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measured near T,. However, the ~ values do not vary
strongly with temperature and, therefore, the above
numerical work is approximately correct below 7,.
Corrections for the temperature dependence of ~ can be
obtained from Maki's calculations. "Unfortunately, the
relation there'5 between a and H, & applies only for ~))1.
It appears that, in principle at least, experimental re-
sults obtained at temperatures far below T, can be
compared with the above calculations by calculating the
appropriate It. near T, from Ref. 15.

Note added its proof. When applying Maki's results"
caution should be exercised with regard to his a2 values.

's K. Maki, Physics 1, 21, 127, 201 (1964).

Experiments by G. Bon Mardion, B.B. Goodman, and
A. Lacaze LJ. Phys. Chem. Solids 26, 1143 (1965)]
disagree with the calculated values. "For an extension
of our work to the critical state of the surface sheath
see H. J. Fink and L.J. Barnes LPhys. Rev. Letters 15,
792 (1965)].
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The low-temperature excitation spectrum for ferro- and antiferromagnets with large crystalline-held
splittings is derived using the Bogoliubov transformation. Speci6c application is made to those systems
where the single-ion ground state is a singlet and the magnetization of the coupled ions arises from the Van
Vleck temperature-independent susceptibility. Pr'+ and Eu'+ in cubic and hexagonal environments are used
as examples. The specific heat, magnetization, and nuclear-nuclear coupling are computed for both the
ordered and paramagnetic regimes. The results in the paramagnetic limit display a characteristic energy gap
AL1-a(E/6) Jt', where A is the crystalline Geld splitting (or, in Eu'+, the spin-orbit splitting) between the
ground singlet and erst excited state, E' is the exchange integral, and e is a constant proportional to the
Van Vleck temperature-independent susceptibility. In the magnetically ordered state, the same behavior
is found for longitudinal excitations in Pre+ and Eu'+ salts with a gap equal to (n'I'-tt')'t', while transverse
excitations are found to exhibit a linear dispersion law without an apparent gap in the limit of complete
isotropy. The phase transition between the paramagnetic and ordered regimes is shown to be of second order.
However, the entropy of ordering is shown to be reduced from the usual value XK ln (25+1).

I. INTRODUCTION
' T has been demonstrated by TrammelP and Bleaney'
~ ~ that exchange interactions between ions which
possess a magnetic singlet ground level could lead to a
ferromagnetic state by virtue of the Van Vleck temper-
ature-independent susceptibility. Their results were
confined to the molecular-field approximation. In this
paper we wish to examine the low-lying excitations of
these ordered materials in the Bogoliubov' approxima-
tion. Our approach will be similar to that of Bozorth
and Van Vleck' who used this technique to investigate

* Supported in part by the National Science Foundation and
the OfBce of Naval Research Contract No. Nonr 233 (88).

t National Aeronautics and Space Administration predoctoral
trainee.

' G. T. Trammell, Phys. Rev. 131, 932 (1963).' B. Bleaney, Proc. Roy. Soc. (London) 276A, 19 (1963).' N. N. Bogliubov and S. V. Tiablikov, Izv. Akad. Nauk SSSR
Ser. Fiz. 21, 849 (1957).

4R. M. Bozorth and J. H. Van Vleck, Phys. Rev. 118, 1493
(1960).

the paramagnetic regime, and of Trammell' in his
treatment of the rare-earth nitrides. Once the excitation
spectrum is known it is a simple matter to compute the
thermodynamic properties of these systems. This is
done in Secs. II—IV for some representative examples of
paramagnetic ions which can exhibit this type of
collective behavior under appropriate circumstances.
Section V of this paper is a brief description of the
properties at the phase transition. The entropy of
ordering is derived and shown to be reduced from the
"free" spin value Sk ln (2S+1).

To establish notation we shall first repeat some of
Bleaney's results. ' For an ion whose low-lying energy
levels are characterized. by J= L+S, the isotropic
exchange interaction may be written as V, = —2

Xg;~;E,;J,"J; where It.,;=It; (A 1), E' being the-
exchange integral characterizing the interactions be-
tween the total spins S of the ions i and j, and. A the

e G. T. Trammell, J. Appl. Phys. 31, 362S (1960).
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Lande factor defined by L+2S=AJ. The exchange
interaction when restricted to nearest neighbors can be
described in the molecular-Geld approximation by

;V,' =P;AP) M J; where the molecular field ),M
2E—z(J)/PA, s being the number of nearest neighbors,

P the Bohr magneton, and Z' the near-neighbor exchange
integral. Bleaney took as a model a system where the
two lowest lying single-ion states ~A) and ~B& were

magnetic singlets, separated by a splitting A. The
exchange Geld was assumed to connect the two states
by virtue of the Van Vleck "oG-diagonal" magnetiza-
tion. This was described by a constant c=(A ~

J—~B).
In terms of this constant the secular equation was
solved to yield the magnetic states

I
g&= co~lA)+

~

e&= sine)A) —cose~ B),
where ~g) and ~e) represent the coupled ground and
excited states, respectively, with energies

Z =-'(S—W) E =-'(~+ W)

W = [5'+ (2cAp)t3II)'jt", (2)

and, angle 20= tan —'(—2cAP) M/6). The total magnet-
ization is found from

jul —
f P7W /2) )[(p p )2 g2)}1/2 (3)

where g 0= 4c'Ez is the zero-temperature value for W';

p, and p, are the probabilities of occupation of the states
(1), and x=6/Wp. Bleaney derived the temperature
variation of 8' and the transition temperature to the
paramagnetic state from the molecular-field equations

(Wp —W)/lVp= 2p„ tanh(h/2kT, )=x. (4)

Equation (4) shows that the interacting paramagnetic
system will spontaneously order at a finite temperature
when 8"0=4c'Ez&d. The system will remain para-
magnetic down to T=0 for exchange interactions
weaker than the value 6/4c's.

Before considering in detail some specific systems, we

shall sketch the way in which the Bogoliubov trans-
formation will be used. In a second-quantized represen-
tation P(r,)=P (jism C; annihilates an electron at the
lattice site r, , where (jib) represents the jjsth crystal
field level of the ith paramagnetic ion. The C; are
fermion operators. At low temperatures e;,=C;,,tC;,„
the occupation of the ground state, is nearly unity. This
enables the commutator of the product operators a;
=C', m C', g) u', m=C;, g C; ~, for mug,

approximation and severely limits the validity of the
use of Bose statistics at higher temperatures.

The Hamiltonian can be written in a quadratic form
using the boson operators a; and may be diagonalized

by a canonical transformation to normal-mode coor-
dinates. The operator u; t can be interpreted as raising
the ith atom from the ground to the mth excited eigen-
state. The normal modes correspond to an excitation
wave in the same sense that a spin deviation is passed
on from atom to atom in the usual Holstein-Primakoff
theory of spin waves.

In Sec. II the paramagnetic, ferromagnetic, and
antiferromagnetic excitation spectra of Pr'+ ions in a
hexagonal crystal Geld are found, and the associated
thermodynamic properties are compured. In Sec. III
the ferromagnetic spectrum of Pr'+ in a cubic crystalline
field is analyzed. In Sec. IV Bozorth and Van Vleck's
treatment of paramagnetic Eu'+ in the presence of an
5 S exchange interaction is extended to both the
ferromagnetic and paramagnetic limits for an isotropic
exchange interaction S; S;. The longitudinal excitation
spectrum is found to contain an energy gap for all
cases considered, while the transverse spectrum for
ferromagnetic Pr3+ and Eu3+ exhibits a linear dispersion
law. The existence of an energy gap in conjunction with
the virtual emission and absorption of the excitation
modes gives rise to an indirect nuclear spin-spin coupling
similar in form to the Suhl-Nakamura interaction, ~ 8 and
an associated contribution to the speciGc heat.

II. Pr+ IN A HEXAGONAL CRYSTAL FIELD

A. Paramagnetic Region

In the limit that exchange interactions are not of
sufBcient strength to induce magnetic ordering between
Pr'+ ions in the presence of a hexagonal held, the basis
functions are given by the low-lying crystal-held states

I
B&= (~/~&) (I+3)+ I

—3&),

I
A&= (1/~2) (I+3&—

I
—3&)

with energies
g~c 0

The coupling to higher lying states is neglected because

(6) is valid only in the low-temperature limit kT((h.
The Hamiltonian is given by

H=g V -2E Q (J,' J,+p),

to be approximated by the Bose result

[a;, ,oj,„t]=5,,j5.„. (6)

where 6 runs over the z nearest neighbors, and V rep-
resents the crystalline-field Hamiltonian. The only non-
vanishing matrix element of J; between ~A) and (B) is
j;*=c(at+a,), where c=(A

~
J;*jB),and et=C;, irtC;, ~.

The neglect of the second term on the right in (5)
compared to the first term is clearly- a low-temperature

s T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).' H. Suhl, J. Phys. Radium 20, 333 (1959).' T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958).
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where

W&=A —2csEzTs Ws ——2csEsTs T = (s) 'P cos(k ii).

H is diagonalized by the canonical transformation

QIg = NPQIc VticC—Ic &

where

us= cosh'}s, ss ——sinh8s, tanh28s ——Ws/Wi.

(10)

Substituting (10) into (9), the Hamiltonian can be
brought into harmonic-oscillator form

E=Q ktes(ns+-'s) —-', Q Wi,

with excitation energies

Atsi = LVt'(5 —4csEsys)'is.

The lowest lying excitations for a simple cubic lattice
of lattice constant a are given by the long-wavelength
limit of (11):

I. Excitation Spectrum

The Hamiltonian (8) is rewritten using the Fourier
transform of the Bogoliubov operators (6), with basis
functions (nsl given by (7). Defining a,t= (N) "'
Xgs exp(ik r;)ast, the Hamiltonian (8) becomes

H=g(Wia, ta, (Ws/-2)("ta "+a" .)j, (9)

For temperatures kT((Q, (14) reduces to the form

Q &
'is

& Q
expl-

(2rr)sisAs 4k' E kTl
(16)

As pointed out by Bozorth and Van Vleck, the speci6c
heat (16) derived from the excitation spectrum (12) is
enhanced over that given by the use of Boltzmann
probabilities appropriate to the uncoupled ions.

E"'=—ZI(oI I'11'&I'/k s (17)

The sum goes over all possible excitation wave states,
IO) is the ground state, and

I is) is the state of one
excitation wave of wave vector k. To evaluate (17) we
transform J; to the excitation wave representation

I =cN "'+$(usnst+ssn s) exp(ik x;)+c.c.J, (18)

3. Nuclear Coupling

An indirect nuclear spin-spin coupling, similar in
form to the Suhl-Nakamura interaction, can in fact
exist in the paramagnetic region. This indirect term
arises through the virtual emission and absorption of an
excitation wave defined. by (10). The second-order
perturbation energy of the hyperfine interaction
V=A P;(I; J,) equals

where
Iio)g,

——Q (1+A ksa')'i s (12) where the inverse of (10) has been used. In the long-
wavelength limit, (17) reduces to

Q=h(1 —rt)'", A'=r}/s(1 —rt), r}=4c'Es/A. E&'& =—A'c' g(I'I') 1/N g(E~+E. a'kX') '
The result (12) is formally identical to the case of para-
magnetic Eu'+ discussed by Bozorth and Van Vleck. 4

Z. Electronic Specific Heat

where
Xexp(ik r;;), (19)

E,=6—4c2Es, E,„=4c2E.

If
I
r;; I

=
I r;—r; I))a, we may replace the sum over k byThe electronic contribution to the low-temperature an integral and extend the integration to infinity. The

specific heat is obtained by expressing (11) in the form
result of the usual contour integration gives

Ea'
E= g dk Q cosh(u)exp( —nPQ coshu) . (13)

(2ir)s n=t

—A2C2
E&s&= P(I'I')R(r )

4n-E,
(20)

The spectrum (12) is used in (13), and is written as
AMI,

——0 coshl, where sinh2N=A2u2k2 We And a result
identical with that of Bozorth and Van Vleck4:

Nk 3 tr 12'
(Q/kT) p -E,(z)+I 1+—IE,(z), (14)

2~2A' ~=J. Z Z')

where Z= nPQ, P = 1/kT, and E„(Z) is a Bessel function
of the second kind of imaginary argument given by'

(';)=(/') pL—( .i -)'"'/ j
The coupling between nuclear spins is anisotropic,
reflecting the hexagonal symmetry of the crystalline
field.

The coupling (20) will give a broadening of the
resonance line which may be obtained from Van Vleck's
formula for the second moment, "

(ksavs),.= LI(I+1)/3)g, a,ts.
I'(-', ) (-',Z) v

E.(z) =
I'(v+s)

du sinhs" (u)exp( —Z coshu). (15)
We find

A4C4

(king

vs) = (1/6s.)I(I+1) (E&,„/L', ) 'I i . (21)
2

~ G. N. Watson, A Treatise on the Theory of Bessel FNnctions
(Cambridge University Press, New York, 1952},2nd ed. , p. 172. ' J. H. Van Vlet:k, Phys. Rev. 74, 1168 (1948).
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The nuclear-nuclear coupling term (20) will give rise where AM=Ms —M(T). The thermal average of p, is
to a contribution to the specific heat additional to (16). given by
Neglecting the i= j terms in (19), which give rise to a
pseudoquadrupole effect, we find (p.)=(1/Wr. &( '+ ")(.)+ 'j (27)

A'c4Is(I+ 1)'
C.T'/R= (E,„/E,)'t'.

36xk'E, ' (22) where Ns, es are defined in (10) with Wr, Ws given by
(23). After dropping the small zero-point term in (27)
we find

3. Ferromagnetic Region
set' Er(Z)

hM/Mp= iI Q (2rt' —1)
2%2 „=1 z

When exchange interactions are of suQicient strength
so that 4c'Es& 5, a spontaneous magnetization can be
obtained as discussed in Sec. I.

With the states (1) as basis functions H may be
transformed using the Bogoliubov transformation.
Retaining again terms up to second order in the boson
op

3Its(Z)
+(n' —1), (2g)

Z2

erators, the Hamiltonian becomes where Z= ttPE(rP —1)'t' When kT«Q, Eq. (28) reduces
to the limiting form

H=Eo+QjW a ttt W /2(a —ta t+a u s)g, (23)

where

with

Wx= Wo — YI, W2= YI;,
2WO 290

E,= —-'m, '+ -'X~~ 1—
W,i'

We 4c'Es M——s'= (SI4c)' (rP—1)/rP.

It.M/3E, = (s/2~)'t ~(2~ —1)(kr'/Q) t

Xexp (—Q/kl') . (29)

By comparison, the molecular-field approximation
yields

hM/bfs $2rP/(rP
'—1)]——exp(—d,rt/kT) . (30)

C. Antiferromagnetic Region

H is diagonalized by the transformation defined in (10)
with Wi, W& given by (23).The ferromagnetic excitation
spectrum" becomes

E=Ep+g stoop(tts+ ', ) ,' P-—W—i, (24)

with
A(oy, ——(Wet —L9yt.)'".

The long-wavelength limit of (24) is

koe„—Q (I+Arg2k2)1/2
where

Q= 5(rP—1)'t' A'= 1/s(rP 1) rt—= Ws/A.

(25)

AM/Ms ——LrP/(rP —1)]'(P.), (26)

"General excitation spectra which reduce to Eqs. (24) and (44)
have been derived by Y. Kitano, F. Specht, and G. T. Trammel,
in Proeeedengs of the Interaattortat Conferertee ort 3Agrsettsra,
Nottingham (Institute of Physics and the Physical Society,
London, 1965), page 480.

The low-temperature specific heat of this ferro-
magnetic system is given by (14) with the replacement
of Q, A', rt by the quantities defined in (25). The nuclear
spin-spin coupling and anomalous specific heat in the
ferromagnetic limit are also given by (20) and (22)
except that now E,= We(rP —1).With this replacement
the second moment is (21).

The temperature dependence of the induced magnet-
ization for ferromagnetic Pr'+ in a hexagonal 6eld may
be obtained at low temperatures by expressing (3) in
the form

tan28~ =—tan28B =2'.pXM@/h. (31)

This condition insures that (tt)I*)1)g= (N)I jet)B,
as required for antiferromagnetic ordering.

The system Hamiltonian is given by

H=Q V,'+2K Q(J; J~s), (32)

where 5 runs over the 2' nearest neighbors on the
opposite sublattice. Because the two sublattices are
distinguishable, the boson operators used in the
Bogoliubov representation are defined by a;~= C;,.~C;,,
for lattice A, and b;"f=C;,,"fC;,„. for lattice B.To second
order in these operators, the Fourier transform of (32)
becomes

H =Eo+QLWo(ttsttts+4'4)

+Wr(a~'b st+ash g,+astbs+ahbgP) j, (33)

When exchange interactions favor antiferromagnetic
ordering and the condition S'0&h is met, an induced
antiferromagnetic state can be obtained for Pr'+ in a
hexagonal 6eld. The Curie point, sublattice magnetiza-
tion and magnetic eigenvalues are found to be identical
to those derived by Bleaney for the ferromagnetic
system described in Sec. I. Assuming two sublattices A
and 8, the basis functions for the antiferromagnetic
regime are found from (1), where tan28 for the two
sublattices is given by
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Q{W2++2)I/2

wo-

{W2.;.::A2)l/2
{Wp ~ )

2'
ao

where
//;t=N '/' g exp(i—k r;)apt,

bt=N '/'P e—xp(ik r;)b,t)

t'Vo= 4c~Es,

Wg= (LP/2WO)yA, ,

Eo———&MD'+ Nh (1—6/WO) .

H is diagonalized by the usual canonical transformation

FIG. 1. The antiferromagnetic excitation spectrum of Pr'+ in a
hexagonal Geld. The Pr3+ ions are taken to form a body-centered
cube of side a0.

E&'&= P (~)I'I'R(r")4E, ', ~

(37)

where (+) if i and j are on same sublattice, (—) if on
different.

The anomalous nuclear speciGc heat and the broaden-
ing of the nuclear resonance linewidth for antiferro-
magnetic Pr'+ are found to be identical to the ferro-
magnetic result.

III. FERROMAGNETIC Prs+ IN A
CUBIC FIELD

The low-lying states of Pr'+ in a crystal field of cubic
symmetry are given by'

triplet at E'=6
I&&= (2/9)'"I+4) —(7/1g)'"(I+1)+ I

—
2&) ~

(C)= (2/9)'/'[ —4)+ (7/18)'"([ —1)—[+2&), (38)

( A) = (1/2)'/2(i+3)+ [
—3)),

singlet ground state

[ G)= (10/27)'/'( [+3&—
)

—3))—(7/27)'/'
( 0) .

A nuclear spin-spin coupling also exists for antiferro-
magnetic Pr'+ and is of the same form as the ferro-
magnetic result

—A2c'

e/'= I/, (///t+b/, ')/~&+ ~/, (// /+ f/ /)/~2,

p/'= ~/(///' b/, ')/~& —~/(// ~ b /,)/~~—,
where

I/, cosh8/„vq ——s——inh8/, , tanh28/, ——Wi/(Wo+ Wi),

w/, =cosh//„x/, ——sinhq4, tanh2&/, = W~/(Wo —W~) .

For this manifold the total angular momentum operator
(34) J=4, and the Lande factor A. = 45. With the Hamiltonian

(8), the condition for ferromagnetic ordering is again
that Wa)h, where c=(A

~
J~'~G&. Solving the secular

equation for the crystal-Geld states joined by the
exchange Geld, we Gnd the basis functions for the collec-
tive state to be

In the reduced zone, 0&0 &m/u, the low temperature
excitation energy is found to be

E=EO+Q puu/„(I/, , +-,')

+Ace/, , //(r//, ,e+-,')]—P Wo, (35)

where

with
( g) =cos8 [G&+sin8( A),

E =6+ 'AP, M, E,=A 'APXM- , ——

E,= (6+W)/2, Eg= (6—W)/2,

tan28 = 2chPXM/2—

(39)

Working in an extended-zone scheme, 0&4,(2m./a,
we have

E=E,+P h, //(e, p+-', )—-,'Q Wo.

The dispersion law for the longitudinal antiferro-
magnetic excitations is sketched on Fig. 1, and is
identical to that found for the ferromagnetic spectrum
(24)

Using the low-energy form of Ace/, , //, as given by (25),
we find the speci6c heat and sublattice magnetization
for antiferromagnetic Pre+ in a hexagonal field are
identical to that found in part 8 for ferromagnetic Pr'+.

The self-consistent expression for the magnetization in
the low-temperature region is

M02 M2= (N&Pe)'(4P—.+2Pe+2Pe),
M o' ——(NAPc)'(q' —1)/g'.

(40)

1. Excitation Spectrum

The Hamiltonian (8) is rewritten using the Fourier
transform of the Bogoliubov operators u;~=C;, ,tC;,„

In deriving (40), the contribution to M' made by the
states ~B& and

~
C& is neglected compared to that from

~e) and ~g), since the inequality (p,—p.)'&)(pe—pe)'
is assumed to hold.
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b;~=C;,g~C;,g, c,~=C;,g~C;,„with basis functions given

by (39).We find, using

J;*=c sin28 (1—2a,ta, —b;tb; —c;tc;)+-', (b;tb;—c;tc;)
—c cos28(a;t+a~),

J;t = (cv2 cos8—is&2 sin8)b;t
—(cd cos8+-', V2 sin8)c;, (41)

J; = (c&2 cos8—rsv2 sin8)b; —(cd cos8+rs&2 sin8)c t,

where J,+=J; &iJ;71, that

&=~o+Q LWiaktak —(Ws/2) (ak'a-kt+aka-k) Pa',
"x

3K
a,

and

FIG. 2. The ferromagnetic excitation spectrum of Pr + in a
+Wsbk bk+W4 k ck+Ws(bk k + kbk)j~ (4 ) cubic fiel. The parameters=Wp/hischosentoequalVZ, andthe

Pr3+ ions from a simple cube of side eo.

transverse modes (r=P, y), which are present in the
cubic representation, have a vanishing energy gap.

In the limit of long wavelengths we find.

AG7k ——Q(1+A'a'k')'" AQ)k p= AQlk =Dak (45)

0= (Wp' —6')"' A'=1/z(g' —1),

6+Wo '" 77Wp+836 'i'8'p= Eyzpp.

B is diagonalized by the canonical transformation,

&a =la~I —&1~—A, ,

2z 24c2

2. Thermodynamic Properties

Ep
—-'AM p'+——(EA/2) (1—3,/Wp),

Wi ——Wp —(L9/2Wp) yk,

Ws= (LV/2Wp)yk,

W p ,' (6+W——p)—Eczsin2—8(1—pk) —Kxzyk,
x= irs (83+77 cos28), where

W4 rs(6+Wp——)+Ecz sin20 (1 pk) —Kxzy—k,
y= —,', (77+83 cos28),

where

pk —B)kbk +Xkck
&

Vk 'Rkck +Xkbk &

(43)
The temperature dependence of the magnetization

for Pr'+ in a cubic field is obtained by replacing (40) by
the approximate low-temperature form

where r denotes the normal modes (n,P,y), with

krak, = (Wps —6'yk)"',
-gj 2 g2-1/2

AMk, s=+
16c2

(~+Wp) 'I'
(1—Vk)+I

2 i
~+Wo (83Wo+77&)yk (Wo—&)

X — +
2 8c2

-gl 2 g2- 1/2

AM', ~= L)p, p
—2

16c2
(1—Vk).

uk ——cosh0k, pk ——sinh0k, tanh28k ——Ws/Wi,

rck ——coshpk, xk sinhgk, ——tanh2&k ——2Ws/(Ws+ W4) .

The excitation spectrum becomes

~=~o+2 ~-k, ,(mk, ,+,) ;Q(W,+-W—s+W.), (44)

~MIMo= l.n'/(~' —1)j(2(P &+(Pz&+(Pa&)

where AM=Mp M(T) Th—e therm. al average of the
excited-state probabilities is given by

1
(P.& =—QL(Nk'+ok')(rsk, .)+tk'j,

g r

(47)

(Pz)+(Pa& =—g5(tc '+x ') ((ek,p)+(Nk, ,&)+2m 'g.

Neglecting zero-point terms, we Gnd, in the limit
kT(&D, 0:

(77Wp+83~) Per ~

+I —
I

M p rl' —1 1920D 5 D (2s.i
(kTqpl'

x~(2n' —1)I I e~l
I

(48)
i g i E Is2'i

The dispersion law for the three modes is sketched in
Fig. 2. The longitudinal excitation (r=n) is identical The low-temperature dependence of the specific heat
in form to the excitation wave found for Pr'+ in a is obtained from the spectrum (45). We find that the
hexagonal 6eld, and contains an energy gap. The contribution to C, made by the three excitatipp waves
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r= (n,P,&) in the limit kT«D, Q is given by

8 RU CE GROVER

B. Ferromagnetic Region

C,/$2= 42r'/15 (k T/D)'+ (s/22r) 2/'(2p —1)"2

X (Q/kT)'/' exp( —Q/kT) . (49)

Only the lowest order terms in the expansion of the
contribution by each normal mode have been kept in
(48) and (49). The lack of an energy gap for transverse
excitations results in a large contribution to C, and
DM/Mp at low temperatures.

The nuclear-nuclear coupling, and the associated
speciGc heat of ferromagnetic Pr'+ in a cubic Geld, is of
the form already found for Pr'+ in a hexagonal field,
i.e., given by (20) and (22), respectively. Again,
E =4c2E and E,*=Wp(r/2 1). B—ecause of the lack
of an energy gap for transverse excitations, however,
the eGective transverse anisotropy fieM E is zero.
We have, of course, neglected any true anisotropy in
the electronic system. The introduction of an anisotropy
Geld, coming from, for example, second-order dipolar
interactions, will result in a finite E ', and remove the
divergence in the nuclear specific heat associated with
the transverse excitations.

Starting from the states (50), the low-temperature
excitation energy of ferromagnetic Eu'+ in a cubic
crystalline Geld is found, in a manner formally identical
to that of Sec. III, to be

E=Ep+p /2//dp, (N2, ~+2)—2 Q(Wi+Wp+W4), (53)

where

with

ha)2, = (Wp' —62yp)i/2,

~2, /2=+Ei+E2,
4/2, ,= —Ei+E2,

El (Wpp +2)i/2(1 +2)/8

E2= (Wp+ 6)'/2L16 (Wp+ 6)—(17Wp+ 155)yp

+ (Wp —6)F22J/2/8.

In the limit of long wavelengths (53) becomes

bppp .——Q(1+2'/2'k')'/' AC0$ //= AN2, =Dajp, (54)

IV. Eu'+ IN A CUBIC FIELD

A. Paramagnetic Region

%hen exchange eGects are not of sufhcient strength
to support magnetic ordering, the low-lying levels of
paramagnetic Eu'+ in a cubic crystalline Geld are given
by the spin-orbit split states: 1=1 triplet at E=A

IB&= I 1,1&, la&+ I l,o&, I
C&= I1, —1&, (5o)

J=0 ground state
IG&= lo,o&.

The Hamiltonian (8) is rewritten in terms of the spin
operators S; using the Bogoliubov operators u;t=C;, ~t

)&C;,g, b;~=C;,~tC;, g, c;~=C;,g~C;, 0, with basis func-
tions given by (50). The excitation spectrum at low
temperatures becomes, after transforming to normal
mode corrdinates: apt=gqapt —vpa 2, ppt=upcpt+vpbq,
yqt=gqbqt+ vqcq, with Nq, 2/2 as defined in (10).

E=Q Appp(np, „+N2,//+n2, „+2)—2 p Wi,

where

Z (~2 1)1/2 P 2 1/s (~2 1) g Wp/P

D= (Wp+6)'/'(15Wp+17A)"'8s"'.

DM/Mp=
(15Wp+ 176)

(kT/D)'+ (2/22r)2/2
2 384D

X~(2g' —1)(kT/Q)"' exp( —Q/AT), (55)

and the specific heat by (49) with D, Q as defined in (54).
The nuclear coupling is also formally identical to that
found in Sec. III.

V. PHASE TRANSITION

We Gnd that the thermodynamic properties of Eu'+ are
identical to those for Pr'+ in a cubic Geld, apart from
numerical factors resulting from the different value of
the constant c in the two cases. The low-temperature
magnetization in the limit AT&CD, 0 is given by

hp/2 =6'/2 (6—4c2Esyp) "',
Wi 6—2Ecpzy2, c=——(A I

S'I G).

(51)

—A 2C2

E&2i= P(I; I;)R(r;;),
4zE,„',2

where E,„and R(rq) are given by (19) and (20).

(52)

The 222, term of (51) was found by Bozorth and Van
Vleck using an S S,' exchange. The indirect nuclear
spin-spin coupling for this paramagnetic region will be,
due to the cubic symmetry of the problem, an isotropic
term of the form

p —2
L1 (@2+(1 g2) ~2)i/2)

p =-'I 1+(x'+(1—x2)o')'/2J (56)

One identication that the magnetization is due to an
induced moment, and not conventional ferromagnetic
alignment, is that the entropy of ordering at the Curie
point is less than the Xk ln(25+1) value of a spin-5
ferromagnet. To prove this, we consider the two--singlet-
state system discussed by Bleaney, ferromagnetic Pr'+
in a hexagonal field, and calculate its thermodynamic
behavior in the vicinity of the Curie point. We express
the excited- and ground-state probabilities in terms of
the magnetization by rewriting (3) as
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where a=M(T)/Mo and x=6/Wo. The entropy of
ordering may be obtained from the usual Boltzmann
expression S= —Sk(p, lnp, +p, lnp, ). Expanding S to
fourth order in 0 find

S/~k= —', (1—x) ln(2/1 —x)+2(1+x) ln(2/1+x)

(1—x') (1—x')
tanh 'xo'—

FIG. 3. Entropy of
ordering at the ferro-
magnetic Curie point
for a two-singlet-state
system versus the pa-
rameter a=A/W, .

I
X

(1—x')
1— tanh 'x o4. (57)

g

In the vicinity of the Curie point the entropy is given
by the Grst two terms in (57).When this portion of S is
plotted versus x we obtain Fig. 3. For any value of x
between zero and one, the system will have an entropy
of ordering which is lower than the Ek ln2 value of a
conventional spin-~ ferromagnet at the Curie point.
To determine the nature of this transition we form the
free energy F= U—TS, where

U = —-'XMp'a'= —(XWp/4) (1—x')o'.

Minimizing Ii with respect to 0, and solving for 0.

near T„

The free energy is then

F(T(T,) =F(T&T,)—~NWo(1 —x')G(x)
&& L(T,—T)2/TT, ). (59)

There is no discontinuity in S=—(BF/BT) at T, and
hence no latent heat associated with the transition.
There is, however, a discontinuity in the specinc heat
classifying the transition as one of the second kind.
We 6nd

hC, (T,)=EkG(x) (1—x') tanh-'x/x (60)

This should be compared with the usual discontinuity
of 3Xk/2 for a conventional ferromagnet of spin 2t.
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where

o'= G(x) (T,—T)/T,

G(x) =2x'(tanh 'x)/Px —(1—x') tanh-'xj) 0

tanh 'x=6/2kT, .
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