonic approximation to the current-current
correlation function (36) can then be written

I'„,,g"(q=0, ~' —l) =p (o»2V2, 'Vg„'
ky

X(~»(/)~ »t(/)~ »(~')a»t(~')). (59)

In order to formulate the energy-current density
operator (3'7) in the macroscopic quantities of the group
velocity, the specif c heat and the phonon lifetime, let
us 6rst express Js,,s' in terms of the phonon variables

+o.ss (6=0, t)

=-,'iM —'P P R 'g "g —"-'(~z /~z )'/2c»"e2, atP PP
p &nu'

XV(R,)(.„(/)-. ,„t(/))(. „,(/)+.,„.t(/)). (56)
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Using (49) and (50) for the evaluation of the matrix
element in (59) we finally derive for the conductivity

X(~(~s.)+1)(l'(k,P; ~~,)) '

=Z ('v(k, p)Vt, „'Vt,„'(1'(k,p; ~t,)) '

(60)

with the consistent quasiharmonic approximation for
the specific heat

Cv(k, P) = (KT')-'cot,„'n(oct,„)rt((tot, „)+1) (6.1)

Expression (60) for the lattice thermal conductivity is
formally completely equivalent to Peierls' result, "ex-
cept that in (60) all quantities are renormalized because
of the quasiharmonic self-consistent treatment. To what
change in the temperature behavior of the conductivity
does this leads For large temperatures Peierls' expres-
sion leads to the well-known 1/T law, first discovered by
Debye. This behavior of the conductivity is rediscovered
in the quasiharmonic approximation for temperatures
below the Debye temperature, a region where the
phonon frequency and group velocity show a very weak
dependence on T. With increasing temperature the tem-
perature dependence of the phonon frequency becomes
more and more important and the 1/T law is corrected
by a factor 1/(1+aT). This is obtained by expanding
V(E,) to first order in lt, . Here we should keep well in
mind that the investigations undertaken so far were
carried out by keeping the volume of our system con-
stant. The smeared quasiharmonic potential which leads
to thermal expansion in the case of constant pressure,
leads to a change of the phonon frequency and group
velocity even in the case of constant volume. This gives
rise to the T' term in the thermal resistivity. On the
other hand, a rough examination of Eq. (52) in the case
of constant pressure shows that not only the Debye
momentum decreases with increasing temperature but
also the phonon frequency (given as a function of k/ke)
displays a temperature behavior similar to the one
examined in the case of constant volume. Previous
calculations which took into account the change of the
Debye momentum with temperature could explain the
T' term in the lattice thermal" and electric" resistivity.
To take into account also the temperature variation of
the phonon frequency at constant volume leads to an
even stronger increase of the resistivity.

For very large temperatures, and in particular near
the critical temperature the phonon frequency shows a

"R. E. Peierls, QNarttttrrt Theory of Solids (Clarendon Press,
Oxford, England, 1955), p. 40; see also C. Kittel, Introduction to
Solid State Physics (John Wiley tk Sons, Inc. , New York, 19561,
2nd ed. , p. 124.' G. Leibfried and E. Schloemann, Nachr. Akad. Wiss.
Gottingen, Math. -Physik. Kl. IIa, 71 (1954).

'e N. F. Mott and H. Jones, Theory of 3ietats artd Alloys (Oxford
University Press, Oxford, England, 1936), p. 268.

rather strong dependence on T. Using relation (54) for
the temperature dependence of the mean square fluctua-
tion and assuming that the temperature dependence of
tot,„varies very little with the variation of the wave-
vector k and polarization p we obtain the following
temperature dependence of ~~~

cot, '~1+b(T.—T)'". (62)

The above assumptions are in good agreement with
experiments by Larson et al."on the shift of the spectral
lines and the width of the phonons as a function of the
absolute temperature.

From Eq. (47) we see that the temperature depend-
ence of the phonon width F(k,p; tot, „) in (60) can be
entirely expressed in the temperature dependence of co».
Thus the temperature dependence of the conductivity
(60) turns out to be proportional to the temperature
behavior of a certain power of coso. We thus obtain for
the temperature behavior of the conductivity in the
region just below and at the critical temperature T,

Hence, we have the following temperature dependence
of the conductivity. Just below the Debye temperature
the well known 1/T law holds. With increasing tempera-
ture the conductivity drops faster and the 1/T law is
corrected by a factor 1/(1+nT). Finally if we come very
close to the critical temperature a rapid drop in the
conductivity occurs.

V. LATTICE THERMAL CONDUCTIVITY IN
THE PAIR APPROXIMATION

ABer the examination of this part of the anharmon-
icity in (31) which can be described by autocorrelation
functions X, only and gives rise to a modification of the
equilibrium quantities occurring in the conductivity,
we now shall investigate the remaining part of the an-

harmonicity in the pair approximated current-current
correlation function. While the autocorrelation function

X, does not depend on the lattice coordinates nor on the
absolute time, counted from when the temperature
gradient is turned on, the correlation function we have
now to deal with, namely X».ct(s.), does depend on the
relative coordinates between two atomic displacements

u;(t) and u;(t'). The dissipative mechanism of our system
is entirely described by them. The symmetric occurrence
of equilibrium and nonequilibrium contributions to
(31) can best be studied in the correlation function

(v(R,+st,u, (t))v(R,.+rt, u;(t'))) which is the basic
quantity in the description of the current-current cor-
relation function. While this quantity reduces in the
quasiharmonic approximation to V(E,)V(E;) describ-
ing entirely the anharmonic contribution to equilibrium

"K.E.Larson, S.Holmryd, and U. Dahlborg, in Proceedings of
the SymPosium on Inelastic Scattering of 1Veutrons in Solids and
Liquids, Vienna, 1960 (International Atomic Energy Agency,
Vienna, 1961),p. 587.
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Xexp
R,'x,+R x;—2lRp Rp. lu-

4(x;x;—u')
(65)

Here we introduce for simplification of the notation

x;=-,'cp+X„x;=-,'c +X, , u=
l
l~„o(t—t')

l

with
0=e'—e

Before going over to an investigation of W(X,u) respec-
tively of (31) in terms of the natural variables X„ lb, ~.,
and 1~».o(t—t') let us take a look at the correlation of
the first kind P,, given in (48). Using a Debye spectrum
for the phonon frequency the summation over the wave
vectors can be carried out and Xp becomes proportional
to 1—(R,ke) ' Si(R,ke). Since R,ke is always larger
than 2x this quantity is relatively independent of Rp
and in particular approaches unity for R,~~. There-
fore, from now on, we will ignore the p dependence of X,

properties, it becomes in the pair approximation

expL2X, pp+)„p. '- (t—t')pp'+-', Xp,p'p'j~(R, )~(Rp,) .
(64)

Tbe combined effect of X, and X„'i' 'i~'(t —t') in the
above correlation function can best be illustrated by
examining (64) in terms of the model potential (53), for
which we obtain after averaging over the polarizations
in 1ip) lip~ and Xpp~'i' ~&(t—t )

C'C'i
W(~,u) = P a;d;(—1)'(—1)'

(i, j)=(1,2) 16(x;x —u')

and write X,=X„=X. For fixed values of li tbe term in
the first bracket of W(X,u) is an increasing function of
u with increasing u. For the main contribution of (65)
to the current-current correlation function (31) the same
holds for tbe exponential function in W(X,u). A discus-
sion of the u dependence of this latter term is given in
the Appendix. Keeping u constant we see that the term
in the first bracket as well as the exponential in W(1~,u)
decreases as X increases. From this consideration the
effect of the dependence of W(X,u) on u can be described
as follows. For u=0, the function W(X,u) reduces to the
quasiharmonic approximation of the potential-potential
correlation function. For any uAO, the function W(X,u)
is always larger than V(R,)V(R, ), and the quantity
W(X,u) —V(R,)V(R, ) increases as X increases. The
efFect of li» ~(t—t') is thus to increase again the total
correlation in tbe second order in the anharmonic po-
tential after its drastic depression by the eGect of the
correlations of erst kind in the lattice potential, de-
scribed by X exclusively.

This result, mainly due to the repulsive part of the
lattice potential, permits us to neglect the attractive
part for further investigation of (31).Keeping the lattice
constant fixed in order to prevent the crystal from falling
apart, we will be able to derive in this approximation a
formula for the conductivity at constant volume. That
it is quite sufficient to deal with the repulsive part of the
interatomic potential only is illustrated in tbe investiga-
tion of the self-consistent Eq. (52) in Sec. IV.

Remembering that tbe zero-order term in an expan-
sion of tbe exponent in (31) is zero'" we can write the
integrand of the current-current correlation function as
proportional to

( 1 q'I'
t R,'x+R x—2[R, R, [uq

I(1~,u) —II(X)= l
l P R,'R ul 6- l+R, R,.

X —8 pp' rX

—8

R,'x+R, 'x 2
l
Rp R p l

u- —( 1 ) '~'
Xexp — —

l

—
l P R ~R 'R, R,. exp

4(x' —u') k x'r i I '

Rp'+Rp '
(66)

R,'+Rp'-
Xexp— (67)

and can be directly compared with (36). Such an ap-
proximation of (66) will yield a good result for the con-
ductivity as long as u/x is small. However, since u varies
from zero to X we see that this is not necessarily tbe case
for values of u/x near the upper limit X/x. In particular

The first term in (66) arises from applying the operator
p p' to W(1i,u), the second one by setting u=O in the
expression thus obtained. A linear expansion of (66) in
u/x yields the quasibarmonic approximation

Rp'+Rp' (Rp R,'))ER'R' l6u— +
X pp, X 2x' r

for large values of X this expansion parameter approaches
unity. Only for small X's can this quantity be considered
small and only then will the quasiharmonic approxima-
tion lead to a good result for the conductivity. Besides
the fact that tbe above expansion in terms of u/x con-
verges badly, we see that the linear term in such an
expansion is not even the dominant contribution to (66)
for large Ys. In fact, the term (x'—u') in the various
denominators of I(X,u), which does not contribute to the
linear expansion of (66) in u/x, nevertheless is the domi-
nant term goverrung the X dependence of I(X,u) —II(X).
This one can see immediately by inserting 'A for a, for
which this term becomes (~ic')(xic'+2K) instead of
(4c'+X)' in the quasiharmonic approximation of (66).
It is obvious that such a result can never be obtained
by doing finite-order perturbation theory in lattice
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FIG. 4. I(h,v) as a function of e/X for various values of
(dashed curves). The corresponding functions 1(X,y) —II(X) are
represented by the solid curves.

dynamics and is strictly due to tbe summation of a
whole class of terms in an infinite perturbation expansion.

In order to investigate the X and a dependence of (66)
it is convenient to introduce a= yX and thereby take the
boundaries of u into account explicitly by varying y
from zero to unity.

For an examination of the temperature dependence
of the conductivity it is sufhcient to exploit the X de-
pendence of (66) which can then be easily transformed

by the relation of X and T discussed in Sec. IV. A com-
parative study of the ) dependence of (66) and its quasi-
harmonic approximation will permit us to demonstrate
the eGect of the lattice anharmonicity as far as it plays
a role in the equilibrium and nonequilibrium properties
in the lattice thermal conductivity.

Similar considerations as carried out in the investiga-
tion of W(X,a) show us that I()t,y) Diere we denote
explicitly the y dependence in I(X,a)j is a monotonic
increasing function of y as y increases. For fixed values
of y, I(X,y) is monotonically decreasing with increasing
X. For y=0, I(X,y) becomes equal to II(X). A plot of
I(X,y) and I(X,y) —II(X) is given for various values of y
as a function of e'/) in Fig. 4 (e denotes the lattice
constant). From the above outline on the derivation of
the quasiharmonic approximation (67) from (66) it is
now clear how to construct (67) from the result of (66)
given in Fig. 4. For very small values of 7 the quasi-
harmonic approximation holds. For such a particular
value y= y the result is illustrated in Fig. 4. The quasi-
harmonic result for any particular value of y is obtained
by multiplying I(X,&)—II(X) by y/p. This device is
demonstrated very clearly in expression (67) where the
factor y appears as multiplicator of a function depending
on X only.

While the maxima of the curves I(),y) —II(X) move
towards larger values of X/e' as X increases, the maxima
of the corresponding quasiharmonic approximation (67)
remains at the same value of X/e'. This behavior of
I(X,y) —IIP) is plotted in Fig. 5, as a function of X/e'
for the diferent steps in our systematic investigation of
the current-current correlation function: the harmonic,
the quasiharmonic, and the pair approximations. While
the set of curves for (67) shows for any value of y a
negative slope near the critical value X,/e' the main
contribution to the pair approximation (66) has posi-
tive slopes. Only for small values of 7 the slope for

I(X,y) —II(X) is negative and the curves of (66) and. (67)
approach each other the more the smaller p is. Finally
in the harmonic approximation all the curves due to
different y's have positive slopes. It thus becomes clear
that the harmonic approximation corresponds to a com-
plete cancellation of the effect of X and X» &(t) and thus
represents for not too large values of X a very good
result for the lattice thermal conductivity.

The second term in (31), equally important to the
6rst one for small values of X, can be neglected for large
mean square fluctuations. The main contribution to
R,"R, 'y y'(v(R, +r),u;(f))s(R, +rf, u;(t'))) in this case
arises from terms of the integrand with Q=O and

R,=R, However, in this case tbe factor in front of the
above matrix element

(r),u; (0)r), u, s(r))

=(KT//MN)P cos-', k R, sin-', k R, cos(k Q)&oj,„'

K= T 'F(T)— (68)

F(T) is obtained by expressing I(X,y) —II() ) in terms of
the absolute temperature T and dividing the integrated
contribution of I(X(T),y) —II(X(T)) by T. In Fig. 6
F(T) is illustrated for the harmonic, the quasiharmonic,
and the pair approximations. For the first case the
phonon lifetime is approximated by a linear temperature
behavior.

Below the Debye temperature F(T) varies very little
with T and the well known 1/T law for the conductivity
is confirmed. With increasing temperature the conduc-
tivity decreases faster and. can be written as %~1/
T(1+nT). This is tbe region where the quasiharmonic
approximation is valid and the change of tbe 1/T law

arises entirely from the modification of equilibrium
quantities occurring in the expression for the conduc-
tivity. The dissipative part of the anharmonicity de-
scribed by X» ~(t) starts to play a greater and greater
role with a further increase of the temperature. Finally
at the dynamical instability it has the dominant in-
fluence on the temperature behavior of the conductivity

r(),&)-rr(~) FIG. 5. z(~,&) —n(~) is
given as a function of X/e'
for the harmonic (dotted
lined), the quasiharmonic
(dashed lined) and the
pair approximation (solid
line) for various values
of y.

k le'

&&e-r&+' cos(o&q„r)eq~ e~„&t

is zero. For this reason the second term in (31) will now
be neglected for a calculation of the conductivity at the
dynamical instability.

After carrying out the remaining integrations over
the time f t' and th—e lattice vector Q in (31), the
lattice thermal conductivity can be written as
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F(T)

8 Te T

Fro. 6. F(T) is given as a function of T for the harmonic
(dotted lined), quasiharmonic (dashed curve) and the pair (solid
curve) approximations. The phonon width in the harmonic
approximation is assumed to be proportional to T.

point. This region covers roughly the 6rst third of the
plot in Fig. 6 and yields a good qualitative agreement
with the 1/T(1+nT) behavior of the conductivity. Near
the melting point the conductivity rises again; this
however seems to be due to electron-hole pair diffusion. "
A more accurate measurement of the intrinsic lattice
contribution to the thermal conductivity at the melting
point, and perhaps even beyond that up to some meta-
stable state of the crystal, may be possible in the near
future.

and leads to a sharp rise described by

X 1—A(T.—T)'t' (69)
VI. DIFFUSIVE CORRECTIONS OF THE

CONDUCTIVITY

where A is a constant. For comparison of the oppositely
behaving quasiharmonic approach, both approxima-
tions for E(T) are plotted in the same diagram Fig. 6.
The dependence of tbe phonon width I' in the pair
approximation for the conductivity no longer occurs in
the form 3C~1/I'. This kind of lifetime-conductivity
relation is exclusively due to the static and homogeneous
parts of the harmonic, respectively, quasiharmonic ap-
proximations, for the lattice thermal conductivity. Next
higher order approximations in X» (t) show in the
expression for the conductivity the general dependence
of the phonon lifetime

where (—)~ denotes all possible combinations of plus
and minus signs in the sum over or&,.'. Only momentum-
and energy-conserving processes, where the sum over
the phonon frequencies in (69) is zero, give rise to tbe
1/I' dependence of the conductivity. However, these
processes restrict our total space of integration over
ki, ks. . .k to a negligible fraction of it. The general
I' dependence of the conductivity is therefore not 1/I"
but rather a complex one, and the study of individual
terms of a perturbation expansion of (69) very soon
becomes hopeless. In this paper the perturbation expan-
sion is formally summed and the F dependence of X, is
studied by the dependence of )» o(t) on it.

The result derived in this section, describing the be-
havior of the conductivity near the dynamical insta-
bility takes quite an amount of algebraic exercise and
leads finally to a result which is rather an academic one,
since every crystal will melt long before it reaches the
temperature T,. Nevertheless, from this result we can
conclude that a minimum in the conductivity must
occur which is expected to fall in a region of a metastable
state. Since high. -temperature thermal-conductivity
measurements are extremely difficult, only recently has
K been measured for Ge and Si" up to tbe melting

~ C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058
(1964).

The entire anharmonicity of the interatomic lattice
potential taken into account leads to tbe result for the
conductivity discussed in the last two sections. How-
ever, from tbe derivation of tbe energy-current density
via the continuity equation we know that there are more
anbarmonic contributions to the energy current than
have been taken into account so far. The first term in
Eq. (g) which has been neglected corresponds to a
diffusion current Jq. In the second term in (8) (q;—q, )'
is approximated by (q —

ques)' in our previous investiga-
tion of the conductivity. Tbe remaining term it,u; in this
expression, as well as Jq has to be studied in the limit of
high temperatures where the magnitude of the mean
square fluctuations becomes comparable to the lattice
constant.

Let us first examine the contribution of Jq to the con-
ductivity (Jq(k=0, t)Jq(k=0, t')) reduces to the follow-
ing correlation functions. For the kinetic part of Jq we
obtain the typical term ((u; (t)u;&(t')))' where n, P de-
noting the coordinates have to be arranged in tbe proper
way due to u, s(t)u (t)u (t) in Jz. Expressing this cor-
relation function in terms of the phonon variables and
after dividing this expression by T' tbe temperature
dependent terms in the corresponding expression for the
conductivity read

I'(k,)y r(k,)+1(k,)'1
(sl'(ki)+I'(ks)+I'(ks)) +(-„~-,.~-„s) '

where all possible combinations of plus and minus signs
have to be taken. Apart from the energy-conserving
processes which lead to a temperature behavior, T/I',
we will in general obtain an increasing behavior of the
conductivity as the temperature increases. The second
correlation function to which (JqJq) reduces is

(u,'(t)u,"(t'))(u;s(t)rt, .u;(t') y)(u; (t)it, u;(t') y')

X(.(R,+~,n, (t)).(R, +~,.u;(t'))).

This correlation function is very similar to the one
treated in the last section and divers essentially only by
the correlation (u;(t)u;(t )) which gives rise to an addi-

~ C. M. Bhandari and A. S. Verma, Phys. Rev. 138, A288
(1965).
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tional factor of T. We thus obtain once again a con-
tribution to the conductivity rising with increasing tem-
perature. Finally the last correlation of (JzJz) which
has not yet been taken into account,

(u; (t)rt, u;(t) pu; '(t')g, u;(t') p')
X (&(R,+g,u;(t))i (R, +g, u, (t'))),

divers from (31) by a factor E,~R p p' ancl thus yields
a temperature dependence of 3'. as discussed in Sec. V.

Similar results are obtained for calculating the cor-
rection of the conductivity due to the replacement of
R, by R,+rt,u, (t) in (25) and finally due to the correla-
tions of Jq with tbe intrinsic part of the lattice energy
current given by tbe second term in (8).

This purely qualitative result of additional anhar-
monic corrections to tbe lattice thermal conductivity
shows again a rising behavior of the conductivity, in
particular for high temperatures, and verifms thereby
the general qualitative picture of the conductivity given
in Sec. V.

VII. CONCLUSION

Using Kubo's formula for the lattice thermal con-
ductivity the effect of the anharmonicity of the inter-
atomic potential on transport phenomena in crystal
lattices is examined. A single-pbonon lifetime approxi-
mation for tbe current-current correlation function

permits us to consider a particular class of terms in an
infinite perturbation expansion in the anharmonicity of
the correlation function. From the contributions to the
anharmonic lattice potential which are diagonal in the
atomic displacements we obtain a renormalized lattice
potential V, leading to a generalization of Peierl's result
for the conductivity. The expression thus obtained is
formally equivalent to Peierl's result, but is expressed
in terms of the renormalized equilibrium quantities due
to V rather than the pure harmonic ones. For ternpera-
tures around and just above the Debye temperature the
temperature dependence of the conductivity is well
described in this approximation by 1/T(1+nT). This
behavior has been observed recently"; but the earlier
theoretical explanation cannot be considered conclusive.
Pomeranchuk suggested" that the taking into account
of four-phonon processes will lead to a temperature
dependence of the phonon lifetime proportional to
T(1+yT) in the high-temperature limit. In a harmonic
approximation for the energy current this would yield
the expected temperature dependence of tbe conduc-
tivity around the Debye temperature. However, this
type of calculation has to be considered with great care.
The truncated perturbation expansion of equilibrium as
well as nonequilibrium properties in lattice dynamics in
terms of the atomic displacements cannot be trusted as
previous attempts at calculating these quantities show.
Any perturbation expansion reduces to a power series

~ I. Pomeranchuk, Phys. Rev. 60, 820 (1941).

in the absolute temperature and for that reason any
truncated perturbation theory does not lead to a good
result, especially for high temperatures. Tbe adequate
perturbation-theoretic treatment in lattice dynamics is
therefore not in terms of the atomic displacements but
rather the total anbarmonic interatomic potential. Only
a result obtained in the latter approach where the am-
biguity of truncated perturbation theory is excluded can
be considered as justified. In this sense the lattice
thermal conductivity is calculated and reproduces the
above result for the temperature region around the
Debye temperature, but for very diferent reasons from
those given previously. Here tbe temperature depend-
ence of the phonon frequency causes tbe correction
factor 1/(1+nT) to tbe well known 1/T law. Pomeran-
chuk's argument for deriving this correction factor is
based on a truncated perturbation expansion of the
phonon lifetime where only three- and four-phonon
processes are considered to be relevant. For high tem-
peratures, however, multiphonon processes involving
more than four phonons cannot be excluded a priori in
a calculation of the single-phonon lifetime. From the
present detailed investigation of the current-current
correlation function we can see that the corrected tem-
perature dependence of the phonon width T(1+yT)
does in fact contribute to the correction factor I/(I+n T)
in the lattice thermal conductivity for temperatures
around the Debye temperature. However, its main con-
tribution arises from the temperature dependence of the
phonon frequency.

This example shows that only after we already know
the over-all behavior of a particular quantity, calculated
in terms of tbe total anharmonic lattice potential can
we then decide whether a particular truncated perturba-
tion expansion of this quantity represents a good result
or not. Without having this check, a particular trun-
cated perturbation expansion might lead to a fair quali-
tative agreement with experiment while the physical
reasons for it might be completely diferent ones. Only
in an untruncated perturbation expansion which can
formally be re-sununed, can one study the influence of
various physical effects on tbe quantity under con-
sideration. In the case of lattice thermal conductivity
the influence of the intrinsic equilibrium and nonequi-
librium properties of lattice dynamics and the corre-
sponding effect onto each other are studied. This can
never be done in the scheme of an ordinary perturbation
expansion and valuable physical information may be
thereby lost. Here we learn that for temperatures around
the Debye temperature the dissipative part of the
current-current correlation function can be treated in
lowest order and the temperature dependence of the
conductivity is mainly governed by tbe temperature
dependence of tbe equilibrium quantities such as the
phonon frequency and group velocity. For higher tern-

peratures, however, the dissipative part of the correla-
tion function has to be treated in all orders in the atomic
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displacements corresponding to a calculation of the
lattice thermal conductivity to lowest order in the
anharmonic potential.

A particular cancellation of the depressive effect of
the quasiharmonic approach is the result. The correction
factor 1/(1+nT) in the conductivity is suppressed for
high temperatures by the occurrence of a minimum and
a subsequent rise of the conductivity at tbe dynamical
instability of tbe system.

The present examination of the conductivity is carried
out by using a model interatomic potential, which is
represented by a superposition of two Gaussians. Our
qualitative results for the conductivity are not expected
to be too sensitive to the model we use. The dominant
contribution to the lattice thermal conductivity arises
from the soft part of the repulsive term in the lattice
potential. This particular portion of tbe lattice potential
however is a common feature of the interatomic po-
tentials in crystal lattices. The eGect of a hard core in
the lattice potential on the equilibrium properties in
lattice dynamics has been studied in Ref. 11.It does not
show any qualitative change from tbe result obtained
by the above model potential for the temperature region
we are interested in—from the Debye temperature up to
the temperature of the dynamical instability.

Studying tbe current-current correlation function as
a function of e'/X we obtain the temperature behavior
of the conductivity at constant volume by keeping tbe
lattice constant e 6xed. If the correlation function is
examined as a function of e' at constant X, a rough
investigation of tbe current-current correlation function
leads us to expect a temperature dependence of the
conductivity at constant pressure similar to the one
discussed in this paper. At constant pressure, e' will
become a function of X, and since tbe correlation func-
tion in general decreases as e' increases, we are led to the
above prediction. A shift of the dynamical instability
and the minimum of the conductivity can be antici-
pated. A detailed investigation of this case is yet to be
undertaken but is planned for tbe near future.

Although the result for tbe lattice thermal con-
ductivity in the region around the dynamical instability
will not be accessible to experimental measurements, it
represents a useful tool in the determination of the con-
ductivity at high temperatures. In particular, it leads
to the prediction of the occurrence of the minimum in
the conductivity. Although melting of the crystal is
expected to occur at a temperature below the conduc-
tivity minimum, a deviation from tbe 1/T(1+nT)
behavior of the conductivity should be measurable in
this region. For materials which sublime rather than
melt, a direct experimental investigation of the mini-
mum in the conductivity might be possible.
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APPENDIX

In Sec. V we make the assumption that the quantity

(A1)

in general decreases with increasing a and is smaller than

(E,'+E )/x. (A2)

g '+.g '=c'x

lies inside the figure

E,'x+8, 'g —2~R, Rn la=c'(x' —a') (A4)

the above assumption is fulfilled. By changing the value
of c' we cover all possibilities of the two lattice vectors
R, and R, and thus it will be sufhcient to carry out our
proof for an arbitrary value of the constant c'.

Keeping in mind that a=
~
X».o(f)

~

=0 if at least one
of the lattice vectors R, and R, is zero, we see immedi-
ately that in the neighborhood of R,=O and E„=O,
(A3) and (A4) coincide. Setting ~cos(R, R„)

~

=b and
a=nX (with 0&n&1), we can study (A4) in terms of
n and b as plotted in Fig. 7. Here tbe two extreme cases
b=1, 0,=1 and b=0 a=1 are illustrated for a 6xed

IP

b=l
a=(

RP

In order to show to what extent this assumption is
justified, let us consider those values of R, and R, for
which the above quantities are equal to the arbitrary
constant c'. Wherever the circumference of the circle
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Fro. 7. The two extreme cases of the curve (A4) for a axed value
of ) are represented by the solid curves. As long as the circum-
ference of the circle (dashed curve) lies inside of (A4), the quantity
(Al) is always smaller than (A2).
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x2—n92 b X
&x or

x—2bnX 2$

This is fu1611ed for any value of X if b)-,'n, and for a= 1
this leads to ( cos(R„R, ) ~

)-', . Already this rough esti-

value of X. The extreme radial separations between the
two curves (A4) lie on the line R,=&E; and thus the
requirement that (A1) should be smaller than (A2)
becomes

mation yields a relatively wide angle between R, and
R, for which our assumption (A1)((A2) is justified.
Taking into account the R, and R, dependence in a
and considering values of X which are smaller than X„
the allowed angle between E, and R; becomes even
larger. Because the current-current correlation function
(31) is itself proportional to b' the main contribution to
it will arise from rather large values of b and in this
region our assumption is justified.

PHYSICAL REVIEW VOLUME 140, NUMBER 6A 13 DECEMBER 196$

Low-Field de Haas —van Alphen EGect in Gold
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Detailed studies of the de Haas-van Alphen (dHvA) etfect in Au single crystals have been carried out
with a high-sensitivity torque magnetometer in steady 6elds up to 40 kG. The angular variations of all of the
pertinent dHVA frequencies were determined to better than 0.1%.New low-frequency oscillations have been
observed which appear to be associated with a difference frequency resulting from two extremal cross
sections on the nearly spherical portion of the Fermi surface. Evidence has been obtained vrhich suggests
that the electron g factor for the neck orbits in Au may difFer appreciably from the value 2.

I. INTRODUCTION
" 'T has been shown' that the Fermi surface in Au, like
~ ~ those in Cu and Ag, can be approximated by a dis-

torted sphere which is multiply connected by necks

along the (111) axes. In a recent paper' we have re-

ported on a detailed study of the de Haas —van Alphen

(dHvA) in effect in Ag, which provided evidence for

the existence of two extremal cross sections around the

nearly spherical portion, or "belly, " of the Fermi sur-

face. In order to examine more closely the fine details

of the Fermi surface in Au, we have extended these
measurements to several high-purity gold single crys-
tals. As in the case of Ag, we have been able to measure

accurately the changes of belly, dog's bone, rosette, and

neck oscillations as functions of angle in the (100) and.

(110) planes. In contrast to the results on Ag, no

evidence was found for the existence of two extremal

belly orbits in Au when the magnetic Geld is near the

(111) axis. We do, however, find that near the (100)
axis there exist low-frequency oscillations similar to
those observed in Ag. These may be attributed to the
existence of two extremal cross sections of the nearly
spherical portion of the Fermi surface.

*Permanent address: Physics Department, California Institute
of Technology, Pasadena, California.

'D. Shoenberg, PhiL Trans. Roy. Soc. (London) A255, 85
(1962).' A. S.Joseph and A. C. Thorsen, Phys. Rev. 138,A1159 (1965).

II. EXPEMMENTAL

The experimental details of the null-deQection torsion
balance have been described fully in previous reports. ' '
The technique was similar to that used in Ag: changes
in phase (defined as the ratio Ii/&o, where Ii is the
de Haas —van Alphen frequency and Ho is the applied
field) were monitored in a constant magnetic field as
the field was rotated about the axis of suspension of
the sample. This leads to a very accurate determina-
tion of the relative change in frequency, since each
change in phase of the belly, for example, corresponds
to a change in frequency of 0.001%. The dominant
error in this type of measurement is in the determination
of the angle at which the phase is measured. Typically
this error can amount to =0.05'. This leads to a relative
accuracy in frequency of =0.01% near a symmetry
axis where the phase is not changing rapidly with angle.
At angles away from symmetry directions where the
phase changes rapidly with angle, the relative accuracy
is reduced to =0.05%. It is estimated that the absolute
accuracy of the frequency values is &0.6%.

The gold crystal used in the present study was grown
in this laboratory by J. Savage and R. Guard, who used
the Bridgman technique and a boron nitride crucible.
The samples obtained from this crystal exhibited dHvA
oscillations much stronger than those prepared in
graphite crucibles and showed no experimental evidence

~A. S. Joseph and A. C. Thorsen, Phys. Rev. 133, A1546
(1964), and references therein.


