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It is shown that a light wave of the high intensity obtainable from lasers produces a sufficiently strong non-
linear polarization on a reRecting metal surface to result in an observable amount of second harmonic
generation. The analysis is based upon a self-consistent set of Maxwell s equations and the classical Boltz-
mann equation, respectively, for the electromagnetic Gelds and the distribution function of the conduction
electrons. The conduction electrons are considered to be completely free except for a potential barrier at the
metal surface, and the equations are solved for the Gelds varying with the frequency ~ of the incident wave,
and also for the Gelds varying with the frequency 2' in the approximation where the surface barrier can be
taken as a step potential. The effect of the incident light wave is treated as a perturbation to the motion of
the electrons and the frequency cv is assumed to be less than half the plasma frequency co~ so that neither the
fundamental nor the second harmonic wave can lead to plasma resonance. The part of the polarization
varying as e ""'which is quadratic in the incident Geld is found to have the form

Ps (NL) =a (EiX Hi) +PE~divEi,

where E& and Hj. are, respectively, the electric and magnetic Gelds varying as e '"' and where the magnitudes
of the coeKcients 0. and P have been determined, Since div E& differs from zero only near the surface of the
metal, the second term in Ps (NL) can be considered as a surface contribution in contrast to the volume
contribution of the Grst term. It is shown that these two terms give rise to comparable effects of second
harmonic generation. The ratio of the average energy Aux reQected with frequency 2' from the surface to
the incident flux is found to be of the order of magnitude (e ) 8;,

~
/me&so), where 8;, is the amplitude of the

incident electric vector.

tensor of a free-electron gas. They obtained identical
results in the limit where the Fermi velocity vf of the
metal electron is small compared to the velocity of
light c and where the energy of the photon quanta Ace is
small compared to the rest energy mc' of the electrons.
Both of these calculations do not take the boundary
effects into account. On the other hand, the surface of
the metal plays an important role in the reQection of
light and it will be shown in the following treatment of
the problem that it is, in an essential manner, deter-
mined by the existence of the surface. We will show in
the following classical calculation that the component
of the nonlinear polarization varying as e ""'has the
form

1. INTRODUCTION

Ps(NL) =o.(E, x H, )+PEi divEi,

where Ei and Hi are the components of the electric
and magnetic fields, respectively, varying as e '"'. This
form satisfies the general symmetry requirements dis-
cussed by Adler. 4 The 6rst term in Eq. (1.1) is identical
with the results of the earlier calculations. ' ' The second
term is a new term which is nonzero only near the sur-
face but which affects the nature of second harmonic
waves even away from the surface and must be taken
into account.

In this paper we consider a semi-infinite metal filling
the half-space x1~&0, so that the x2—x3 plane is the sur-
face involved in the refiection of light of (circular)
frequency co. Here x&, x2, and xa mean x, y, and s com-
ponents, respectively, of the coordinate vector x. We
use in this work potentials rather than fields E a.nd H,
in the gauge where the time-dependent part of the
scalar potential is taken to be zero. We first assume a

4 E. Adler, Phys. Rev. 134, A728 (1964).
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' 'N recent years light beams of very high intensity
- - have become available. These beams induce a non-

linear polarization and produce second harmonic waves

in the interior or at the surface of the medium. The
observations' of the optical harmonics have been, how-

ever, limited to insulators and semiconductors and no
experimental work has yet been reported on the second
harmonic generation at a metal surface. Except for
thin foils there is no transmission of waves through a
metal in the visible and lower frequency region and one

has to observe the harmonics in the reQected beam.
Also, it is more dificult to perform this type of experi-

ment on metals because of excessive heating of the sur-

face by the laser beam. Nevertheless, the order of magni-

tude of the nonlinear polarizability is such that with

proper precautions one should be able to detect the
doubling of frequency in the light reQected from a metal
surface. In fact, we will describe an experiment being
carried out at Stanford in this direction in the last
section of this paper.

A classical calculation by Kronig and Boukema' and a
quantum-mechanical calculation by Cheng and Millera

have been published for the nonlinear conductivity
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general form of the vector potential A and of the time-
independent scalar potential Co and try to Gnd the solu-
tion of the classical many-body problem given by the
Boltzmann equation for the electrons in the metal in
the presence of these unknown potentials. In the ab-
sence of the external light wave, the electrons in the
metal are considered to be free except for a barrier po-
tential at the surface. The solution of the Boltzmann
equation gives the distribution function f(x;,s;,t), where

f(x;,s;,t)d'xd'v represents the number of electrons at
time t in the six-dimensional volume element d'xd'p

of the coordinate x and velocity v space."From this
function the expression for the current density con-
taining the assumed form of the potentials can be cal-
culated. Since this expression enters into Maxwell's
equations for A, a set of self-consistent differential
equations for the vector potential is thus obtained. In
Sec. 2 we will derive this set of differential equations.

The time between collisions of an electron in a metal
at room temperature, e.g., in silver, is of the order' 10 '
sec and longer at lower temperatures, while the period
2s./to of a light wave in the optical frequency region is
of the order 10 "sec. Thus, the period of the light wave
can reasonably well be considered to be short compared
to the time between collisions of an electron, and it is
permissible to neglect such collisions in calculating the
potentials varying with optical frequencies. In the
microwave region, where 2s-/to is long compared to
the collision time, it is necessary to retain the col-
lision term in the Boltzmann equation. Reuter and
Sondheimer' have calculated the part of the Geld

varying with the incident frequency cv in the microwave
region by taking a simple form for the collision term.

With the above assumption in the optical region
about the collision term, the general solution for the
time-varying components of f is found in Sec. 3 by
solving the Boltzmann equation. This solution is ap-
proximated to the limit where the distance d, within
which the surface barrier potential varies, can be con-
sidered to be small compared to sy/to. It is shown in
Appendix I that this is equivalent to taking a step
potential at x~=0. Two more distinct simpliGcations
occur in this problem. The Grst is due to the fact that
the amplitude of the incident light wave can be assumed
to be sufficiently small so that it can be treated by a
perturbation method and the other is due to the small-

ness of the Fermi velocity ef compared to the velocity
of light c. With these approximations we solve for the

' Recently it was pointed out by Professor Bloembergen and
Professor Shen at the Puerto Rico Conference on the Physics of
Quantum Electronics (unpublished) that the nonlinear polariza-
bility of silver ion core at the surface should also be considered.
Like our surface term this was shown to give a cos40 dependence
to the reflected intensity and thus the volume contribution may
still be separated.

C. Kittel, Isttrodlctiol to Solid State Physics (John Wiley Bc

Sons, Inc. , New York, 1960), pp. 238-240.
'G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.

(London) A195, 336 (1949).

potential varying with frequency co in Sec. 4. Denoting
the plasma frequency by cv„, it is found that, for co&co~
and xt»sy/co, the solution inside the metal is damped
at all angles of incidence, exactly as given by Fresnel
formulas. s s The solution for xt«sf/co differs apprecia-
bly from Fresnel formulas, especially for the component
of the vector potential that is normal to the surface.

In Sec. 5 a solution for the potential varying with
frequency 2' is found that is correct outside the metal
and for xt»sf/to inside the metal. In Sec. 6 we derive
the expressions for n and P of Eq. (1.1) and discuss our
results.

where the Cartesian components of Dz are given by

Dq= (A„sin8,A„cos8,A,). (2.2)

Here, and later in the text, the symbol c.c. means the
complex-conjugate term corresponding to the Grst
term on the right. To emphasize the fact that, at time
t= —~, the metal is not interacting with the light
trave we may imagine that co has an arbitrarily small
positive imaginary part in the first term of Eq. (2.1).

By penetrating into the metal the light wave will
interact with the electrons and ions in the metal, which
in turn will produce a Geld as a result of their induced
motion. Thus, a self-consistent Geld will be set up inside
and outside the metal. In the gauge where the time-
dependent part of the scalar potential is zero, let this
field be represented by a vector potential A.":and a time-
independent scalar potential Co, where the electric
and magnetic Gelds are, respectively, given by

1 8A
E=— —VCe

c Bt
(2.3)

H, =p'xA. (2.4)

Since there is no zero-frequency component in
the incident light wave, the deviation of the time-
independent part of the scalar potential 40 from the
undisturbed value is expected to be at most of second
order in Dt. Maxwell's equations satisfied by A and

7 J. A. Stratton, Electromugnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), Chap. IX.

e L. I. Schi6 and L. H. Thomas, Phys. Rev. 47, 860 (1935).

2. SELF-CONSISTENT DIFFERENTIAL
EQUATIONS

Let us assume that a metal slab occupies the half-
space x~~&0 and that after the time t= —~, a light
wave of frequency co has started to act. Choosing a
convenient gauge the incident light wave is represented
by a vanishing scalar potential and by a vector potential

jtcos8 sin8
A, .=D, exp t'toj xt— xs

~

e—'"'+c.c. , (2.1)
c c
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Co, are

and

8 BA; WI, 1 O'Ag, 4+-
i+—— =—A

Bxj Bxi Bxj 1 c Bt c',

/

(2.5)

3. SOLUTION OF THE BOLTZMANN
EQUATION

When the collision term of the Boltzmann equation
(2.9) is neglected, it becomes

1 8 Bc4y 8 4'0
=4xp,

c Bt Bxl, Bxj,&xp
(2.6) Bf Bf 1dUBf F; Bf—+v,

Bt Bx~ m dxq 88y m Bv;
(3.1)

where J and p are the current and charge densities, re-
spectively. In Eqs. (2.5) and (2.6), j and k represent
diferent Cartesian components, each taking the values
1, 2, or 3 corresponding to the x, y, and s components,
respectively, and here as well as later in the text, re-
peated indices imply summations over those indices. In
our formulation of the problem, the motion of the ions
due to their large mass, as well as their polarization,
are neglected and their presence is taken into account
only in as far as it causes a neutralizing positive charge
density, assumed to be static and uniform. - Thus, in
terms of the distribution function f(x;,v;, t) for the elec-
trons the components of the current density are given by

Ji———e d'v vi,f(x, ,v, ,t)

I et

x,,v; e '"' (3.2)

F;=2,F;,(xi,v;)e (3.3)

where q assumes all positive and negative integer
values including zero and where, because of the reality
conditions, the complex conjugates f,* and F;,* must
be such that

(3.4)

(3.5)

The expansion of the electromagnetic force Ii in
Eq. (3.3) is implied by a, corresponding expansion of the
vector potentia, l A of the form

and the charge density is given by with
~t=Z. a;,(x;,v;)e-*-

~ia =~i)—c

(3.6)

(3.7)
p= —e d'v f(x, ,v;,t)+em, (2.8)

where e is the unperturbed density of the electrons and
ee is the charge density of the ions.

The distribution function f(x;,v, ,t) satisfies the Holtz-
mann equation

sine'"-'(-"- "
C

(3.8)

Because of the dependence on x~ of the incident wave
of Eq. (2.1), f„F,„and a, , can be assumed to be
given by

where

Bf Bf 1 dUBf F; Bf Bf—+v, +— = —,(2.9)
Bt Bx~ m dpi Bei m Bv; Bt

Then, from Eq. (3.1), one obtains

Bfp 1 dU Bfp—ip~,f,+vi — =E,(xi,x, ,x, ,v;), (3.9)
Bxy m dSy 88y

e BA; e jtBAi BA;) BC'p

I+e
c Bt c IBx; Bx,i Bx;

where
2.10

and
p~, =qpp(1+ (v2/c) sinS) (3.10)

is the force due to the vector potential A and the scalar
potential C,. In Eq. (2.9), U(xi) is the surfa, ce-barrier
potential that will be approximated later on by a step
potential at xi ——0, and (Bf/Bt)«ii is the collision term
for the electrons. As explained in Sec. 1, we will neglect
this collision term in the calculation of the potentials in
the optical frequency region.

Equations (2.5)-(2.10) form a set of self-consistent
differential equations for A, Cp, and f. This set of equa-
tions must be solved with the conditions that, for
t —+ —pp, the distribution function f approaches f', the
unperturbed equilibrium distribution function for the
electrons, and that the incoming wave in the solution
for A for xi(0 is represented by Eqs. (2.1) and (2.2).

Bfp v—E = ——QFgn
m~ Bv;

(3.»)

In the Appendix I of this paper, it is shown that we
can replace the surface barrier potential U(xi) by a step
potential at @~=0,provided that

pid/vga(1, (3.12)

where d is the distance within which U(xi) varies near
the surface. Ordinarily in a metal, d—10—' cm and
v~-10' cm/sec, so that it is necessary to assume
co&&10"sec '. Under this assumption it is further shown
in the Appendix I that the solution of Eq. (3.9) can be
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written as

A(x~)v~)= fe (xj)v~)

dxi' })' (xi—xi'))
expil ~}) —~&a(»' x2,xa,v;) (3.13)

v, i

for v1(0 and

f.( x~ v)= fa (—x v )

'& dxi' (xi—xi')
——exp z~~ E,(xi',x2,x8,v;)

0

xi)
+exp(~,—~f(0x,,, x, ,,

—v, , v, , m,} (3.N)
vi

for e1)0.
The incident light wave varying with frequency co and

with the amplitude Di given by Eqs. (2.1) and (2.2) is
treated here as a perturbation including only the
lowest terms in Di. It may thus be assumed tha, t

and

f'= n/(4/3)v vi', for velocity v ~& vr (3.29)

f'=0 for velocity v)vy (3.30)

With a step potential of sufhcient height, there are no
electrons for xi&0, and thus f'=0 in this region. The
function f' has been normalized in Eqs. (3.29) and
(3.30) in such a way that

d'v f'=4m v'dv f'=n.
0

(3.31)

Ks= (2ei~/mc) a,~(Bf"/Bv, )

+ ( la;,+—w,(
— ), (3.28)

mci mc BxI Bxyg Bv~

where the Lorentz term in the force appears only in
the expression for E2.

If the electrons are treated as a degenerate Fermi gas
at zero temperature, one has for x1&0

(3.15)f f0+O(D 2)

Starting with a given fe, Eqs. (3.27), (3.28), (3.13),
and (3.14) determine the solutions for the part of the
distribution function f varying with frequencies co and
2~ in terms of the unknown vector potentials. We will
use these to calculate the components of the current
varying with frequencies co and 2' in the next two sec-
tions and solve the differential equations for the un-
known vector potentials corresponding to Maxwell's
equation (2.5).

(3.16)

(3.17)

f =O(D),
f2 0(D '), ——

(3.18)F,p=O(Di2),

F;i——O(Di),

F,2 O(Di2), ——
(3.19)

(3.20)

etc., where 0 stands for "terms of the order of-
Thus, to the lowest order perturbation calculation of
potentials in the powers of D1, it follows from Eq.
(3.11) tha, t

Ei= (1/m)F i(Bf'/Bv )—

4. SOLUTION FOR THE FIELDS VARYING
WITH FREQUENCY u

(3 21) From Eqs. (2.5), (2.10), (3.2), (3.3), and (3.6) one
obtains for the quantities aI,1,

1 Bf 1 Bfi

m Bv; m Bv,-

(3.22)
l3 "C&1 8 QIc1 6) 4'

~k1 JA1 y

BX&OX', BX&BXJ C C

(4 1)

The unperturbed distribution function f satisfies the where j~, is deiined in terms oI the current vector J as
equation

A=+, j}„e-'&"', (4.2)
(3.23) and where

which has the general solution VI(0

d'v v},fi e—
1)0

d'v v},fi+ (4.3)

where

so that

f0 f0(P)—
E= -', mv;v, +U(xi),

Bf'/Bv =mv (Bf'/BE).

(3.24)

(3.25)

(3.26)

Ei (eico/mc) a~i (Bf~/Bv,)'——(3.2i)

Using this special property oi f' as well as Eqs. (2.10),
(3.3), and (3.6), one can then simplify the expressions
for E1 and E2 to find,

in terms oI the solution for fi given by Eqs. (3.13)
and (3.14).

Outside the metal, for x1&0, there is no current and
the solution of Eq. (4.1) can be written as

cos8 cose
a» —— D»exp i~ xi +Gi,&exp iu xi—

i

C c i
sintt

Xexp~ —ia& x~ (4.4)
c
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where the incoming wave corresponds to the incident
wave given by Eqs. (2.1) and (2.2), and where

Qgg
———G2g tano. (4.5)

To obtain the classical Drude solution' for the prob-
lem of reQection of light from a metal surface, we can
assume that for xi»vi/co, where the electrons are not
subjected to the influence of the surface barrier, the
exponential of the form exp(in'(xi —xi')/vi) in Eqs.
(3.13) and (3.14) varies rapidly with vi except for small
values of

~
xi—xi'~ . Thus it gives an essential contribu-

tion to j» only for x&'=x&. Similarly the exponential
of the form e'"'*»'& gives any appreciable contribution
to the current only near x&=0. Then to the lowest
order in vi/c one finds from Eqs. (3.13), (3.14), (3.27),
(3.31), and (4.3)

jsi= —(e'zz/mc)a», for xi»vi/co. (4 6)

This procedure is, however, not valid near the surface.
The normal component of the current can be shown to
differ in this region considerably from the above expres-
sion. On the other hand, the knowledge of its value is
not required for calculating the potentials away from
the surface, if one uses the familiar procedure of deriv-

ing the Fresnel formulas where the inside and outside
solutions are matched at x&=0 to satisfy the following
boundary conditions: (i) the tangential components of
the electric Geld are continuous, i.e., a2~ and a3~ are
continuous; and (ii) the tangential components of the
magnetic field are continuous, i.e., Basi/Bxi and
8asi/Bxi+ (io~ sin8/c)aii should be continuous. Apply-
ing this procedure one then obtains from Eqs. (4.1),
(4.4), (4.6), and conditions (i) and (ii),

2' Cg]
a11— Clie rr 1+

CO S yg)o
2

8fs ( sin8
&& e&'"I'&&*'v, expl i oi xs

I

—(4 15)
Bvi k c

CO

a21 Csle»~z exp —i—(sin8)x2
C

(4.16)

GO

as i——Czre
—»*1exP —z—(sin8)xs

C

with

(4.17)

For a typical metal like silver, v~6&(10" per cc, so
that co„10"sec '. In order to obtain an exponentially
damped solution in Eq. (4.7) for all angles 8, we see
from Eq. (4.8) that the frequency &o should satisfy the
relation co~& co„. We assume here that this is true in our
case. To Gnd the order of magnitude of p& given by Eq.
(4.8) we will consider ce and ro„ to be of the same order
of magnitude so that p& may be assumed to be of the
order io/C.

To know how the classical Drude solution differs
from the correct solution near the surface, we can start
with the Drude solution (4.7) and obtain fi and jI,1
from Eqs. (3.13), (3.14), (3.27), and (4.3). With this
known form for jsi in Eq. (4.1), asi can be obtained by
solving this differential equation. A better accuracy is
obtained by a continued iteration procedure, but here
we give the results of only the erst iteration. With the
omission of all terms that are negligible for vy/c((1, one
thus obtains

sin8
asi Csie »»——exp~

——zo; xs
c

for x~&0, where

yi = ( / ie)(oci„ /o~' cos'8)'—I',

Czi = (—c'ri/kd sii18)Cii,

—2A „~' sine cose

((ov —M ) cos8 zioc+1

2A cv cosO
Cap=

oi cos8+zMc rl

(4.7)

(4.g)

(4.9)

(4.10)

(4.11)

2+„2 sin2g—'jt'yC2ye ~' '— C2i

Bf' ( sin8
d'v e&'"I"" 'vi expl i oi xs

I
~ (4 18)—

&s 8vi k c )

Since the above solutions hold even near the surface,
the boundary conditions at x&=0 to be used for the
differential equation (4.1) are

(i) a11, azi and azi should be continuous; and

(ii) 8asi/Bxi and Basi/Bxr should be continuous.

and
G» ——C2~—A „cos8,

~3i=C3x—A. ,

(4.»)

(4 13)

oi„= (4zrzze'/m)'I'.

' H. Sonnenberg and H. HeEner (private communications).

and where co„ is the plasma frequency of the electron
gas given by

(4 14)

With Ci and 61 given by Eqs. (4.5), (4.9), and
(4.10)—(4.13), it can indeed be shown that our new
solutions satisfy the above boundary conditions. These
new solutions given by Eqs. (4.15)—(4.18) inside the
metal differ from the Drude solution only within a dis-
tance of the order vr/o~ from the surface. From the re-
sults of Eqs. (4.4), (4.5), and (4.7)-(4.13) one can show
that the normal component u~~ is discontinuous for the
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Drude solution at x~=0 such that

Bag ~,' ( sine )
~~~8(x&) expl —i~8/0) c

(4.19)

whereas from the more exact solutions in Eqs. (4.15)-
(4.18) one finds the normal component a&3 to be con-
tinuous and

As explained in Sec. 5, in the limit of vr/c«1, this is
equivalent to ignoring only a surface current in the xj
direction. The nonlinear part of the current can be cal-
culated from Eqs. (5.2), (3.13), and (3.14) when one
uses the second term of Eq. (3.28) for E3 and the Drude
solution given by Eqs. (4.7)-(4.11) for a». Using the
general properties of fP given in Sec. 3, one then finds
in the limit,

2+& Cyy
e—'n (Ba,& Ba»&&

j33'"&(NL)=
2z~mpc3&Bx, Bx ) ' (5 4)

ZM B vI)0
Bf3

Xe(,.~.,).I sin8
expl —i~ x3 I. (4.20)

c

As a check we should mention here that integrals over
x~ of the right-hand sides of the above equations reQect
the fact that

8(xr)dxr ——1. (4.21)

Since the reQection coefficient, defined as the ratio of
the average energy Qux reQected from the surface to
the incident Qux, is equal to the ratio of C;&*6;j and
D,j*D;j, its value remains the same as in the classical
Drude case. For both the cases where the incident light
is polarized either parallel (A, =O) or perpendicular
(A„=O) to the plane of incidence one finds total re-
Rection for pp 3/p&3&cos38

and

8f ( Sill e
d'v e' "&"' expl ip& xp (5—.5)

&yp Bvy E c

—2e
uaic~~

in the interior of the metal provided that x&&)vy/p&. This
expression shall be called the volume term and is en-
tirely due to the Lorentz term in the force. But now we
find that apart from the normal component of the cur-
rent there are appreciable tangential components near
the surface. These tangential components, to the lowest
order in vr/c, can be written by using Eqs. (5.2), (3.13),
(3.14), (3.28), and (4.7)

—2e
j22 (NL) a21cll

1S C

5. SOLUTION FOR THE FIELDS VARYING
WITH FREQUENCY 23'

Similar to Eq. (4.1), the differential equation satis-
fied by the quantities u» can be written as

where

8 aj2 8 ak3 (4p& l 4&r

Bx;Bx3 Bx,Bx; 5 c' ] c
(5.1)

vg+0

d vv3f3 e'—
vt, )0

d'v V3f3+, (5.2)

j33 (L)=—(e'n/mc) a33. (5.3)

and where the functions f3+ can be obtained from Eqs.
(3.13) and (3.14) in terms of E3 which'is given by Eq.
(3.28). The expression for E3contains two terms, t'he

first term involving the unknown potential a;2 of the
same form as that of E3 in Eq. (3.2'7) and the second
term involving a,q and f~ which are known from the
solutions of the previous section. Therefore the current
j» contains a homogeneous or linear term which is very
similar to the current j» and an inhomogeneous or
nonlinear term. In this section we are interested in the
solutions for a» only for x&&)vr/p& and therefore with
Eqs. (3.13), (3.14), (3.28), (3.31), and (5.2) and the
considerations leading to Eq. (4.6) we may approximate
the linear part of the current as

Bf' sin8
x d'v e'"*'&'& exp —ip& xp

l
. (5.6)

v1)0 Bvy c

In deriving the above results we have used the fact
that a nonlinear current varying as e&'" 't'") gives a
contribution of the order v~/c to the potentials as com-
pared to a current varying as e»*' where p& O(pp/c).
This can be seen by examining Eq. (5.1).By comparison
to Eq. (4.20), we may also write,

j33~'&(NL) = (e'nip&/m'c'p& ')a»(Ba;&/Bx;) (5.7)

j33&'& (NL) = (epnip&/m c'pp ')a3$(Baj&/Bx;) . (5.8)

(5.9)

It is shown in the Appendix II that to calculate the
potentials in the interior and outside the metal, a
knowledge of the exact variation of the above terms in
Eqs. (5.7) and (5.8) near the surface is not needed and
that one can replace in these equations the Drude ex-
pression (4.19) for Ba;&/Bx; instead of using Eq. (4.20).
Then, using Eqs. (5.1)-(5.4), (5.7), (5.8), and (4.19)
to find aq2, one has to solve the differential equations

8 C~g 8 CIc2 4'
Bx&i9$y BS~Bxy c

4&lne —4&rn'e Ba '3 Ba33)

mc' 2i~mpc3 Bx, Bx;i
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for x1)0, and

8 GIc2 4'
aI,2 —0,

BX&BXy BX&BX~ C

8 Cg2
for x2(0 (5.10)

and match the solution at x1=0, such that

(i) a22 and a32 are continuous;

These boundary conditions are equivalent to the
conditions that the tangential components of the elec-
tric field E2 should be continuous and that the tangential
components of the magnetic Geld H2 should have a dis-
continuity at the surface which is equal to 42r/c times
the corresponding tangential component of the current
at the surface. Since we do not need the exact value of
the normal component of the current at the surface, this
procedure implies that we may write in Eq. (5.1),—BQ32 Ba32

~X1 ag 0 ~X1 c],=p

—4mee' sin8
C3$C3$ expl —2i(s) x2 l; (5.11)

m c'iv) c i

Jk2

—e2e e323 (Ba; & Ba»)

23Mm c )s Bx/s (3x ' i
e Bi(s) ) 8(3 2

+ I I&» (5 13)
m2c ~2'i ax

~~22 ~12
(iii)

BX1 BX2 g&=p+

~~22 ~12

BX1 BX2 gg P

—4~me' sin8
C22C22 expl

fS C ZCO c
(5.12)

It should be pointed out here that the last term on the
right-hand side of Eq. (5.13) represents the surface
current and goes to zero if the incident light is polarized
perpendicular to the surface. The solution for a~2 with
these conditions can then be shown to be

sin8 ) 42rc e'23

aI,2
——CI,2e»~j exp —2ico — - -x2

c i (a&
'—4(u2') 4ium2C2i

and

sin8
C;)C;)e '""'expl —2i(u x2 l, for x2) 0 (5.14)

c

vrhere

cos8 ) sin8
ap2= GA, 2 exp —2-~ x1 exp —2i~ x2, for x1/0

c i c

2 s )/2
—cos'8

l

C 4(s)

(5.15)

(5.16)

—2ico sln8
C12= C22, (5.17)

and

G12= —G22 tano,

42r23e') —C32C22
G32= C32=1

k m2C2i~ icy, —2i~ cos8
'

(—22ree') c(cos8) (2y2C22C2g —(i~/c) (sin8) C;gC;g)
G22=I

gg2C2 j~ ((s)3s'—4(s)') COS8 —23(s)C+2

((d)s —4(s) ) COSH 22(s)c')e2

(—4 oe')O, e(cosC)(C C s+[ '(sioC)/( s —4 ') cos8]C;,C;,)

mi2(uC2

(5.18)

(5.19)

(5.20)

(5.21)

We shall now proceed to determine the ratio of the average energy Qux reQected with frequency 2' from the sur-
face to the incident Qux given by

R(2) = 4G 2*Gy2/D;, *D;,. (5.22)

For this purpose one has to use Eqs. (5.18)—(5.22), (4.5), (4.9)—(4.13), and (2.2). If the incident light is polarized
parallel to the plane of incidence, i.e., if A, =o, we find

E),„(2)=
l eE„/mc(o„l 2P(8,(v~/(0), (5.23)
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where E„given by
E„=(i(v/c)A „

is the maximum amplitude of the incident electric field and where

((~„'/~') cos'8 —4 cos28)((~ 'j~') cos'8 —cos28)'

16 sin'8(cos'8)((co„'/co'- —1)+4((o '/4ee' —cos'8)'I'(co '/co' —cos'8)'~'} '

(s 8,—/=
co J

(5.24)

for co~'&&4&v' cos'g. (5.25)

and

& (g,n~„jco) -+ 0, if 8 ~ —,'m

G(g, (o„/co) ~ 0, if 8 —+ 0.

(5.26)

(5.27)

If the incident light is polarized perpendicular to the

plane of incidence, i.e., if A„=O, there is no eGect of

In the following discussion, the special case of
plasma resonance which occurs if co=or„or ~=2'„ is ex-
cluded. It follows in this case from Eqs. (4.8) and (5.16)
that y~= 0 or y2= 0 indicating the absence of damping of
the single or double frequency wave in the metal so
that the boundary conditions for large values of x&

become important. This situation cannot arise, however,
if ~(or~/2 and we shall assume this condition to be ful-

6lled, considering that it is justified for the incident

light in the infrared region. Then it is seen from Eq.
(5.25) that

the surface current and one obtains

where

and where

E„„i'i=
~
eE,/mc(v„~ 'h(g, (v„/(v),

I,= (i(u/c)A „
(5.28)

(5.29)

16 sin'8 cos40( ~.l
h] 8,—)=

((o '/co') cos'8 —4 cos28

for ~,'&~4~' cos'g. (5.30)
Again

and
h(g, a)~/(o) ~ 0, if 8 —& -', 7r

h(g, ee~/(o) ~ 0, if 8 —+ 0.

(5.31)

(5.32)

If the incident light is unpolarized, i.e., with

A~=A;„, cosy and A, =A;„,sing if one averages over
all the orientations of the angle y, one 6nds

E„„n,i.&"= (eE;,/mero„) ' sin'8 cos'8

6((~ '/o&' —1)+4(cv '/4'' —cos'8)'I'(~ '/ee' —cos'8)'I'}'
X

((cv '/co') cos'8 —4 cos28)((ni '/co') cos'8 —cos28)'

((co '/~') cos'8 —4 cos28) ((co„'/co') cos'8 —cos28)

4(((u '/co') cos'8 —2 cos'8+cos28)(((ce '/~') —1)+4((~ '/co') —cos'8)'i'((ni„'/4(o') —cos'8)'I'}-

((a& '/nP) cos'g —cos28)'((~ '/~') cos'g —4 cos2g)
(5.33)

where tained from Eq. (5.13) as

@inc= (&ni/C)+ ine ~ (5 34)

0. DISCUSSIOH

—e s (BC~i BGyi)
.jsu(NL) =

It is seen that E„„.i."i likewise vanishes for 8=0 '
2i~~2e2(8~~ gz, j

and 8=-,'x. 88~y
+ api . (6.1)

SS C Mp 8'
It was pointed out in Sec. 1 that second harmonic

generation by reQection on a metal surface can be as-

cribed to a nonlinear polarization of the form of

Eq. (1.1)

Using the relations

and
Hg=& Xgg

Ei= (in'/c) a,

(6.2)

(6.3)

P2(NL) =a(Ei x Hi)+IgEi divEi.

In order to verify that the preceding calculations lead

to this form one has to consider the expression for the

nonlinear current density j1,2(NL) which can be ob-

the nonlinear current density can be written in the
vector form

e Ã ie'e
j2(NL) = (E, x Hi) — E, djvEi (6 4)

2ts cG0 m co~ op
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On the other hand, the polarization P2 and the current
density j2 varying as e ""'are related to each other by
the relation

P, =—(1/2i(o) j2. (6.5)

Combining Eqs. (6.4) and (6.5) the nonlinear polariza-
tion appears indeed in the form, given above with the
coefFicients

n = ie'm/4m'coP (6.6)

The corresponding Grst and second terms in the non-
linear polarization were shown in Sec. 5 to represent
volume and surface contributions, respectively. The
latter was neglected in the calculations of Kronig and
Boukema' and of Cheng and Miller' so that their result
is equivalent to replacing Eq. (6.7) by P=O. Corre-
spondingly, Eq. (5.23) for the reflectivity of the second
harmonic wave for light polarized in the plane of inci-
dence is replaced by

P = e3e/1rPco ~u2 (6.7) where
Ep„'2& =

~
eE,/mc(o„~ 'W(8, (u~/co), (6.8)

16 sin'0 cos'8(a&„'/~2 —])2

for co '& 4&v' cos'8~) ((co„'/&o') cos'0 —4 cos20)((N&2/&') cos2g —cos2g)&
(6.9)

M((5f/d ) (6.10)

By comparison of these equations with the more rigorous
Eqs. (5.23) and (5.25) of Sec. 5, it it seen that the sur-
face term is by no means negligible and leads to a con-
siderable modification of the results, obtained from its
omission. It can be shown, however, that the omission
of the surface term does not change the expression for
the reQectivity of the second harmonic wave E~„',
given by Eqs. (5.28)-(5.30), for light polarized per-
pendicular to the plane of incidence.

While the results derived in this paper lend them-
selves readily to numerical evaluation, it has to be em-
phasized that they were derived under certain simpli-
fying assumptions which are not rigorously justified
under actual experimental circumstances. In view of the
importance of surface effects mentioned above, this holds
particularly for the description of the surface barrier
by a step potential. As explained in Sec. 3 and the Ap-
pendix I of this paper this description is valid only if
the frequency or of the incident light satisfies the
condition

band structure of the conduction electrons is no longer
justified. Instead, they will have an appreciable in-
huence upon second harmonic generation of visible
light which would be dificult experimentally to sepa-
rate from the eGect, treated in this paper.

This eQ'ect, however, may be expected to be dominant
under the conditions of an experiment which is at pres-
ent being carried out at Stanford by Sonnenberg and
HeGner' and to which, in conclusion, the results of Eqs.
(5.23)-(5.25) shall be applied. "In this experiment, the
incident light consists of a beam, polarized parallel to
the plane of incidence, from a neodymium-doped glass
laser with a wavelength of 1.06 p, and a corresponding
circular frequency co= 1.74&&10" sec ', and is reflected
from a silver mirror. With e 6.10X10"cm ' for the
conduction electrons in silver and ~„~1.35)&10' sec '
from Eq. (4.14), one obtains

(me+„)-~8,
~

~~8&&10'esu
e )

where d is the distance over which the surface potential
varies appreciably and where vp is the Fermi velocity.
In reality, d must be expected to be of atomic dimen-
sion, i.e., d~10 ' cm, and v~10' cm/sec, so that the
condition of Eq. (6.10) is satisfied for a frequency

and, hence, from Eq. (5.23),

(6.12)

co&(10I6 sec '. (6.11)

Since the right-hand side of this inequality is of the order
of magnitude of optical frequencies, our results can
claim only qualitative validity for incident light in the
visible region. On the other hand, these results may be
expected to lead to reliable numerical values for
co~10"sec ', i.e., for infrared incident light, used in the
experiment discussed below.

It is to be further noted that the applicability of our
results to visible and ultraviolet light is questionable
for other reasons too. Indeed, with the excitation fre-
quency of the ions and of higher conduction bands ly-
ing in this region, the neglect of ion polarization and of

For (ru„/cv) =8, P(8,&v~/co), given by Eq. (5.25), is
plotted in Fig. 1 shown for different 0. In the same
figure we have plotted P(e,u„/su) for ~„/co=3 for com-
parison. As ra„/co increases, the peak of the function
P(8,co„/co) is seen to shift towards 8=90'. For order-of-
magnitude calculations we may take the optimum value
of 5(e,&u„/co) to lie between 1—10. This means that for
incident laser beam of moderate Rux density with E„of
the order of 2.5&& 104 V/cm or 80 esu, the fraction of the

' Recently it has been pointed out by Professor Bloembergen
and Professor Shen that ion cores at the surface may be the main
source for the harmonic intensity. The author is grateful to them
for sending this information.
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If we de6ne

and

ErrLX1(rr Vl)r81(r rel) j=gg(Tr'Ul) r

(L6)

(I.7)

Eq. (3.9) can be transformed into

i(—q,gay, /Br=&, (I.S)

The solution of Eq. (I.S) for g&0, which goes to zero
for v- —+ —~, can be written as

0
0 I 0 20 50 40 50 60 70 80 90

ANGLE OF INCIDENCE 8

dr'e'"«' "&$ (v', 8r,) . (I.9)

Fxo. 1. Angular dependence of the reQection coefBcient R~„' .

power of the incident wave reQected in the second har-
monic wave is of the order

t'SX10 esu )'
R „&'r=~

~

=10 '4.
(SX10' esu)

(6.13)

The effect, so far observed, ' seems to be consistent with
this result. This eKciency can be increased if without
damaging the metal surface it is possible to apply more
intense laser beams which are readily available.
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cod/wg(&'1.

Under this assumption we may write

(I.10)

for v (0, vq
———

Sr, negative (I.11)

Sy= —VyT

and for v&0, eg= By

Xy= Vj7 .

positive

(I.12)

(I.13)

(I.14)

In order to And f, from Eq. (I.6) one requires the
knowledge of the functional dependence of x~ and v~ on v.

and 8& and hence from Eq. (I.5) that of U on xz. The
function U(xq) varies from zero to a value of the order
of may' within a distance d near the surface. Therefore,
the average time v* taken by an electron between en-
tering the surface barrier region and coming out of it
after being reflected by the wall can be estimated to be
of the order of d/vy. Since the time r enters according
to Eq. (I.9) in the combination co,r and since or, is of
the order ~r it is possible to replace U(xz) by a step
potential at @~=0for which x*=0, provided that

APPENDIX I
Since the x2 and xs dependence of f~ is already as-

sumed to be known, Eq. (3.9) is a differential equation
for f, in the variables xz and vz only, whereas the other
two variables e2 and e3 enter only as parameters. Thus,
while Eq. (3.9) is being solved the variables x2, xa, v2,

and v3 may be suppressed. In terms of two new variables
given by a time r and the constant of motion for the
unperturbed electron

vg= Pe '+ (2/rm) U(xg)g'~
let

Now Eq. (I.9) can be transformed back to the variables
x~ and vr, to obtain the results of Eqs. (3.13) and (3.14)
of the text.

APPENDIX II

Due to the rapid variation of the exponential e'" I~ "I

in j»&'(NL) and j»&'r(NL) given by Eqs. (5.5) and
(5.6), respectively, the contribution of these terms to
the current j» of Eq. (5.2) is appreciable only near the
surface. Considering only the case where k=3, Eqs.
(5.2)—(5.4), (5.6), and (4.7) lead to the result

and
xg= xr (rrvg)

'vy= sg(r, 8y)

(I.2)

(I 3)

232=
—e'n

~32
2e t' sin 8

C3rCr, r exp~ —2i&. xm

m'c e )

where
Bxy/BT= sy (I.4)

1&0

0

&&*re'~*&r~r (11.1)

Brrr/Br = —(1/m) (dU/etx~) . (I.5) Using the above expression for the current in Eq. (5.1),
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one thus Qnds

sin8
a32= C32e»'~ exp —2ico x2

C
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2ico cosa —4xe3e
y2C32 —G32 C11C31, (II.9)

Sxe3 sin8
+ CgyC» exp~ —2$~ xp

~

8Z C c i

for x1&0, where

1)0

y~ ——(2'/c) (ar '/4aP —cos'8)' " (II.3)

c'lQ&Aft vfc +/$1(8f 0/8v )
d'v (II.2)

(&~/» —v~)' —v~'

where we have used the result

Bf' n
d 8'v]

~1)p Bt)1 2
(11 10)

These same relations for C32 and G32, which determine
the solutions in the interior of the metal and outside the
metal, can be obtained if we write for the expression
j3p"(NL)

Since p& and p& are of the order of &u/c we may write, to j (.)(NL) C»C»exp~ 2&~
the lowest order in vf/„

sin8
xp i8(xg) (II.11)

Sxe3
+— C„C„exp(—2m

m'c'(i~)'

sin8
a32= C328 7"' exp —2gco x2

C

sino

C

(i) a» should be continuous (II.12)

instead of its form given by the second term of Eq.
(II.1). To verify this, one can solve the differential
equation for a» given by Eq. (5.1) for x&(0 and x&)0
separately and then apply the following boundary
conditions at x1=0:

8fo
&c&»ll &lc 'Yl~l (II 4)

I)0 BV1

From Eq. (5.1) the solution for a» for x&(0, where there
is no current and no incident wave of this frequency, is
given by

cos8 f sin8
a32= G32 exp —2ico- x1 exp —2ico x2 . II.5

C c

Applying the boundary conditions tha, t a3. and Ba»/8x&
are continuous at x1=0, we find

aild

Ba32
(ii)

ax1 g1 P+ ax1 /1 0

47r f —e'e sin8
C,gC, g exp~ 2~(. —x,

~
. (II.13)

c &m'c'i~ c )
This means that it is permissible to use Eq. (II.11),

i.e., to consider the surface term j»~'&(NL) to have a
delta-function character, in order to obtain the solution
in the interior and outside the metal. Similarly for the
surface term j»&'&(NL) given by Eq. (5.6) we may

and

Sxe3
C32 G32 C11C31

m C leo 1)0

8fo write
d'v vg (II.6)8, j &'(NL)=

/f0
d'v vi, (II.7)

BV1

2i~ cos0 See' C11C31
C32—G32

C+2 Pl C 2P2 g1)P
2 3

—e3e
C21C11

S2 C 2G0

sin8
)&exp —2' — -x2 5 x1 . II.14

c i

where we have neglected yq in comparison to u/vq in the
right-hand side of Eq, (II.7).

By examining Eqs. (II.6) and (II.7) we observe that
the right-hand side of Eq. (II.6) is of the relative order
vf/c compared to that of Eq. (II.7). Therefore, to the
lowest order in vg/c, we may write the boundary condi-
tions (II.6) and (II.7) as

C32= G32

and

8 sic' Baj1
j3&~'&(NL) = —a3&

2 2 2~ & y Xj Drude

8 SZM Baj1
j22 (NL) +22

2 2 2~ ~ y ~Xj Drude

(II.15)

(11.16)

Since for the Drude solution, Ba;&/Bx; given by Eq.
(4.19) has a delta-function character at x&——0, we may
replace (II.11) and (II.12) by


