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The Hamiltonian most often used to describe a system of electrons interacting with 1attice vibrations has
the asymmetry that the electrons are represented by the creation and annihilation operators which arise
from quantum Geld theory whereas the lattice vibrations are represented by the one-particle ladder operators
of the one-dimensional harmonic-oscillator problem. Although the equal spacing of the harmonic-oscillator
energy levels and the commutation relations satisGed by the oscillator ladder operators have led to an
interpretation of this formalism in terms of the "creation and annihilation" of phonons, the phonons thus
deGned are not the quasiparticles which are obtained by a Geld-theoretical formulation of the lattice
Hamiltonian in the harmonic approximation. A Hamiltonian is derived in this paper in which both the
electrons and the lattice (in the harmonic approximation) are represented in Geld-theoretical formalism. A
lattice creation operator in this formulation actually creates a vibrational mode (in a given state) from the
physical vacuum, in contrast to a ladder operator which merely generates transitions between two states of
an already existing vibrational mode. As a consequence, the number operator for the lattice quasiparticles
commutes with the Hamiltonian, a property which is useful in certain applications. It is shown that even
though our Hamiltonian is formally diferent from the ordinary one, it yields equivalent results for the
state vectors of physical interest.

I. INTRODUCTION
' '

N considering the dynamics of an interacting
- electron-phonon system, one colnmonly employs the

following Hamiltonian':

oo
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The a;t and g; are a set of creation and annihilation
operators for electrons, satisfying the usual anti-
colrnnutation relations, and c„and t,"„~ are operators
associated with the pth mode of the Svibrational modes
of the lattice. The commutation relations for the c's are
taken to be

[c„,c„g=0, [c„,c„j=5„„,

and c„t and c„are called "creation and annihilation
operators" for phonons in the pth vibrational mode.
With this interpretation understood, the Hamiltonian
(1) is said to be second-quantized.

In this paper, however, we shall apply the adjective
"second-quantized" only to quantum field theories, or
theories where each independent part of the system
(e.g. , the set of electrons) is represented by a coordinate-
dependent operator field or its equivalent. ' It is appar-
ent that within the context of this definition the lattice
part of the Hamiltonian in Eq. (1) is not second-
quantized; each vibrational mode is an independent
part of the system (enjoying a status similar to that of
the set of electrons) and must therefore be represented
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in a quantum 6eld theory by an infinite set of creation
and annihilation operators, ' not by just one of each.
The fact is that the operators c„~ and c„which appear in
Eq. (1) are simply the familiar ladder operators of the
one-particle one-dimensional harmonic-oscillator prob-
lem, and as such are themselves just one-particle
operators. The ambiguities of interpretation arise be-
cause these one-particle operators have the same com-
mutation relations, Eq. (2), as the creation and anni-
hilation operators of a second-quantized theory —a fact
which must be regarded as purely fortuitous from the
standpoint of the second-quantized theory. The exist-
ence of these commutation relations at first leads one
to think that the second-quantized form of the harmonic
oscillator problem is already correctly given in terms of
c„and c„~. It will become clear that this is not the case
when the actual second-quantized theory of the
harmonic oscillator is sketched in the next section. The
results obtained there will be used in Sec. III to find the
second-quantized form for the lattice part of the
Hamiltonian in Eq. (1).The physical equivalence of the
second-quantized Hamiltonian and the Hamiltonian
given in Eq. (1) is easily shown (Sec. IV), but it is
demonstrated in Sec. V that the two Hamiltonians may
lead to quite diRerent computational problems in some
applications.

II. THE FREE-PHONON HAMILTONIAN

To obtain the second-quantized form of the energy
operator for the p, th lattice vibrational mode, we intro-
duce the field operator y& and write the free (harmonic-
oscillator) Hamiltonian for this mode as

~t(x) — +-', m„co„'x' (p&(x) dx. (3)
2tpsIg dS

3In the formalism of quantum Geld theory every physical
coordinate dependent operator field and its adjoint generate an
inGnite set of creation and annihilation operators.
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This can be put in a more suggestive form by making
the series expansion

have the required ladder-operator properties for the
one-particle energy eigenstates (6). Furthermore, the
commutator

q~(x) = Q b„~u.~(x),
nM

(4)
Lc„,c„t]=g b„»b„~=1K„

where the b„& are a set of operator expansion coeKcients
and the uJ'(x) are a complete orthonormal set of func-
tions satisfying the equations

(—(1/2m ) (d'/dx')+-'m (o 'x')u &= (e+ ')ru-u &

g=0, 1) 2,

Substituting (4) into (3) yields

has the correct value within the set of one-particle states
(where /V„—=1). By substituting the expansions (7) into
the interaction term in Eq. (1) we obtain the equivalent
expression

oo N co

P P v„;;(e+1)'/2a, ta, (b„»b~&&+b~&»b„")
i,j=1 p=1 nM

oo N oo

H„=g (e+ )~„b„»b—„&
nM i, j=1 p, =1 m„n~

h„;;h„„a;ta;b»b„&, (9)

for the second-quantized "free-phonon" Hamiltonian
H„.The b„&t and 6„&appearing here are the creation and
annihilation operators of the quantum 6eld theory
formalism. It is easy to verify from the relation

(q»(x), y t(x'))=8(x—x'),

which is satisfied by &pj", that the b„&t and b„& have the
proper commutation relations for creation and annihila-
tion operators. 4 In the second-quantized form of Eq.
(1), the one-particle free-phonon energy operators
co„c„tc„must be replaced by the expressions (5).

III. THE INTERACTION HAMILTONIAN

It is now necessary to find the second-quantized
analog of the interaction term in the Hamiltonian (1).
Since the operators c„which appear in Eq. (1) are one-
particle operators, this can be done most directly by
simply looking for combinations of b's which have the
same properties as the c's within the set of one-particle
states

where in the second form the following redefinition of
constants has been made:

&/2 e ~
&/2

hpmm=&m, n+t~ +&m, n t —
I

' (10)2e/„~„' 2m„~„)

Expression (9) may also be obtained by directly second-
quantizing the wave-equation form of the theory for an
electron-ion system after the usual harmonic approxi-
mation has been made. '

IV. EQUIVALENCE OF THE TWO
HAMILTONIANS

The new form of the Hamiltonian (1) is now seen to be

II=+ ~;a,ta~+P g (e+ ', )~„b„„»b„~-
@=1 nM

b„»
~ 0),

~
0)=vacuum state. (6) + P P P h„;;h„„a,ta, b»b„&. (11)

(The vacuum state ~0) appearing here is actually the
physical vacuum state —a state with no electrons and
no lattice vibrational modes present. The "vacuum
state" of the formalism in which the c's are "creation
and annihilation" operators is a state in which the
lattice is present in its lowest energy state. ) It is obvious
that the expressions

c„t= P (e+1)'/'b~+g»b~&,

i,j lp=lmnM

This operator coincides with the Hamiltonian (1) in the
set of states whose lattice part is of the form

(12)

In fact, within the above set of states

(o~(c~ c~+-,') = Q (e+-,')a)~b " b " '

c„=P (e+1)'/'b„»b„+,~, (7)

4Qne could just as well replace the commutator by an anti-
commutator in this expressions. Since all the subsequent theory
contains only bilinear combinations of the b's and state vectors
with one quasiparticle per vibrational mode, nothing would be
changed thereby.

and in addition the interaction Hamiltonian in (11)was
explicitly constructed to agree with the interaction term
in (1) for this set of states. Since the physical meaning
of the theory necessitates our attaching significance

5 C. A. Coulter, D. W. Howgate, and R. A. Shatas, U. S. Army
Missile Command Report No. RR-TR-64-18, 1964 (unpublished).
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only to the state vectors with lattice parts like (12), the
Hamiltonians (11) and (1) are equivalent in all cases of
physical interest.

V. DISCUSSION

Aside from the formal interest of determining the
"correct" form of the second-quantized Hamiltonian,
the reason for considering the Hamiltonian given -in

Eq. (11) is that even though this operator is physically
equivalent to that in Eq. (1), it leads to different
computational problems. This is a consequence of the
fact that the lattice creation operators appearing in
Eq. (11) actually create lattice vibrational modes, not
just transitions between states of these modes. Since the
number of vibrational modes is a constant for a given
lattice, the number operator for each mode must com-
mute with the Hamiltonian. Mathematically the con-
stancy of these number operators follows from the form
of the interaction term in. the Hamiltonian (11).

As an illustration of the effect this conservation of
quasiparticle number can have in calculations, one
might consider problems which involve types of Green's
functions whose definition contains no time-ordering
operation; an example would be the application of the
temperature-dependent double-time Green's-function
method' to the calculation of the absorption spectrum
of an electron-phonon system. This calculation has been
carried out within the framework of the usual formu-
lation of the theory by Nishikawa and Barrie, ~ and we
refer the reader to their paper for a discussion of the
definition and properties of the appropriate energy-
dependent Green's functions. Ke simply note here that
such a function is defined for every operator pair (A, B),
that the definition involves a thermal average, and that
the function satisfies the equation

~((~ I~))s= (1/2~)(L~ jl))+((L~ I~lI~))~ (13)

If, following Nishikawa and Barrie, we attempt to
calculate the Green's function for the case where

A =8& G~', +=Gp Qp

by using Eq. (13) and the form of P given in Eq. (1),
then we obtain an infinite chain of equations connecting
the members of the set of Green's functions in which A
takes on not only the form in (14) but also the values
a;~eke„, akta;c„~, etc. , for products of any number of
phonon operators. (The ca,lculation is carried out for a
one-electron system. ) The solution of this set of equa-
tions in practice necessitates that the chain of equations
be truncated by means of an approximation whose
validity depends both on the smallness of the electron-

'N. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk.
SSSR 126, 53 (1959) t English transl. : Soviet Phys. —Doklady 4,
589 (1959)j.

7 K. Nishikawa and R. Barrie, Can. J. Phys. 41, 1135 (1963).

phonon interaction and on the largeness of the effective
number of vibrational modes interacting with the
electron. ' The truncated set of equations can then be
solved approximately to an appropriate order in the
interaction strength.

The situation is quite different if one attempts to
carry out the calculation by using the values (14) in

Eq. (13), but employing for II the form (11) instead of
the form (1). It is then easy to verify that if at each
stage of the process one arranges the operators in the
Green's functions in normal-product form, the resulting
chain of equations terminates at a finite order; for there
can be no nonvanishing Green's functions containing
more operators (in normal-product form) than those of
the type

since the definition of the Green's function involves a
thermal average taken over state vectors with lattice
parts like (12), and the number of lattice quasiparticles
is conserved by the interaction. Thus no approximation
of any kind is required to truncate the chain of equa-
tions. In fact, the set of equations obtained by writing
Eq. (13) for each one of the functions (15) is self-
contained (contains only Green's functions of the one
kind) and can be solved to any desired order in the
interaction strength. The equations for Green's func-
tions of lower orders are superQuous, since any of these
lower order functions can be expressed as a sum over an
appropriate set of functions of the type (15). (For
instance, one may prove that

x ((~F~j&nl " ' ' 'btLN &nN ' ' '&nl
I
~j' ~i'))8

by simply carrying the summations inside the Green's
function on the right and noting that the number
operator for each vibrational mode colnmutes with the
Hamiltonian and that exactly one quasiparticle is
present in each mode. ) It should be observed that no
condition on the number E of interacting vibrational
modes is required at any point. The authors have used
the method just described to calculate the qualitative
form of the zero- and one-phonon spectrum of a charge
carrier trapped in a lattice defect' and have obtained
good agreement with the experimental results. '
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