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The radial extent of the coupling between the bound electronic states of a defect ion in a crystal and the
vibrations of the lattice ions is investigated. An electrostatic-coupling model is used to evaluate the electron-
lattice interaction. It is found that those electronic transitions which involve a change in conlguration are
coupled primarily to the vibrations of ions in the immediate vicinity of the defect. Consequently, if there
exist local or pseudolocalized vibrations, the resultant vibronic spectra are dominated by transitions to
vibrational modes which have high local amplitude. In contrast, it is found that in general, electronic
transitions within a con6guration are coupled to nonlocalized vibrations as well as to the localized vibrations.
In the special case of the transition 'Do ~ 'Ii0 of Sm'+, the coupling is primarily to nonlocalized vibrations,
so that the vibrations resemble those of ions of the undisturbed lattice. The observed vibronic structure
accompanying this transition of Sm2+ in the alkali halides is presented. A comparison is made for Sm~+: KBr
between the singularities in the phonon density of states as observed in the vibronic structure, and those
predicted from the published dispersion curves of KBr obtained from neutron-scattering data. The agree-
ment is found to be very good. The vibronic structure accompanying the same transition of Sm~+ in the
alkaline-earth halides is also discussed.

I. INTRODUCTION

HIS paper is concerned with an investigation of
the radial extent of the coupling between bound

electronic states of a defect ion in a crystal and the
vibrations of ions in the host lattice. The interaction
will be discussed in terms of the electrostatic-coupling
model introduced previously. ' Ke make use of this
model to explain the origin of the fact that two types
of vibronic spectra accompany transitions between pure
electronic states of transition-metal ions and rare-earth
metal ions dissolved in ionic host lattices. The first type
consists of long series of sharp, essentially evenly spaced
lines which are observed together with electronic
transitions involving a change in configuration (inter-
configuration), as e.g. , the transitions 4f"~~ 4f" 'Sd in
rare-earth ions. ' ' In contrast, the vibronic structure
accompanying transitions of the type 4f"+~4f" or
3d"~3d" (intraconfiguration) consists of a limited
set of comparatively broad bands without a constant
frequency interval. '—'

In two recent papers'' we have analyzed in detail
the vibronic structure observed v ith interconfiguration
transitions of the type 4f"+~4f" 'Sd of Sm'+ Eu'+
and Yb'+ in the alkali halides. %e have shown that the
sharp-line vibronic structure arises from a coupling to

' W. K. Bron and M. Wagner, Phys. Rev. 139, A233 (1965).' M. Wagner and W. E. Bron, Phys. Rev. 139, A223 (1965).
3 J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963).' D. L. Wood and W. Kaiser, Phys. Rev. 126, 2079 (1962).
5 See also, e.g., P. P. Sorokin, M. J. Stevenson, J. R. Lankard,

and G. D. Pettit, Phys. Rev. 127, 503 (1962); A. A. Kaplyanskii
and P. P. Feo6lov, Opt. i Spektroskopia 13, 235 (1962) LEnglish
transl. : Opt. Spectry (USSR) 13, 129 (1962)j; M. D. Sturge,
Phys. Rev. 130, 639 (1963);A. A. Kaplyanskii and P. P. Feo6lov,
Opt. i Spektroskopia 16, 264 (1964) LEnglish transl. :Opt. Spectry.
(USSR) 16, 144 (1964)j; A. X. Ryskin, G. I. Khilko, B. I.
Maksakov, and K. K. Dubenskii, ibid. p. 274.' See also, e.g., I. Richman, R. A. Satten, and E. Y. Wong, J.
Chem. Phys. 39, 1833 (1963); G. F. Imbush, W, M. Yen, A. L.
Schawlow, D. E. McCumber, and M. D. Sturge, Phys. Rev. 133,
A1029 (1964); W. M. Yen, W. C. Scott, and A. L. Schawlow,
ibid 136,A271 (1964);M. V. .Hobden, Phys. Letters 15, 10 (1965).
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pseudo/ocalized vibrations which arise in the vicinity
of the rare-earth ion.

The vibronic structure accompanying intraconfigu-
ration transitions has normally been assigned to cou-
pling to nonlocalized vibrational modes, i.e., modes
which approximate the motion of the undisturbed
lattice. In fact, it has become fashionable to assign
peaks in this structure to peaks in the density of lattice
vibrational states. This has been done, even though the
mass and electronic structure of the optically active
ion are often considerably different from those of the
host lattice, as e.g., transition-metal ions in MgO.
Thus one suspects that localized, or at least pseudo-
localized, vibrational modes exist in the vicinity of the
optically active ion.

The intraconfiguration transitions of Sm'+ can be
observed optically in a diRerent region of the spectrum
from the interconfiguration transitions. The vibronic
structure on the 4f' —+ 4f' transitions have the broad-
line structure described above, even though the inter-
configuration transitions have vibronic structure clearly
due to pseudolocalized vibrations. This implies that two
diferent types of coupling can exist simultaneously.
That is, for interconfiguration transitions the coupling
is predominantly localized, whereas for intraconfigu-
ration transitions there is an extended coupling pre-
dominantly to the vibrations of lattice ions suKciently
removed from the defect. The vibronic structure ac-
companying intraconfigpration transitions would, there-
fore, provide a relatively simple means of studying the
density of states of phonons, if this assignment of the
origin of the vibronic spectrum is correct.

In Ref. 1 we have introduced the electrostatic-
coupling model. Here we investigate the radial extent
of this coupling, in order to clarify the origin of the
two types of vibronic spectra described above. Although
it will become necessary in the present paper to discuss
the range of the coupling in terms of simplified defects
and lattices, the ultimate aim is to apply the results to
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FIG. 1. Vibronic structure and the pure electronic transition
pDp ~ Fp (at 6892.8 Ji) of Sm'+:KC1 at 10'K.

the real cases of Sm'+ in the alkaline-earth halides and
in the alkali halides, particularly Sm'+:KBr. The latter
is important because it is possible to compare the
vibronic structure with the phonon dispersion curves
of the KBr lattice obtained by W'oods et a/. ' from
neutron-scattering data. Ke include, therefore, the
experimental results on the vibronic structure ac-
coinpanying the 4fp~ 4f' transitions of Srnp+ in the
alkali halides, which have not been previously reported.

II. EXPERIMENTAL METHODS AND
RESULTS

The general experimental techniques have been given
elsewhere. ' ' Emission spectra due to transitions be-
tween pure electronic states of the 4f' configuration
of Sm'+ in KCl, RbCl, and KBr at 10'K have been
given in Ref. 8 together with a detailed analysis of the
pertinent states. Very weak vibronic structure can be
observed with most of the pure electronic transitions.
However, only with the transition 'Dp(21) ~ FQ(A1)
is the vibronic structure su%ciently intense to make
reasonable resolution of its structure possible. In
general, the peak intensity of the vibronic structure is
roughly two orders of magnitude lower than those of
the pure electronic transitions.

Figures 1—3 show the vibronic structure accom-
panying the transition 'Dp(Ai) —+ Fp(di) which ap-

pears near 6890 A. Table I lists the frequency differ-
ences between the various vibronic peaks and the
position of the pure electronic line. As pointed out
earlier, this vibronic structure consists of relatively
broad lines without a constant frequency interval. The
half-width of these lines is about 5 A or larger. In
contrast, we show in Fig. 4 the vibronic structure which
appears on the low'est energy absorption band of Sm'+
in @Br, which is due to transitions of the type
4f' —+4fP5d. The vibronic structure for these tran-
sitions clearly involves a number of series of narrow
lines (half-widths are typically less than 5 A) with
essentially constant frequency interval. The reader is
referred to Ref. 2 for more details on this type of
structure.

III. DISCUSSION

In Sec. IIIA of this discussion, we formulate the
electron-lattice coupling parameters and show how
these may be evaluated in terms of the electrostatic-
coupling model. In terms of this model the coupling
has been shown' to be proportional to the projection
of the field of the charge distribution of the electrons
of the defect ion onto the vibrational eigenvectors of
the lattice ions. Ke further show that, in general, the
coupling involves both the even- and odd-parity com-
ponents of the electron-lattice interaction potential. In
Sec. IIIB, we evaluate these even- and odd-parity
components and show that the even part involves a
coupling primarily to pseudolocalized vibrations, while
the odd part involves a coupling dominated by non-
localized vibration. %e further show that, in general,
interconfiguration transitions are coupled predomi-
nantly to the even part of the potential, i.e., to localized
vibrations. %hereas, in general, both types of coupling
must be considered in intraconfiguration transitions.
In Sec. IIIC we analyze the special case of the intra-
configuration transition 'Do~ Ii0 of Sm'+ for which
the even coupling vanishes, and show that for it the
vibronic structure approximates a part of the density
of states of the vibrations of the undisturbed lattice.

TAsz.z I. Peak positions of vibronic bands
(in units of 10'2 sec ').
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7 A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.
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FIG. 2. Vibronic structure and the pure electronic transition
'Do —+ 'Fo (at 6886.4A.) of Sm'+:RbCl at 10'K.



BOUN D —ELECTRON —LATTI CE COUPLING A 2007

A. Electron-Lattice Coupling Parameters

Within the Horn-Oppenheimer approximation, ' we
write the total wave function for the coupled electron-
lattice system as

40) N) 4[i) 140) QP) 4I)

where f, the electronic wave function, is a function of
the electron coordinates (r) and nuclear normal mode

(Q) coordinates, and P is the nuclear wave function.
Further, under the Franck-Condon principle, that the
positions of the nucleii remain Axed during an electronic
transition, we may write the probability of a dipole
transition between electron-lattice states as'

") ™)

where I', is the electric-dipole operator, f, the electronic
eigenfunction for the state j, p;„ the nuclear eigen-
function when the system is in the jth electronic state
and the eth nuclear vibrational state, and e„&'& is the
change in the equilibrium position of the wth normal
coordinate between the jth and j'th electronic state.

The displacement parameter o.„between the elec-
tronic state j' and j, can be shown to be'

~."'= (1/~.')L(A' U. lit ')—9 IU. IA)3, (2)

where or„ is the vibrational frequency of the ath normal
mode, and U„ is the coefficient of Q„ in the expansion
of the interaction potential U(F,Q), between the defect-
ion electrons and all the lattice ions. The quadratic
term in this expansion leads to a change in the vibra-
tional frequency in the two electronic states and to a
mixing of modes. However, in accordance with the
experimental observation that such changes are very
small, ' we shall consider only the effect of the linear
term. It is important to note that we have adopted here,
for the sake of simplicity, what amounts to the "zero-
order" Born-Oppenheimer approximation. ' Also, to
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FIG. 4. Vibronic structure on the lowest energy absorption band
due to 4f'~4f'Sd transitions in Sm'+:KBr at 10'K. The
intervals between the sharp vibronic lines are indicated by co&

and cog. These two vibrational frequencies are discussed in detail
in Refs. 1 and 2.

I'„"=(1/FN!) I M„n„s/2hf (3)

avoid the complication of the Jahn-Teller effect we will

assume, for the time being, that the electronic states
are nondegenerate. For a clear discussion of these
complications we refer the reader to a paper of Longuet-
Higgins. '0

From Eq. (1) it is clear that, for finite transition
probabilities, P,*P; must have odd-parity components,
since I', is odd. If in addition o.„ is 6nite, then one or
more quanta of vibrational energy can be emitted or
absorbed together with the pure electronic transition.
The transition probability

I (p (Q„'—n,&'i)
I
gs(Q„&'))

I

s

from a state with zero vibrational quanta in the ~th
mode to one with m vibrational quanta has been shown
tob

6900
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From the above, we note that the electron-lattice
interaction is characterized by the "linear" coupling
term Q;I U„l P;)Q„and by the displacement parameter
n„; the former, as we shall see, describes the strength
and radial extent of the electron-lattice coupling, and
the latter

I
through Eq. (3)$ characterizes the structural

form of the experimentally observable vibronic
structure.

In Ref. 1 w'e have defined a point-ion, electrostatic-
coupling model. Here we apply this model to evaluate
the linear coupling, vhich for the jth electronic state
can be written as

Fia. 3. Vibronic structure and the pure electronic transition
'Do —& 'P0 at t',6891.0A) of Sm'+:KBr at 10'K.

' M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).

P 1 peZiLF, (Ri) uij,
"H. C. I.onguet-niggins, Advan. Spectry. 2, 429 (1961).
"M. Wagner, J. Chem. Phys. 41, 3939 (1964).
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TABLE II. Axial components of dipole moment and quadrupole WaVe funCtiOn fOr the State p Can be Written aS
tensor for the first three states of Ce'+.

State

l4f» F kh&A,

I4f,2,F8,k&, &

l Sd,2,D,gg&, C
0 —20(4. flrlSd)

—0.20(4flrlSd)

0**

0.12(4f[r~l4f)
—0.18(4fl

r'l 4f)
0.80(Sd lr'l Sd)

where p is an effective dielectric constant for the lattice
ions, here assumed to be point charges of strength Z~

whose position in the lattice is given by the sum of the
vector Ri defining their equilibrium position and u&

which gives the displacement from that position. F;(Ri)
is the electric field, due to the charge distribution

IP; P; I, evaluated at the nuclear equilibrium positions,
and e the electronic charge. Specifically, the field is
given by

E;—Eg

and similarly for the states A and C.
The second case (case II) corresponds, e.g. , to Sm'+

in the alkaline-earth halides for which the defect site
has inversion symmetry. For this case opposite-parity
states may still be admixed through the odd components
of the linear interaction potential U„Q„. For example,
the electronic wave function for the state 8 in the first-
order Born-Oppenheimer approximation is

pe
n„= P( Z—(LF;.(R()—F;(Rt)j („,

COg

(6)

where („ are vibrational normal modes. Since the
monopole terms of F, are not functions of the electronic
state, they cancel in (6) for distances outside of the
electronic charge distribution. The reader is referred to
Ref. 1 for a more detailed discussion of the coupling
parameters and of the electrostatic-coupling model.

An evaluation of the electron-lattice coupling is
accordingly reduced to the determination of the fields

F, (R~) and the vibrational eigenvectors. For the fields
we require the electronic wave functions P; which we

shall discuss, for the sake of clarity, in terms of a
hypothetical free ion which has, among other states,
the following three electronic states:

State A: the ground state, which belongs to a con-
figuration which has a parity n.

State 8: an excited state, but still of the ground
configuration, i.e., of parity n.

State C: an excited state which is a part of the first
excited configuration which has a parity 0.' opposite to
that of n.

where the sum extends over all s electrons not in closed
shells of the defect ion. The electrostatic field F; can be
expanded into multipole components, i.e., into mono-

pole, dipole, quadrupole, etc. terms.
Substituting (4) into (2) we obtain for the ~th mode

and similarly for the states A and C. Here PP are zero-
order Born-Oppenheimer wave functions. The vibra-
tional admixture of opposite-parity states can also
occur for case I. However, from the observed strength
of certain otherwise forbidden electric-dipole tran-
sitions of Sm'+ in the alkali halides we deduce that the
pertinent odd-parity elements of the crystal field are
large. Accordingly, we shall assume that, for case I,
the admixture via the static crystal fields exceeds that
due to the linear interaction potential.

For the case without inversion symmetry (case I)
the electric-dipole transition probability for intra- or
interconfiguration transition follow s directly from Kq.
(1), and the displacement n. from Eq. (2) which, to
terms of hrst order in U, becomes

where the zth mode can be considered as a sum of even-
and odd-parity modes. The first two terms of (8)
involve only the even-parity parts of U„, i.e., the
quadrupole and higher even terms of F;, whereas the
third term of (g) involves only the odd-parity parts of

U„, i.e. , the dipole and higher odd terms of F;. The
monopole parts of F;, as noted above, do not enter
into (8) because the charge distribution P,*f; for the

4f and Sd shells of rare-earth ions is strongly localized.

TABLE III. Values of radial integrals for Ce'+ and Sm'+
(in atomic units).

The above electronic states are perturbed when this
ion is placed in a crystal. %hen the defect site lacks
inversion sylrunetry, the states are mixed by the odd-
parity elements of the crystal field U, . This case, which
corresponds, e.g., to Sm'+ in the alkali halides, s will

hereafter also be referred to as case I. The electronic

Radial
integral

&4fl r'I 4f&

&4flrlSd&
(5dlr'lSd)

Ce'+

1.5
0.9
7.0

Sm'+

1.5
1.0
7.6
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TAnLE 1V. Estimate of axial component of coupling fields of Sm'+ (in statvolts/cm).

Electronic
state

A

C

Dipole field

—1.9X10-»r-3
—19X10»r '

Dipole field
(at r=1A)

—1.9X108
—1.9X108

Quadrupole Geld

0.06X10 "r 4

—0.11X10 'Vr 4

2.3 X10 "r 4

Quadrupole field
(at r=1A)

0.06X10'
—0.11X105

2.3 X105

For the case of inversion symmetry (case II), the
electric-dipole transition probability becomes, to terms
of first order in U„Q„,

(9)

where the subscripts I and g refer to odd and even
vibrational modes. The displacement ct„ in (9) is finite
only for the even modes, since for case II the charge
distribution IiA g;I is on a time average still even, and
can interact only with the even vibrations to give a
displacement of the even normal coordinates, Q„,. This
term, therefore, involves the even parts of Ii;. The
second term of (9) also involves the even modes, as
well as the odd-parity parts of U„, i.e., the odd modes.

From Eqs. (7) through (9) we conclude that, in
general, intra- and intercon6gurational electronic tran-
sitions are coupled to both the even- and odd-parity
parts of U„. In the next section we evaluate the coupling
for a sample case, and show that the relative strength
of the coupling to the even parts as compared to the
odd parts depends on the electronic state, and further
that the radial extent of the coupling also differs for
the even and odd components of U, .

B. Magnitude and Radial Extent of the Coupling

The actual magnitudes of the coupling fields depend
on the particular electronic states as shown in Eq. (5).
Since our aim is to analyze the electron-lattice coupling
for the Sm'+ ion, we would need to evaluate Eq. (5)
for all the electrons of that ion. This calculation is
extremely tedious, and to carry it through would require
assumptions as to the states of the 4f'Sd configuration.
In order to obtain an order of magnitude estimate of
the fields, we determine instead the coupling field for
the Ce'+ ion which has only one 4f-shell electron, and

for which the states of the Sd conIiguration are known. "
The calculation is further simpli6ed by assuming a C„,
site symmetry. Accordingly, the dipole and quadrupole
moments of the electronic charge distribution have
been evaluated for the states I4f,2,F ~~, is) and. I4f,2,
F,s, s& of Ce'+ (here given in the

I 4f S,L,J,J,) notation
and which correspond to the states 2 and 8) and for
the I5d2, DPss, —is&state (which corresponds to state C).
The integration over the angular parts of the wave
function is done first. Table II lists the z components
of the dipole moment and the zz element of the quad-
rupole tensor in terms of the radial integrals. Here it is
assumed that the ground state is purely of the 4f con-
figuration. Values for &4flr'I4f& and &4flrI5d& for
Ce'+ and Sm'+ were obtained by extrapolation and
interpolation of the values given in the paper by Judd"
for Pr'+, Nd'+, Eu'+, and Tm'+. Similarly, values for
&5dlr'I5d) were obtained from the calculations of
Rajnak'4 for Pr'+ and Tm'+. Estimates of the radial
integrals for Sm'+ were then obtained by scaling up the
values for Sm'+ by 20%."Values so obtained are listed
in Table III. If one makes the rough approximation
that the integration over the angular parts of the wave
function, as given in Table II for Ce'+, applies to Sm'+,
and uses the values of Table III for the radial integral
for Sm'+, one can evaluate the dipole part and the
quadrupole part of the coupling field. The component
of these fields in the axial direction and their value at
r=1 A are given in Table IV for the three electronic
states.

An important feature of these results is that the
quadrupole field for the state C far exceeds in magni-
tude all the other fields. This comes about primarily
through the increase in the radial integral in going from
the ground con6guration to an excited electronic con-
figuration and should, therefore, be a general feature for
all ions.

As can be seen from Eqs. (5) and (6) the total cou-
pling depends, in addition to the electronic states, on
the properties of the vibrational eigenvectors (s. The
vibrational eigenvectors for a lattice containing a
pseudolocalized mode can be subdivided into two parts'

(s=sfs+ws,
~ G. H. Dieke, H. M. Crosswhite, and 3. Dunn, J. Opt. Soc.

Am. 55, 820 (1961)."B.k. Judd, Phys. Rev. 127, 730 (1962)."K.Rajnak, J. Chem. Phys. 37, 2440 (1962)."A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058
(1962).
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Fzo. 5. Radial dependence of the amplitude of the Green's
function of a simple cubic monatomic lattice evaluated at the
center of and at the boundary of the Brillouin zone, i.e., at k=o
and at k =~/a.

~ P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (l.ondon)
A273, 222 (1963).

'7 A. A. Maradudin, E. %. Montroll, G. H. Weiss, R. Herman,
and H. Vf. Milner, Acad. Roy. Belg. , Classe Sci., Mem. :Collection
in 4', 14, 7 (1960).

where g~ refers to the normal, plane-wave, phonon
solutions of wave vector k of the undisturbed lattice,
and wI, is the amplitude of the vibrational wave scat-
tered at the defect. Within the frequency range of a
scattering resonance the vibrational amplitudes of the
ions in the vicinity of the defect considerably exceed

~p&~,
is which latter we may suppose normalized to

unity. Because the eigenvectors (& obey a closure

property at any point in the lattice, ' there must exist
frequencies other than those near the resonance fre-
quency, for which the local amplitude is less than

~
qs ~.

Similarly, since the eigenvectors are normalized over
the volume of the crystal, ' those which possess high
amplitudes at the defect must have amplitudes less
than

~
ps

~

elsewhere, and conversely for those of low

local amplitude. A more complete description of the
eigenvectors (s depends critically on the nature of the
defect and that of the lattice, and is difficult to present
in simple analytical forms, although it has been given
in tabular form for simple lattices. " For the present
purposes it suffices to make the following crude approxi-
mation. Near the resonance frequency and in the
vicinity of the defect

~
w&~)) ~qk~, so that we may

approximate
~ (&~ by

~
w&I. Since there existmanymore

modes outside than within the range of the resonance
frequency, we mayassume that the amount each of these
is depressed below

~
ps ~

in the vicinity of the defect is
small. %e therefore make the approximation that for
these nonlocal modes

~
(s

~

=
~
rgsI.

Near the resonance frequency it is possible to evaluate
the radial dependence of the magnitude of the scat-
tering amplitude

~
ws~ in terms of the Green's function

G&(ce') of the problem. ' This has been done here for a
simple cubic monatomic lattice with a Debye density

).0—

0
I

la
I

20 30
I

40
I I

50 6a
I

70
a

FrG. 6. Radial dependence of the amplitude of the Green's
function normalized to its value at r=1 interatomic distance.
The solid line is the function f(1)=a/l.

of states, for which we assume that the vibrational
frequency or=ck. The Green's function is defined at
the lattice sites which are enumerated by the position
vector 1. Suppose we evaluate Gi along a $100] direction
of the cubic lattice, i.e., at the points1=0, a, 2a, 3a,
eu. This may be done simply at the center and at the
boundary of the Brillouin zone, i.e., for values of co for
which k=0, and k=k =7r/u. The result is shown in
Fig. 5. The solid line in Fig. 5 shows that for k=0, the
Green's-function amplitude (and therefore that of the
scattering amplitude) is all of one sign, and decreases
monotonically with distance from the defect. For
k=k the sign of the amplitude changes between
neighboring ions (as we would have expected from the
corresponding phonon solutions) and also decreases
monotonically. If one normalizes the value of G& to its
value not at the origin but to the value at i=a and
takes the absolute value of this fraction, then one
obtains for both k=0 and k=k the points shown in
Fig. 6. The solid line in Fig. 6 is the function f (1)= a/l.
At the center and at the boundary of the first Brillouin
zone one therefore finds that the local vibrational
eigenvectors in the vicinity of a pseudolocalized oscil-
lator decrease as 1 ' for distances greater than one
interatomic distance. Ke may safely assume that
essentially the same dependence on I exists for other
values of cu as well as for other simple lattices, although
of course for these the phase relationship between the
motion of neighboring ions may well vary.

It is now possible to calculate the linear coupling by
carrying out the stumnation (4) over all the ions of
the lattice except the defect ion at the origin. For
simplicity we will assume that the coupling field F(R~)
and the eigenvectors (s have no angular dependence.
In carrying out the summation over I, we must re-
member that the number of ions (in a simple cubic
lattice) in a differential volume of the crystal increases
as P/a'd/, where a is the interatomic distance. The
summation can be easily performed at the center and
at the boundary of the Brillouin zone if we assume that
the summation (4) can be replaced by an integration
over 1. Further we separate the coupling into two parts,
one for which the F(Ri) is expandable in the pseudo-
localized modes, and one for w'hich the field is ex-
pandable in the nonlocalized modes. Ke investigate
the sample case of acoustic motion, so that we approxi-
mate the nonlocalized modes, as noted above, by pI,
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TABLE V. Linear coupling (in units of peZ/a'E'~')

Field

Dipole

Vibrations

Pseudolocalized

Quadrupole Nonlocalized

Dipole Nonlocalized

Quadrupole Pseudolocalized

k=o
Linear coupling up to 1=na

k=z/a

(3 cz/2a«r ')P1 1—/eg (3zc/4aco~')
X/1+(—1)"/I+z (Sis —Sis.)g

inn Cion —Ci21-

(3zc/4a'« ')L1—1/e'j (3sc/4ara„')
XL1+ (—1)"/n+x'(Cis-n —Ci~) ]

(1/a) 1
1—1/~3 (1/a)

XL1+(—1)"/I+s. (Six e—Six)j

see Ref. 18 0.08
(3s.c/4a'co ') (3s c/4ascu ') (0.21)

1/a (1/a) (0.06)

Total coupling

k=0 k =2'/a

3s c/2aur ' ' (3s.c/2' ') (0.03)

32rc/2e~~~ is roughly of unit magnitude for typical ionic crystals.

where F(Rt) is proportional to t ' or t 4 depending on
whether we are considering dipole or quadrupole fields,
respectively, and (s is proportional to l ' or e'"' for
pseudolocalized modes and nonlocalized modes,
respectively.

The physically significant values, as far as the present
experimental results are concerned, are of course the
asymptotic values of the above integral, v hich we will
call the total linear coupling, and the rate of approach
at which this asymptotic value is reached. The latter
we determine by integrating from l=0 to arbitrary
values of /. The result is given in the first two columns
of Table V for vibrational modes near the center of the
zone and at the boundary, i.e., at k=0 and k=z/a.
The coupling has been evaluated at the lattice sites
defined by i=ra, where e= 1, 2, 3, - . The values
listed in Table V must be multiplied for each electronic
state by the coefficients of r ' and r ' given in Table
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FIG. 7. Rate of approach to the asymptotic value of the dipole
and quadrupole coupling to pseudolocalized vibrations for k=0
and k=m/a.

so that in gI, the polarization vectors have unit ampli-
tude and lie in the propagation direction, but that the
phase factor varies as exp$ikl]. The linear coupling is
then simply

(F(Ri) .(s)Pdl,
as

IV for dipole and quadrupole fields, respectively. In
the last two columns of Table V we list the asymptotic
values of the integral, i.e., the total linear coupling. "

A number of features of Table V should be noted.
For quadrupole fields the approach to the asymptotic
value is more rapid than for dipole fields. This is
illustrated in Fig. 7 for coupling to pseudolocalized
modes. Figure 7 also illustrates the general feature that
near the zone boundary the coupling magnitude is a
rapidly oscillating function of 1. The asymptotic values
for k=vr/a are smaller than those for k=0 by factors
of 10 ' to 10 ', as would be expected from the rapidly
oscillating nature of G~, while the rate of approach to
the asymptotic value is essentially the same for both
values of k.

For coupling to pseudolocalized modes, the fastest
approach to the asymptotic value is that for quadrupole
fields which approach the asymptotic value as t—', i.e.,
at a faster rate than the decrease in the amplitude of
the local vibration which decreases as l '(see Fig. 6)—.
The asymptotic value for dipole coupling is reached at
the same rate as the decrease in the enhanced local
vibrations. The dipole coupling to the nonlocalized
modes also extends over a large region of the crystal
approaching the asymptotic value approximately as
lnl. The quadrupole coupling, in comparison, decreases
as l—'. One reaches, therefore, the conclusion that the
dipole coupling extends over the entire crystal and
considerably exceeds the radial extent of the quadrupole
coupling, the latter being limited to the vicinity of the
defect.

C. Comparison with Experimental Results

Case I. Ão Imersi orI, Symm. eery

Ke now apply these findings to the case of Sm2+ in
the alkali halides. In this lattice, the Sm'+ ion has as a
nearest neighbor, in a L110j direction, a positive-ion
vacancy which is required for charge compensation.

' The asymptotic value for dipolar coupling to nonlocalized
modes is finite for finite values of k. As k —+0, the asymptotic
value appears to diverge to infinity. This apparent unrealistic
result can be treated in a manner similar to that proposed by
A. A. Maradudin and G. H. Weiss, Phys. Rev. 123, 1968 (1961)
and T.H. K. Barron, ibid. 123, 1995 (1961)for the limiting optical
frequency in ionic crystals.
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TABLE VI. Comparison of peak position of vibronic structure and singularity points in dispersion curves of KBr;
(frequencies in units of 10" sec ').

Peak
designation

Frequency from
vibronic
structure

Designation of critical points
Symmetry point or line Branch' Frequency

1.26

2.21
2.57
3.18
3.57
4.38

X
L
X

a(at f =0.6)
I.

Z+XI

TA
TA
LA
LA
TO
TO
LO

1.25
2.20
2.15
2.68
3.06
3.65

a TA =transverse acoustic, LA =longitudinal acoustic, TO =transverse optic, LO =longitudinal optic.

The point group of the site of the Sm'+ ion is C2„ i.e.,
it lacks inversion symmetry, ' and all its states are
nondegenerate. Accordingly, the linear coupling for
intraconfiguration transitions and that for intercon-
figuration transitions is given by Eq. (8).

Interconfiguration transitions are observed in ab-
sorption spectra from the ground electronic state
'J p(A r) to unknown states of the 4f'5d and other higher
excited configurations. Although little is known about
the terms of these excited configurations, we do know
from Sec. IIIB that the transition may involve a strong
change in the equilibrium value of the normal coordi-
nates of vibration, " primarily because of the large
change in the quadrupole coupling fields as shown in
Table IV. The change in the dipole coupling is smaller,
due to the inherently smaller dipole field, and because
only a small fraction, Q;~ V, ~Pz)/hE, of the states/, (n)
is admixed. For Sm'+ we estimate this fraction to be
of the order of 10—' to 10—' for the lowest energy states
of the 4f'5d configuration. The quadrupole coupling
involves primarily the ions in the inonediate neighbor-
hood of the Sm'+. Since these have enhanced amplitudes
in the frequency range of the pseudolocalized resonance
vibrations, ' the resultant vibronic spectra is dominated
by the relatively sharp lines from transitions to elec-
tronic states with simultaneous emission (or absorption)
of quanta of the pseudolocalized vibrational modes.
Since „omaaylso be large, according to Eq. (3) multi-
quanta transitions have finite transition probabilities,
so that one observes long series of vibronic lines as
shown in Fig. 4.

It has been shown in Ref. 1 that for Sm'+ in the
alkali halides the quadrupole coupling is limited to
vibrations of the unit representation, i.e., of the A~
representation of C2,." It has also been shown that
besides two strong resonance vibrations (cot and cps of
Fig. 4), there exist other locally increased vibrations,

"As shown in Ref. 1, the displacement in the equilibrium
position can, in principle, be obtained from the structural form
of the vibronic spectra. The displacement is found to depend on
the host lattice.

'OThis follows directly from the fact that the symmetric
product g &Xrp;j must be the unit representation when all f; are
one dimensional, and from the fact that U„must be a basis for the
representation g in r space.

however, with reduced amplitudes. These latter con-
tribute to the background observed in the spectrum
of Fig. 4 (see also Fig. 1 of Ref. 1). The much weaker
dipolar coupling also contributes to the background
spectrum. The dipolar coupling, as noted above, over-
laps the vibrations of both local ions and the ions in
more extended regions of the crystal. Since there are,
how'ever, many more nonlocal modes than pseudo-
localized modes, the dipolar coupling is dominated by
the nonlocal vibrations. It can be show'n for Srn'+ in
the alkali halides that the dipolar coupling is also limited
to vibrations of A ~ type, as long as the electronic states
are mixed only by a static crystal field.

For intraconfiguration transitions, the two quad-
rupole coupling terms in Eq. (g) may in general either
partly cancel or add depending on the particular
electronic states. In any event, the magnitude of the
quadrupole coupling will be smaller than for inter-
configuration transitions, due to the reduced quad-
rupole coupling field. The dipole term remains, in
general, a small term compared to the quadrupole term.

The intraconfiguration transition 'Dp(A &)
—+ Fp(A r)

of Sm'+ in the alkali halides is a special case, since the
quadrupole coupling vanishes. This results from the
fact that the 4f components of these states i.e., Pg(n)
and fz(n), are spherically symmetric, and therefore
have no multipole fields. Only the dipole coupling term
of Eq. (8) contributes to n„, and since the latter is very
small, zero- and one-quantum. vibrational processes
can at best be observed experimentally. The dipole
coupling as noted above, is dominated by the nonlocal
vibrations, so that the vibronic spectrum reflects the
A ~ vibrations of the nonlocalized modes.

Ke expect, therefore, that the vibronic structure of
Figs. 1, 2, and 3 approximates the density of phonon
states with A& symmetry. The density of states can, in
principle, be calculated for KBr from the dispersion
curves obtained by Koods et al. 7 from neutron-scat-
tering data. Prom the dispersion data and the shell
model a representative set of eigenvectors over the
first Brillouin zone can be obtained, and the components
of these on nonlocalized and pseudolocalized modes of
A~ symmetry determined. This rather detailed calcu-
lation which would, in any event, extend unduly the
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present paper, we defer for possible future work.
Instead, we limit ourselves here to a qualitative cor-
relation between the peaks in the vibronic structure,
as given in Table I, and the critical points (where
p'„&v=0) in the dispersion curves for KBr.

Loudon" has recently given the phonon symmetries
of the NaCl-type lattice and their reduction to the
point-group syoixnetries of the lattice. The latter may
be readily further reduced to the C2, group of the site
of the Sm'+ ion. Using Table I of Loudon's paper, it
can be shown that all phonon branches at the special

symmetry points and lines contain the A& (totally
syLzunetric) point-group representation. If one compares
the frequencies of the peaks as given in Table I with
the frequencies at the critical points in the dispersion
curves of Woods er, aL, one obtains the assignments
given in Table VI. The agreement between the two
sets of values is very good. Particular note should be
taken of the location of the gap between the acoustical
and optical branch which appears in Fig. 3 at 2.94&(10"
sec ' and which has been calculated from the neutron-
scattering data by Cochran et al. ,

" to be at 2.9&(10"
sec '. Despite this apparent agreement, the validity of
the assignments of Table VI are limited by a number of
factors. Woods et at. have given dispersion curves for
KBr only for the [100], [110], and [111]directions
in k space. Thus the contribution to the density of
states from other directions and symmetry points, such
as the point S', have been left out. The dispersion
curves are reported from neutron-scattering data taken
at 90'K, whereas the optical data given here were taken
at 10'K. No attempt has been made to correct for this
change in temperature. The strength of the singularities
at the various critical frequencies has not been
checked. " Also, the distorting effect of the pseudo-
localized vibrations on the density of states has not
been evaluated. It must be emphasized, therefore, that
the assignments of Table VI are tentative until the more
detailed calculations described above are made.

Case II. Inversion Symmetry

The case of inversion symmetry is complicated since
for it, it is no longer realistic to limit oneself to non-
degenerate states as has been assumed so far. Con-
sequently, Q;~ U„~P;) will now, in general, be nonzero
for modes I(: other than the unit representation. Because
there is now a coupling to vibrational modes that
destroy the initial symmetry, the electronic levels will
not remain degenerate and a Jahn-Teller splitting of
the states can be expected. It is not clear at this time
how this complication affects the perturbation treat-
ment used to obtain Eq. (9) or how it affects the
assumption, inherent in the electrostatic-coupling

+ R. London, Proc. Phys. Soc. (London) 84, 379 (1964).
~ R. A. Cowley, W. Cochrari, B. N. Brockhouse, and A. D. B.

Woods, Phys. Rev. 131, 1030 (1963).
'3 L. Van Hove, Phys. Rev. 89, 1189 (1953).

model, that the change in the repulsive part of the
electron-lattice interaction potential U(r, Q) between
two states is of lower order than the change in the
electrostatic interaction.

An exception to the above complication is the
vibronic structure accompanying the (forbidden) intra-
configuration transition between the nondegenerate
states 'De(A q,) and 'Fs(A~, ) in Sm'+ in the alkaline-
earth halides. This structure was 6rst reported by Mood
and Kaiser, 4 and has been discussed by Axe and
Sorokin' and by Richman. "Equation (9) predicts the
vibronic structure accompanying transitions betw'een
two nondegenerate electronic states. If the quadrupole
coupling differs in the two electronic states A and 8,
then o.„ is finite and multiquanta vibrational transi-
tions become possible. However, the erst term of (9)
does not lead to an observable spectrum since

(f,"(n)
~

I',
~ Pr

e (n) ) vanishes. However, the second
term in (9) predicts that simultaneous emission (or
absorption) of quanta of even vibrational modes and
one quantum of an odd vibrational mode can be
observed. The latter, the so-called "forced electric-
dipole transitions, '"' can be observed since, in general,
Q;(n) ~P, ~Q, ( 'o)) is 6nite. The coupling to the odd
vibrations involves the dipole coupling fields which
result, as noted above, in a vibronic structure which
approximates the density of states of the vibrations
of the undisturbed lattice. The vibronic structure for
case II, therefore, most likely consists of overlapping
series of bands representative of the density of states
of nonlocal vibrations.

For the special case of the transition 'D, (Aq, ) ~
"Fe(A~,) the quadrupole contribution again vanishes,
so that n„g esoto zero. For this case, Eq. (9) reduces
to that treated by Satten, "for which only transitions
involving a change of one quantum of the odd vibra-
tional modes are allowed. It can readily be shown' that
this transition involves only those phonons which
contain the T~„point-group representation. According
to Loudon, this can include the phonons at I'~5—,X4—,
Xs (2), Hr s'(2), and Ws(2). (The number in Parentheses
refers to the number of branches in w'hich the point
occurs. ) At I'&s—,which is at k =0, the density of phonon
states goes to zero; therefore these phonons will not
contribute to the vibronic structure. It should be
possible to check the above prediction, and thereby
the formulation (9), when the dispersion curves and
band-structure calculations for the alkaline-earth
halides become available.

Most of the published vibronic spectra accompanying
intracon6guration transitions for the case II appear to
be limited to one-phonon transitions. This would seem
to indicate, the perhaps reasonable result, that the
change in the quadrupole coupling between states of
the same configuration is generally small, so that e„ is

24 I. Richman, Phys. Rev. 1BB, A1364 (1964).' J. H. Van Vleck, J. Phys. Chem. 41, 67 (1937);R. A. flatten,
J. Chem. Phys. 27, 286 (1957); 29, 658 (1958); 30, 590 (1959).
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small. The vibronic structure recently reported by
K.iss" for the transitions 7T1t'~ —+ SEt."~ and 7T1t."& —+

ST&&'& of Dy'+ in CaF& and SrF2 may be an indication,
however, that n„need not always be small.

"Z.J. Kiss, Phys. Rev. 137, A1749 (1965).
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Changes in the low-temperature thermal conductivity of single-crystal Si were investigated upon 2-MeV
electron irradiation and annealing. The additive thermal resistivity of high-purity P-type Si irradiated
below 60'K to maximum time-integrated fluxes 4 of 8.0)(10! 2-MeV e/cm' increases as 1/Z 1/Ho-
=3.75&(10 "C'" cm-deg/W at 47'K. The Co'" dependence of the additive thermal resistivity of Si on
bombardment is very similar to the 4 ' dependence previously observed for Ge. The magnitude of the
increase is, however, much smaller than previously observed for either Ge, InSb, or GaAs. The linear con-
centration dependence of GaAs has been related to mass-difference strain-6eld scattering, whereas the
nonlinear concentration dependencies of InSb, Ge, and Si suggest phonon-electron scattering. For the
high-purity Si, annealing begins near 80'K, and exhibits a single dominant annealing stage near 140'K
corresponding to the annealing temperature of vacancies in p-type Si. Measurements of the temperature
dependence of the thermal conductivity indicate that the defects anneal primarily as point defects, although
evidence exists for a small amount of precipitation of point defects in the annealing-temperature interval
between 80 and 135'K. Sharp minima observed in the temperature dependence of the thermal conductivity
of Si are similar to those previously observed in Ge and attributed to resonant scattering.

I. INTRODUCTION

A LTHOUGH electron sp.'n resonance measurements
by%atkins' have established that vacancies move

and interact with impurities' ' at low temperature in
silicon, there have been very few investigations of the
effects on other physical properties of the low-tempera-
ture introduction and annealing of la'tice defects. Such
inves'igations must be conducted with the realization
that the motion of the vacancy at 65'K in e-type Si '
and near 140 3 in p-type Si s leads to interactions with
chemical impurities well below room temperature' and

greatly complicates measurements at h;gher tempera-
tures. 4 Primary defects must therefore be studied in
high-purity silicon irradiated at low temperature.

Electrical measuremen&s are difficult to perform in
irradiated high-purity Si at low temperature, and there-

*This work was supported by the U. S. Atomic Energy {om-
mlsslon.' A recent review of the spin resonance centers in Si is given by
G. D. Watkins, Proceedings of the 7th International Conference on
the Physics of Semicondnctors 3. Radiation Dam. age in Semicon
dnctors (Dunod Cie, Paris, 1965), p. 97.' G. D. Watkins, J. Phys. Soc. Japan 18, Suppl. II, 22 (1963).

3 G. D. Watkins, J. W. Corbett, and R. M.. Walker, J. Appl.
Phys. 30, 1198 (1959); G. D. Watkins and J. W. Corbett, Phys.
Rev. 121, 1001 (1961); J. W. Corbett, G. D. Watkins, R. M.
Chrenko, and R. S. MacDonald, ibid. 121, 1015 (1961); G. D.
Watkins and J. W. Corbett, ibid. 134, A 1359 (1964).
f, I',4 Y. Inuishi and K. Matsuura, J. Phys. Soc. Japan 18, Suppl.
III, 240 (1963).

fore very few exist. ' ' However, low-temperature ther-
mal conductivity has been shown to be highly sensitive
to lattice defects introduced into high-purity GaAs, ~

InSb, ' and Ge,' by electron irradiation. It has also been
shown that measurements of the temperature depend-
ence of the low-temperature thermal conductivity
on annealing are related to changes in the structural
properties of the defects and are therefore useful in
distinguishing between the annealing behavior of radia-
tion-induced defects in different semiconductors. Pre-
cipitation in GaAs" of point defects introduced by
electron irradiation is in contrast to the almost complete
recovery and annihilation of similar point defects intro-
duced in Ge. In addition, the increase in low-tempera-
ture thermal resistivity on electron irradiation can be
related to theories of phonon scattering, and the magni-
tude and kind of such scattering can differ greatly from
one semiconductor to another. For these reasons,
changes in the thermal conductivity of Si upon electron
irradiation were investigated. .

~ G. K. Wertheim and D. N. Buchanan, J.Appl. Phys. 30, 1232
(1959).

6 V. S. Vavilov and A. F. Plotnikov, J. Phys. Soc. Japan 18,
Suppl. III, 230 (1963);V. S. Vavilov, Proceedings of the 7th In
ternational Conference on the Physics of Semiconductors. 3.Radiation
Damage in Semiconductors (Dunod Cie, Paris, 1965), p. 115.

~ F. I.. Vook, Phys. Rev. 135, A1742 (1964).' I'. L. Vook, Phys. Rev. 135, A1750 (1964).
s F. L. Vook, Phys. Rev. 138, A1234 (1965).


