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Spherical Impurity in an In6nite Superconductor*
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(Received 26 July 1965)

The modifications in a superconducting medium due to a single, spherically symmetric, nonmagnetic
impurity are examined using the BCS theory of superconductivity. The energy spectrum of quasiparticles
has both a discrete portion (bound states) and a continuous portion (scattering states). In the scattering
region (B)A), a given energy corresponds to two distinct momentum states, one above and one below the
Fermi level. The calculation of the S matrix for the impurity scattering is thus a problem of two coupled
channels. The electron density n(r) and the order parameter A(r) far from the impurity are evaluated
asymptotically in terms of the eigenphase shifts and mixing parameter of the two channels. Two soluble
models for the impurity are considered. With a hard-sphere, long-range spatial oscillations are found in
A(r) as well as in n(r). With a delta-shell potential, a resonant enhancement occurs in the scattering of
quasiparticles with momentum near the Fermi momentum. Both the spatial oscillations and the resonant
enhancement are expected to appear for more general impurity potentials.

I. INTRODUCTION
' ICROSCOPIC theories of superconductivity have

~ ~ generally been restricted to translationally in-
variant systems, ' where the theory may be greatly
simpli6ed in momentum representation. Even super-
conducting alloys, which are inherently nonuniform,
have been rendered translationally invariant by averag-
ing over the random positions of the impurities. ' In con-
trast, the standard theory of normal metallic alloys' is
based on the intrinsic spherical symmetry of a single
impurity atom. The effect of the impurity on the normal
metal is expressed in terms of a set of phase shifts, found
from the solution of the Schrodinger equation. 4 This
paper gives an analogous partial-wave treatment of a
superconductor containing a single spherically sym-
rnetric potential (to be called an impurity for sim-
plicity). ' The impurity is responsible for several essen-
tially kinematic effects, which are independent of the
detailed form of the potential. The most striking results
are: (I) the existence of long-range spatial oscillations
in the order parameter 6 (r), and (2) a resonant enhance-
ment of the impurity scattering of quasiparticles with
momentum near the Fermi momentum.

Section II reviews the properties of a uniform super-
conductor using a separation in partial waves. Section
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A

III incorporates the impurity potential into the partial-
wave equations, which are then rewritten in the form of
the Lippmann-Schwinger equation. The S matrix ele-
ment that describes the scattering of quasiparticles by
the impurity is calculated from the single-particle
Green's function in Sec. IV. The scattering cross section
is then slmpllfled in terms of the phase shifts which aI'e
introduced in Sec. V. Two soluble models illustrate the
most important eBects oI the impurity: a hard-sphere
potential (Sec. VI) and a delta-shell potential (Sec.
VII).

II. A UNIFORM SUPERCONDUCTOR

Thermodynamic Green's functions offer a convenient
formalism for the study of many-particle systems at
finite temperatures. ' ~ It is useful to introduce a matrix
notation to include the anomalous correlation functions
characteristic of a superconducting medium. ' 'We there-
fore de6ne a matrix single-particle Green's function

G;;(rt,r't') = —i((+;(rt)%',t(r t'))+),

where %(rt) is a two-component vector, 0't(rt) =it t(rt),
Vs(rt) =ltrst(rt). Here the arrow represents spin up and
spin down with respect to an arbitrary axis of quanti-
zation. The subscript + in Eq. (1) indicates positive
time ordering of the Heisenberg field operators (from
right to left in ascending order) and includes an addi-
tional sign factor (—I)~, where P is any permutation
from the given order. The average implied by ( )
is taken over a grand canonical ensemble at a
temperature P '.

' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);
L. P. Kadanoff and P. C. Martin, ibid. 124, 670 (1961).We shall
follow the notation of this reference rather than that of Ref. 7.
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Hall, Inc., Englewood Clitfs, New Jersey, 1963).
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~(r)=gQ (r)0 (r))
=igG, s(rt+, rt), (3)

where g is a positive coupling constant, and the notation
t+ means a time infinitesimally later than t.

The thermodynamic Green's function is most easily
determined by restricting the time variables to the
range 0&t, t & iP In—thi. s domain, G is antiperiodic in
each variable with period ip'r—; this property allows
an expansion in a Fourier series,

G"(rtr'1')=ip 'p e '""&' "&G"(r r'o&) (4)

where o&„= i'&/P and» runs over the odd integers. The
equation of motion for the Fourier coefficient is easily
found from Eqs. (2) and (4) to be

{o&„+r&'&L(2m) '7'+p) —d (r)r&r& —'U(r)}

XG(r,r', o&„)= 8 (r r') . (—5)

Equation (5) determines G only at a discrete set of
points, and the full Green's function requires an analytic
continuation to all values of the frequency. For this
purpose, it is simplest to compute the matrix spectral
function A (r,r', c0') from the prescription

2 (r,r', o&') = iTG(r, r'—,o&' ir&) G(—r, r',o&'+ir&)—), (6)

where r& ~0(+). The single-particle Green's func-
tion may then be constructed from the integral
representation

dG)

G(rt, r't')= —e '"" ''
2'

In the BCS theory, '' the single-particle Green's
functions obey a matrix equation of motion

{i8/&it+r &'&L(2m) 'V'+p) —h(r) r &' —'U (r)}G(rt, r'l')

= 'o(r r')—b(t t')—, (2)

where 'U (r) is a 2 X2 matrix of the form U (r) ='U r(r) r &'&

+'U s(r) r &', depending only on r—=
j
r

~

. The symmetry of
'U implies that the order parameter A(r) is also spheri-
cally symmetric. In the absence of magnetic fields or
spin-dependent interactions, A(r) may be taken to be
real, as assumed in Eq. (2). The matrices r&'& are the
standard Pauli spin matrices. The quantities p and m
are the chemical potential and electron mass, and units
have been chosen such that &= 1.

An essential feature of the BCS theory is the self-
consistent determination of the order parameter. In the
Gorkov approximation, ' which is used here for mathe-
matical simplicity, the interelectron potential is replaced
by a constant attraction for electrons with energy near
the Fermi energy and zero elsewhere. The self-con-
sistency condition then becomes

d'rC'&&+& (rt) &C &"' (rt) =
&& (k—Ir.'), (13)

where either the upper or the lower signs are taken;
furthermore, Cj, &+~ and C~&

—~ are orthogonal. A ma-
trix product is implied in the integrand of Eq. (13),
and 4 t means Hermitian conjugate. It is simple to show'
that the resulting normalization vectors are

where uI, and vI, are the usual BCS coherence factors'

Ns= L-,'(1+es/Es))" r s= L:,' (1—es/Es)7"'. (15)

The plane-wave eigenfunctions, Eq. (12), may be
expanded in partial waves"

C», &+'(«) =e+' "Zi I'& (~) I'&~*(&)@s&'+'(r)
= e+'er'(4s. )

—' P)(2E+1)Pg(r' k)C&t,.g&+& (r) . (16)
In Eq. (16), the notation F'q (r) has been used as an
abbreviation for Y~~(8, y), where (8, &o) are the polar
angles of the unit vector r" with respect to the Axed
coordinate axes. The addition formula for spherical
harmonics" has been used to obtain the second line

The remainder of this section is restricted to a uniform
superconductor, in which the impurity potential 'U(r)
vanishes. For calculations in Sec. IV, it is convenient to
introduce a two-component wave function C (rt), which
satis6es the homogeneous equation corresponding to
Eq. (2)

{i&)/&)t+r s L(2m) 'V'+p) —hr&'&}C (rt) =0. (g)

Here the order parameter is a constant in the absence
of the potential. Equation (8) has plane-wave solutions
of the form

C &, (r/) = (2s-)—sl'Ape'&"' —~'&, (9)
where XI, is a normalization vector. Substitution of
Eq. (9) into Eq. (8) provides an eigenvalue equation
for the energy E, whose solution is the BCS energy
spectrum

E=&Eg,=&fey'+LB)"'.
Kinetic energy is measured relative to the Fermi surface

ep= (k'/2m) —
p,=—(2m) '(k' —kr )

where ky is the Fermi momentum. The plane-wave eigen-
function for positive (negative) energy is denoted by

y&, &+&(r$) = (27/)
—@s~g,&+&er&&'+es'& . (12)

The normalization vector may be determined from
the orthonormality condition

X
1ye e"

o& o&'+ir& 1+e—e o&
—o&' —i»

"See, for example, M. L. Goldberger and K. M. Watson,
(~) Collision Theory (John Wiley R Sons, Inc. , New York, 1964),'

Chap. 1, Sec. 3.
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r'drC &+&(r)tC ~ &+l(r) =k '8(k —k'). (18)

III. A SUPERCONDUCTOR WITH ON' E
IMPURITY

The single-particle Green's function G(r,r', co,) is
rotationally invariant in the presence of a spherically
symmetric potential and may be expanded in partial
waves

G(r, r',&o„)=P i F~„(r)F i~*(r"') G~„(r,r', co) . (19)

A combination of Eqs. (5) and. (19) gives the equation
of motion for the partial-wave projection,

(co„+(2m) 'rt'&LSt+kr'g —h(r) r&' —'U(r))

&( G~~(r,r', to) =r 'h(r —r'), (20)

where S~ is a differential operator

1 ci 8 l(l+1)
Sl=——r2——

r2 Bf Br r2
(21)

Equation (20) shows that G& is in fact independent of

, the azimuthal quantum number ns. The addition
theorem for spherical harmonics may then be used to
simplify Eq. (19),

G(r, r', to„)= (4a.) ' Q~(2l+1)Pt(r" r"')Gi(r, r', co„) . (22)

The spectral function defined in Eqs. (6) and (7) has
a similar expansion,

A(r, r', co') =Pi Fi (r) I'i„*(r"')Ai(r,r', ro')

= (4~) ' pi(2l+1)Pt(r" P')A (ri, r'& t)o, (23)

and it follows from Eqs. (6), (22), and (23) that

A ~(r,r', ro') = iTGi(r, r', &u' irl) G—~(r, r', oo'+itl)—tl. (—24)

above. The partial wave function is proportional to the
lth spherical Bessel function "

C»it+i (r) = (2/x)'~'i'X&&+' ji(kr), (17)

and obeys a simple normalization condition

four linearly independent solutions must exist. If r'U(r)
vanishes at r=o, it is not dificult to show that only
two solutions are finite near the origin"; any linear com-
bination of these two solutions behaves like

{E+(2m) 'r&s&LX)o+kr 7—&r&'&)rlt (r) =0. (27)

Here the asymptotic value of the order parameter g(oo )
has been denoted by h. Equation (27) has solutions of
the form

'11)(r)~r—le a sr (28)

where k is a constant to be determined. Substitution of
Eq. (28) into Eq. (27) yields a fourth-order algebraic
equation, whose roots are

kis= krsy2m(Ps gs) t—&s

kss = k&' 2m (—gs gs) t—Is (29)

The asymptotic behavior of it&(r) clearly depends on
the magnitude of E. If E'(6', all four roots are com-
plex, and the corresponding solutions are of the form

r'lt
& (r)~e+'"&r exp( —

(kyar/2e

f) (Qs —gs)»'j,
r&&(r)~e+'"fr expL+(k&r/2e&)(gs Qs)i, sj (30)

where the ratio 6/ey has been assumed small. Either of
the two solutions that is 6nite at the origin may be
written as a linear combination of the four asymptotic
solutions in Eq. (30). In particular, a unique acceptable
solution can be constructed with the asymptotic
behavior

r'itt(r) LA i(&) cos(kyar)+Bi(E) sin(k fr)j
&& exp/ —(krr/2e&) (Qs —Qs) t&sg

+C&(E) cos(k~r) exp/(k~r/2ef)(LV Es)r~sj (3])

(26)

for small r.
Near infinity, Eq. (25) may be simplified con-

siderably. If r'U(r) is finite as r —+~, both the potential
and the centrifugal barrier can be neglected, and the
differential equation reduces to one with constant
coefficients

As in Sec. II, it is convenient to introduce wave
functions %.~(r), which satisfy the homogeneous equa-
tion derived from Eq. (20),

Equation (31) cannot be normalized unless

Ci(E)=0; (32)

(E+ (2m) 'r&'&/X)i+kr'g

—d (r) &'l —'U(r))'ll, i(r) =0. (25)

Here 8 is the eigenvalue corresponding to the eigen-
function %,&(r). Equation (25) constitutes a pair of
coupled, second-order, differential equations, so that

"We follow the notation of Handbook of Mathematical Functions
mth Formulas, Graphs and j/lathematical Tables, National Bureau
of Standards, Applied Mathematics Series 55, edited by M.
Abramowitz and I. A. Stegun (U. S. Government Printing OfBce,
Washington, D. C., 1964), Chap, 10.

this condition provides an eigenvalue equation. The
eigenvalues are discrete and will be labeled by an
integer e, which may take a 6nite or in6nite 'set of
values. The eigenfunctions are wholly analogous to the
bound states of Schrodinger theory, "where Las in Eq.

"See, for example, E. L. Ince, OrCiwary 1N+eren&ia/ Egma&ions
(Dover Publications, Inc. , New York, 1956), Chap. XVI.

"The problem of a superconductor in a particular two-dimen-
sional, cylindrically symmetric potential has been examined by
C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Letters 9, 307
(1964), who discuss the bound states in detail.
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(31)7 the spatial range ro of the bound state is deter-
mined by its binding energy and is independent of the
range of the potential. In a superconductor, ro is not less
than 2er/kryo, = k)/md, , which is the order of the coher-
ence length po. The state specified by Eqs. (31) and (32)
describes a quasiparticle bound in the potential 'U (r); it
must not be confused with the bound electron pairs,
which also have a spatial extension of the order of (0.

If E'&6' on the other hand, then both k~' and k2'
are real, and all four asymptotic solutions in Eq. (28)
are oscillatory. (In the energy range E') e~'+d ', which
is not considered here, k2 becomes imaginary; this corre-
sponds to the attempt to create a hole inside the Fermi
surface with a momentum less than zero. The same
effect occurs in the normal metal, as well as in the
superconductor, and is not relevant to this paper. ) Both
of the solutions that are finite at the origin can be nor-
malized per unit volume. These states describe the scat-
tering of quasiparticles by the impurity potential, simi-
lar to the scattering states of Schrodinger theory. It is
important to notice that there are two values of the
momentum (ki) k))k2) for a ffxed value of the energy.
This peculiarity is discussed in Sec. V, where it is shown
that an incoming plane wave with a well-defined
momentum ki(say) leads to scattered waves with
momentum k2 as well as k~.

The energy range 8'=5' is also interesting, because
k~ and k2 become degenerate as E —+6'. The four
independent solutions of Eq. (27) may be written as'4

are included. The normalization for the scattering states
is chosen to be

r d&lii(+)(r)t%ti~i(+)(r)=k 8(k—k ), (36)

which should be compared with Eq. (18).
Scattering problems are generally formulated in terms

of integral equations that automatically incorporate the
correct boundary conditions into the wave functions.
We shall therefore introduce a matrix Green's function
g&(r,r'g) satisfying the differential equation

(38)

g, (r,r', i.) = 2~-' 9'dV i i(p)i i(p') B(al ) (39)

where

(f'+ (2m) 'r(')LS)+k/7 —hr(') }
X()i(r,r', f') =r '8(r r'), (3—7)

where f is an arbitrary complex variable. The construc-
tion of g is straightforward, and the result can be
written in either of .two equivalent forms,

-c, '"'()c, '+'(")'
q'dq —E

~~&(r) ~g+~&i~+g+~I s~

k )
—a(&y~4~ &y~is~) (33) g(q, f)=(f+T e +AT(1)7/g2 &

2 i127—1 (4p)

which is valid for all real values of k~ and k~. In the limit
of exact degeneracy, Eq. (33) reduces to

The choice of boundary condition is discussed in
Appendix A. The correct Green's function for the
scattering solution is

&~ (&) ~+ikyr &~+ikyr (34)
(41)

The last pair of solutions cannot be normalized, which
gives rise to anomalous behavior in the scattering
amplitudes near E'=6'(k=kr).

The solutions to Eq. (25) must be separated into
two classes, distinguished by their asymptotic form. In
the bound-state region (E'(6'), the eigenfunctions
%.„i(r) and eigenvalues E„i are discrete, with the
normalization ~„,(+)=c (k)+.8 (k)g'~ (a) (42)

Here the notation (&) refers to the sign of the energy;
it must be distinguished from the (~) of conventional
scattering theory, which means outgoing or incoming
waves. '~ The differential equation (25) can now be re-
written as an integral equation

r'dr&„&(r) te„&(r)=8„„. (35)
where 'U' includes the effect of the impurity on the
order parameter

In the continuum (E')6'), the eigenfunctions depend
on a continuous parameter, which may be taken as the
magnitude of the momentum k. The scattering solution
that corresponds to an incoming plane wave of momen-
tum k, with positive (negative) energy, is denoted by
'tt»(+) (r), in analogy with Eq. (17). As k ranges from
zero to infinity, all possible values of ki and k2 LEq. (29)7

"Reference 12, pp. 136-137.

The first and second terms on the right side of Eq. (42)
represent the incident and scattered waves, respectively.

Given the eigenfunctions of the superconductor in the
presence of an impurity, it is possible to construct the
Fourier coefIicient Gi(r, r', &o„) of the single-particle
Green's function. It can be veri6ed by substitution into

"Reference 10, Chap. 3.
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Eq. (20) that

G& (r,r', or„)=
-~,&+& (z)~,,&+& (r')t

cov Eg

For a uniform medium, there are no bound states,
and Eqs. (47) and (48) can be reduced to the usual form'
using the eigenfunctions from Eq. (17) and the
theorem"

&.&& &(r) tt &' &(r')' tt-&(r) tt-&(r')'
+Z

Z r(2E+1)(j~(kr)ps=1. (50)

44
The constant density rs and order parameter 6 are then
given by

The corresponding spectral function is obtained from
Eq. (24),

rs = (2rr')-' k'dkL1 —(ss/Es) tanh-', PEsg, (51)
2 r(r, r', or') =2' q'dq(W, r

&+& (r)'ll, r
&+& (r') tfr'(o&' —8,)

A=(2 r)r'gmky deA(e'+b, ') "'

HP(e +g')'I'] (52)

The single-particle Green's function describes the
propagation of an excitation through the medium,
following the addition or subtraction of one quasi-
particle. "This interpretation has been used extensively
in calculating the transition amplitude corresponding
to various physical processes. ""The S-matrix element

Sst for the impurity scattering of a quasiparticle (of
positive energy) from an initial momentum kt to a final

momentum ks is

I(r) = 2iGtt (r—t, rt+) (46)

and the self-consistency condition, Eq. (3). The factor
2 in Eq. (46) arises from a summation over the two
spin states. An elementary calculation yields

(2l+1)
N(r) =Z~

Thefullsingle-particle Green'sfunctionG(rf, r'f') follows where the cutoff has been introduced. explicitly in
directly from Eqs. (7), (23), and (45). Eq. (52).

In principle, all physical information about the
system is contained in G(rf, r'f'); simple examples of IV. THE S MATMX
interest are the electron density rs(r) and order param-
eter h(r), given respectively by

—
)
~sr&+& (r) [

s [&Is)&+& (r) [
s

k'dk
p 1+exp(pals) 1+exp(—PEs)

Sgg= i lim d'rd'r'

A(r) =g(4rr)
—' g)(2l+1)

)N„&(r) js
(47)

1+exp (PE» &)

ksdk», &+&(.)»,&+&(.)*t.nh-', PZ.

+Z- ~.&(r)s-r(r)*L1+em (—P&.r)1 ' (48)

)&Cr„&+&(rt)tG(rt, rV)C, &+& (rV) . (53)

Equation (53) may be evaluated with the spectral
representation for G. Since t&t', the integration over u
in Eq. (7) can be performed with a contour closed. in the
lower half-plane. The S matrix for this problem is
rotationally invariant and has an expansion in partial
waves,

Sst= (4rr) ' Q g(2l+ 1)P&(ks kt)(ks
~
S&

~ kg) . (54)
The upper and lower components of its&&+&(r) have
been denoted, by I»&+&(r) and trs&&+&(r); The relation With Eqs. (16) and. (23), thelthpartial-waveprojection
(Appendix A)

~J $& & (r) —(—1)&r&&&7 (s&L~J $&+& (y) ]e

has been used in the derivation of both Eqs. (47) and
(48). The integral in Eq. (48) is divergent and must be
cut off (as usual) at the Debye frequency ez=orrr. '

"The material in this section is similar to that in a previous
paper on vortices in an imperfect Bose gas LA. L. Fetter, Phys.
Rev. 140, A452 (1965)g. The present formulas differ because of
the change in statistics (fermions instead of bosons) and spatial
symmetry (spherical instead of cylindrical)."R.P. Feynman, Phys. Rev. 76, 749 and 769 (1949).' J.D. Bjorken and S.D. Drell, Retatimstic QNaetlnz 3fechamcs
(McGraw-Hill Book Company, Inc. , New York, 1964), Chap. 6.
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may be written as

where

(ks~ Sl [ki)= lim
1

d'(g ail &2—o& ) trito&' —&1)t'

1+e s' (ks
~

-1(o&')
) kl),

(ks
~
"i(o&')

~ ki) = r'dr r"dr' 4'&„l&+& (r) tA l (r r', o&')I s, l&+& (r')

k'dkL(C. , +,e,l+)(e„+,C„,+)g( '-Z„)

+(C', '+&,& ' &)(& ' &,C '+&)8( '+&)j+2 P (C, &+&,& )(ql. ,e, &"&)5( '—8„). (56)

The following scalar-product notation has been used in Eq. (56):

(C,e)= r'dr C(r)t~(r). (5&)

The integral equation (42) for the scattering eigenfunctions allows a simplification of the individual scalar
products in Eq. (56). As an example, we consider

(@s l tiki ) (@1 l psl )+ (@k l gkl U ital ) k ~(k k2)+ (+s +ks+sr&) ('4 l U +N ) ~ (58)

Equations (18) and (38) have been used in the deriva-
tion of the last step of Eq. (58). The remaining factors
in Eq. (56) are treated in the same manner. In evaluat-
ing the limiting process in Eq. (55) it is necessary
to use"

lim =0; lim = 21ri8 (E)."E—jq ' "E—jg
(59)

The S-matrix element now follows from a combination
of Eqs. (55)—(59),

(k, (s, ~k,)= (1+.-~ )- P; &(ks—k,)
—21rii&(&s—Et)(ks

~
Tl

~ ki)), (60)

where the lth partial-wave projection of the T matrix
on the energy shell is defined as

(ks
~
Tl

~
ki) = (cg„l&+&,v'eg„l &+&) . (61)

Only the positive energy sta, tes appear in Eq. (60) be-
cause the quasiparticle scattering is elastic.

The full S-matrix element is obtained by summing
Eq. (60) over partial waves,

Sst= (1+e-&~') 'Lb(ks —ki)

2s 1~(+2 +1)(ks
~
T~ kl)g, (62)

where

(ksi Tiki)= (4m.)
—'Qi(2l+1)El(ks kt)(ksi Tlikt). (63)

The single-particle Green's function describes both the
creation and propagation of a quasiparticle. These two
properties appear clearly in the structure of Eq. (62).
The temperature factor can be rewritten as (1+e l&~)—'

"S. S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Row, Peterson and Company, Kvanston, Illinois, 19&1),
p. 321.

=1—(1+e~~) '=1—(rl), which is the Fermi factor
associated with the creation of the quasiparticle. The
remaining part of Eq. (62) (in square brackets) describes
the scattering of the quasiparticle and is the only eGect
of interest here. In the subsequent work, the tempera-
ture factor will therefore be ignored. '

The transition probability m per unit time for
scattering into a solid angle d02 is obtained from

~
(ks

~
S

~
kt)

~

'. It is conventional to interpret the
squared delta function as

L21r8(Es—Ei)i'= 21rT8(Es—Ei), (64)

where T is the time duration of the experiment. From
Eqs. (62) and (64), we find

d'ksl Sst I'

=2' ks dks o(E/„—Zs, ) ( (ks~ T( ki) ( 'das. (65)

In contrast to the usual theory of scattering, the energy
restriction can be satisfied at tao values of the mo-
mentum, one above and one below the Fermi surface.
The transition probability becomes

tl&=21rps)(ks[ T[kt) ('+2~ps )(ks'[ T(kt)('. (66)

Here ks and. ks' are both parallel to ks, but they have
different magnitudes, ks'=kis=—ks and (ks')'=2kjs —kis

~ The temperature factor would never appear if the 5 matrix
LEq. (53)g were de6ned in terms of the retarded Green's function,
discussed in detail in Ref. 7, pp. 144—153. The present derivation
of the 5 matrix from the thermodynamic Green's function avoids
the necessity of introducing yet another (and irrelevant) Green's
function.

&' Reference 18, p. 101.
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(k')'. The phase-space factor p~ is defined by

pg, = I
k'dk/dEl,

I
. (67)

(R matrix) is then defined on the energy shell as

(klRllk')= (goal, z'%l, .l).

e=
I
dEe/dk

I
=k'/pi.

The differential cross section is

(68)

do/d02= (2~) k I pe I(irel TI lit) I'
+p~p~ I

&&2'I 2'I&i) I'j (69)

Equation (69) appears to diverge near the Fermi
momentum since

»=k~&~/le~I =2k~'&~/lk' —kr'I (70)

It is shown in Sec. V, however, that unitarity is pre-
served even at k =kJ.

V. THE PHASE SHIFTS

The scattering cross section can be simplified with the
introduction of the phase shifts. Quasiparticle scattering
in a superconductor is more complicated than scattering
in potential theory because of the existence of two
momentum states with the same energy. The present
situation is essentially one of scattering in two coupled
channels, " and the reaction matrix formalism, "which
was developed for multichannel problems, is directly
applicable here.

A complex scattering Green's function 5l, l&+&(r,r')
I Eq. (41)j has been the basis of the development in
Secs. III and IV. It is now convenient to introduce in
addition a real Green's function

gal tel (rr') =
2 I gl (r, r', Eq+ irl)+ b l (r, r', El,—t'rl) g, (71)

and a corresponding real plane wave

8 ()=(2/ )"'& '"J (k ) (72)

Equations (71) and P2) can be used to define a real
standing-wave solution% l, l(r) to Eq. (25), in terms of a
real integral equation

'+ l r=gl l+ gl ,
l"''0'~ l l (73)

The superscript (+) has been omitted in Eqs. (71)—(73),
since only the positive energy states are of interest. The
lth partial-wave projection of the reaction matrix

I

"Rejerence 10, Chap. 4, Sec. 1.
ra W. Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941);K. P.

Wigner, Phys. Rev. 70, 15 (1946); Ref. 10, Chap. 5, Sec. 6, and
Chap. 7.

The scattered wave contains momentum components
both above and below the Fermi momentum, as has
been noted previously, and the additional momentum is
provided (as in the Schrodinger theory of potential
scattering) by the impurity.

The differential cross section do./dQe is defined as the
transition probability m per unit incident Qux Ii. With
the continuum normalization used in Eq. (18), the flux
is given by F= (2ir)-'tt, where e is the incident velocity
of the quasiparticle,

t'ran &el)R=I
ER-„Rg; ' (75)

where the subscript I, has been suppressed, and the
momenta k and lc are defined by

k&ky&A:, Eg=Eg. (76)

The values of k and. k are related by k'+1c'= 2k'.
In a similar way, the T matrix on the energy shell is

written as
(&as

ET'l, l, T„ri '- P7)

where T is defined. in Eq. (61). The derivation of the
Heitler equation, "which relates T and R, is somewhat
complicated and is relegated to Appendix B.The result-
ing (algebraic) equation has a simple structure

T „=R „irrP; R;p;—T;„, P8)
where j, m, and e run over the two values k and k. The
phase-space factors pI, and pI-, have been defined in
Eq. (67). The solution of Eq. (78) for 2' is

t'Rg, g+irr pe detR
T=x 'I

RTr,
where

P9)
R.-,—+z~p,detR)

'

X= (1+~~p.R~~) (1+imp.-R~x)+~ p.pH~.-R.-e

detR= RI gRI-, I-,—RI I Rg,g. (80)

Equation (79) represents a substantial simplification
for it expresses the (complex) 2' matrix in terms of the
(real) R matrix.

For further analysis, it is important to show that the
2X2 R matrix is symmetric as well as real. The proof is
not dificult:

AX—= (g~l, 'U'~el)

= (rIW, 'U'g~l)+ (pit:l,'U'gal'"'U'grl)+

= (gkl, U'g kl)+ (gel,

U'gal"'0'farl)+

= (/el'U', gal)+(gl Ã'gl l'"'U', $r«)+
= (~el'U', ysi)

—=Rxi. (81)

The third line of Eq. (81) has been derived using the
relation

e. &"(,")= s-. '"(,"), (82)

which follows from Eqs. (71) and (76). The fourth and
6fth lines depend on the symmetric character of the
matrices 'O' Lwhich is assumed below Eq. (2)g and

For a fixed energy, k and k' each assume two values, so
that (k I Rill') is really a 2X2 matrix. We shall con-
sistently use the following notation for the R matrix
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pit &sl Lwhich is obvious from the integral representation,
Eq. (40)$.

The structure of the Heitler equation can be clari6ed
by a simple transformation of the E and T matrices,

R .=(p )"'R (p )"',
&-= (p-)'"T-(p.)"'

If Eq. (78) is multiplied by (p p„)'t', the phase-space
factors combine to form a matrix equation relating
T and 8,

T 8 Al BTO (84)

R is a real symmetric matrix, according to Eqs. (81) and

(83), and it can be diagonalized by a real, orthogonal
transformation matrix O.'4 Hence, there exists a
diagonal matrix 2 such that

R=OAO-' R=O 'RO (85)

the diagonal elements of A are the eigenvalues of the

reaction matrix R, and it is useful to write 2 in the
following form

)—~-' tan8,
R=!

0

0

—sr ' tan8s)

x is here called. the mixing parameter, as in nucleon-
nucleon scattering theory. " A combination of Eqs.
(85)—(87) expresses the reaction matrix R in terms of
three real parameters b~, 82, and g,

which de6nes the eigenphase shifts b~ and 82. Equation
(86) involves no additional assumption because any real
number can be represented as the tangent of an angle.
The real orthogonal 2&2 matrix 0 depends on only a
single parameter, and it may be written as

(COSX Mllx)

E sing cosy

(cos'y tan8i+ sin'x tan8s cosx sing(tan8i —tan8s) )—R=!
&cosy sinx(tan8i —tan8s) sin'x tan8i+cos'x tan8si

The Heitler equation (84) may be rewritten in terms of 2 as

where
isrAT, —

T=0-'TO. (90)

Direct solution of Eq. (89) shows that T is also diagonal, of the form

(e'" sin8i—srT=!
0

0

e"s sin8si
(91)

The expression for F is obtained from the inverse of Kq. (90),

cos xe'" sin8i+ sin'Xe'" sin8s cosy sinx (e'" sin8i —e'" sin8s) )
~

~

~

~

~

~

~

~

~

~
~

cosx sinx(e' ' sin8i —e' ' sin8s) sinsxe'si sin8i+cossxe'ss sin8sl
(92)

With Eq. (92), it is now possible to demonstrate the cation of Eq. (94) by (p p„)'t' produces a matrix
unitarity of the S matrix, which is equivalent to the equation for T,
partial-wave condition"

(2i)—'(1'—T*)= —sr 1'*2', (95)

The relevant matrix elements have alread. y been
evaluated in Eq. (60) (omitting the temperature
factors), and Eq. (93) can be reduced to the on-energy-
shell equation

(2i)-'(T„„-T„„*j=-~ P; T„;*p,T,„, (94)

where j,m, and n run over the values k and k. Multipli-

~ See, for example, H. Jeffreys and B. S. Jetfreys, Methods of
Mathematical Physics (Cambridge University Press, Cambridge,
1956l, 3rd ed. , pp. 123—124.

which is reducible by an orthogonal transformation
LEq. (90)j to the diagonal equation

(2i)—'(T—T*)= sr T*T. —(96)

"Reference 10, pp. 344-352 and 384-398.

Verification of Eq. (96) is trivial using the explicit form
of T given in Kq. (91). This proof confirms the earlier
statement that the divergence of pj, near the Fermi
surface does not violate unitarity.

The total cross section 0-& may be written compactly
in terms of the eigenphase shifts and mixing parameter.
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If Eq. (69) is integrated over angles, we obtain

rrz=4s'k 'Pi(2l+1)Q Ts *T s
=4sk —' Qg(2l+1)(cos'g sin'St+sin'x sin'Bs} (97)

which is correct for an incident momentum above the
Fermi momentum. The corresponding result for a mo-
mentum below the Fermi momentum is obtained by
interchanging b~ and b~. Here, b~, 82, and x depend on
l, but this has been suppressed for notational simplic-
ity. Equation (97) reduces to the standard single-
channel expression4 if x vanishes identically for all /.

The eigenphase shifts can also be used to study the
electron density and order parameter far from the
impurity. It is shown in Appendix 3 that the scattering
wave function 14&&+i(r) has the following asymptotic
behavior for an incident momentum k&kf

'tts&&+& (r) -+ @st&+&(r) —is pg, Tarsi'(2/7r) I ~s&+&kt& & (kr)
—is psTI-, si'(2/s. )'~'XI-, &+&h&&'& (kr), (98)

where the notation of Eqs. (76) and (77) has been

used. The other possibility (an incident momentum
k(kr) is obtained with the substitutions

C'll+ ~C%t+ ~11 ~ ~II ~rI ~ ~IT

Equation (98) shows that the scattered wave has out-
going components P exp(ikr —iEst)g above the Fermi
surface and incoming components L exp( —iver —iExt)j
below the Fermi surface. The origin of this peculiar
behavior for k(kf is the function h~t. "&, which arises
from our choice of boundary condition for the scatter-
ing Green's function in Eq. (41). Although other
boundary conditions are possible Dor example, i ~WE&
+irl sgn(k —kf)7, the corresponding expression for the
5-matrix element cannot be interpreted consistently.

Equation (98) can be substituted into Eqs. (47) and
(48) to obtain the scattering contribution to the
asymptotic form of rc(r) and h(r). Judicious use of
Eq. (95) simplifies the algebra considerably, but the
details are tedious and will be omitted here. The electron
density and, the order parameter are, respectively,

N(r) —+ e+(2s r ) ' Q&(2l+1)(—1)' dk Z, L1—(.;/E.-) tanh-;PE.-g+ dk Zs)1—(e„/Es) tanh-', PER)

—(sr)—' gt(2l+1) dk(k/k) 'I'Zsg/EI ) ) (99a)

h(r) ~ d+(g/4s'r')g&(2l+1)( —1)' — der)(h/Es) tanhrsPEsg+ dkZs&&(d/Es) tanhsPEs)

where

—(g/2ssr )g&(2l+1) dk(k/k)'I'Zs tanhsPEs, (99b)

Zt= sin'x sin8r sin(2kr —8t)+cos'x sin82 sin(2kr —bs)

Zs= cos'x sinter sin(2kr+ 8&)+sin'x sinbs sin(2kr+ is)

Zs=sinx cosxgsinbr sin(kr —kr+br) —sinbs sin(kr —kr+8s)).

(100)

Here e and 6 are the values appropriate for the uniform
system, given in Eqs. (51) and (52). No cutoff is
required for the convergent integrals in Eq. (99b). Only
the constant term in the expression for h(r) remains
6nite for large r, so that is is self-consistent to use
5(r)=d, in evaluating the correction terms far from
the impurity.

The bound-state contribution, which has been
omitted from Eq. (99) for simplicity, is negligible only
for r))Ps= 104 A. It is shown in Sec. VI, however, that
the scattering contributions to I(r) and h(r) also vanish
exponentially for r))ts, so that the corrections to the
constant values are wholly negligible in this region. For
r«$o, which is the interesting range in practice, both
the scattering states and the bound states must be
included.

In a normal metal, the order parameter and the
mixing parameter vanish. Equation (99a) then reduces
to the usual result' " that e(r) has long-range spatial
oscillations of the form

ts(r) —e (2s'r') ' cos(2k') . (101)

Similar behavior in h(r) as well as e(r) is found with a
simple impurity model in a superconductor, as we shall
see in the next section.

VI. A HARB-SPHERE IMPURITY

The scattering by a spherical square-well potential
is one of the standard soluble problems in Schrodinger
"Our derivation is similar to that of J.M. Ziman, PrinciPles of

the Theory of Solids {Cambridge University Press, Cambridge,
1964), pp. 135—138.
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Fio. 1. The asymptotic behavior of the electron density LKqs.
(110a) and (111a)j far from a hard-sphere impurity. The numeri-
cal value of the parameters is taken from Eq. (114).

V&i, i(a) =0.
The solution for all k is

(103)

'9i si(y) = (2/ir)i/s0Is&+l

X(ji(ky) —Lji(ko)/yi(k~)3 i(ky)), (1o4)

where yi(ky) is the spherical Neumann function. "
Equation (104) is to be compared with the general
asymptotic form derived in Appendix 8,
'N&i(y) ~ (2/vr)'&'0I&&+&P ji(ky)+m p&R»yi(ky))

—(2/7r)'&'Ks&+'yi(ky)s psRi, s (k)kr),
~si(y) ~ (2/~)"'&.&+'Lji(ky) ~p-.Rssyi(k«)—j-

+ (2/vr)'~'Ks&+&yi(ky)s p&R&s (k&ky) . (105)

The special feature of the hard sphere is the identical
vanishing of the mixing parameter —the incident and
scattered waves have the same momentum. Equations
(104) and (105) show that Rss and Rss vanish, while

theory. 4 Such a potential also allows a complete solution
of Eq. (25) for the wave function, but the algebraic
complexity is formidable. The solution becomes rela-
tively simple in the special limiting case of a hard-sphere
potential, which will now be considered. The boundary
conditions require that the wave functions vanish at
the surface of the sphere (y= a). In addition, we shall
assume that the order parameter is constant for r&a.
This approximation is inadequate near the impurity,
where the self-consistency condition LEqs. (3) and (48)j
is very corn.plicated; far from the impurity, however,
the difference (6(y)/6 (oo )) 1 is —small and the approxi-
mation of constant order parameter is permissible.

It is simpler to calculate the real standing-wave solu-
tions 'N, from which the scattering solutions 'h are then
derived. For the hard sphere, the eigenfunction equation
(25) in the region y) u is identical with the free quasi-
particle equation,

(Ei+(2m) 'y&'&LE)i+ky') —hy&'&}~si(y)=0, (102)

and the wave function satisfies the additional boundary
condition

The matrix T is also diagonal and may be found from
Eq. (92) by setting )&=0. The change in sign of the
phase shift at k=kj is understandable in terms of
Eq. (98), which has outgoing scattered waves for k) kr
and incoming scattered waves for k&kj.

The differential cross section for scattering of quasi-
particles can be evaluated from Eq. (69); the resulting
expression is identical with the scattering cross section
for a hard sphere in Schrodinger theory. " Since only

~
T

~

' appears in Eq. (69), the observed scattering is un-
affected by the sign reversal of the phase shift at k =kj.
The cross section is therefore a smooth function of
momentum near the Fermi surface.

The simple form of the T matrix for the hard sphere
means that it is possible to complete the asymptotic
evaluation of ys(y) and d (y), started in Eqs. (99)
and (100). Since x is zero, these equations may be
simplified to

ys(y) I (2s 2y2) 1 P (2l+ 1) ( 1 )l

dkL1 —(es/Es) tanh-,'PEg,)
Xsin&ii sin(2ky+8&), (107)

~(y) —~= (g/4~"')Zi(»+1)( —1)'

dk(d/Eq) tanhrsPEs sin8& sin(2ky+ &i&), (108)

where 5q is defined for all k as

tanbi ——ji(ka)/yi(ku) . (109)

The order parameter in Eqs. (107) and (108) depends
on the temperature, ' being finite at T=0, and vanishing
at the critical temperature T,=P, '. The momentum
integrals are calculated in Appendix C in two limiting
cases. For Ph))1 (T=0) we find

Ln(y)/Ng —1=——,
s

(key) '
Xgi(2l+1) (—1)' sinlii cos(2kyy+bi)

XL1+(kgyd/er) j exp( —kryo/ei), (110a)

PA(y)/6 j 1= (gmki—/4s') (key) s Pi(2l+1) (—1)' sinai

X ( (kjy) ' cosbi+2 sin(2kry+bi)
XLexp( —key~/er)

+Et(kryo/er) j}; (110b)

for Ph«1 (T=T,) we find

LN(y)/ej —1=—ss (key) ' Pi(2l+1) (—1) '
sindhi

Xcos(2kyy+ &ir) exp( 7rkry/Pe f) (111a)—

Lh(y)/hj —1= (g k m/4 y') (skry) Qi(2l+1) (—1)' sinai

X {(key) ' cosB&+2 sin(2k fy+ 8i)

XEr(rrkry/Per)) . (111b)

re»=rrp&R»= j (iak) /y( iak) = —ta—nb&, 'VA complete discussion may be found in P. M. Morse and
H. Feshbach, Methods of Theoretical I'hysics (McGraw-Hill Book

rrRH= rrpzRss= ji(ka)/yi(ka) =—tanlis. (106) Company, Inc., New York, 1953), Part II, pp. 1483—1486.
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In these equations, the phase shift b~ is evaluated at
k= kJ, and d means the self-consistent value of the order
parameter at the temperature P '. The exponential
integral Ei(x) is defined ass

~(r) —&(~)
Q(co)

I I I I I I I I I I I

0.04— Tas O'K

d]] 'e '. (112)

Equations (110)and (111)have several very interest-
ing features. Although both the electron density and the
order parameter display long-range spatial oscillations,
the two expressions are not proportionaPs; rt(r) falls
olf like r s, while h(r) falls o8 like r '. The different
powers of kyar mean that the oscillations in h(r) extend
to larger distances. An additional enhancement occurs
in the oscillations in the order parameter because of the
logarithmic behavior of Ei(x) for small values of its
argument, 's

Ei(x) =—y —inx+ (113)

kg=10' cm—', P,et= 10', ,T= . 42'4K,

& (T=0)/et= 1.76X 10 ', gmkt/2or'= —', ,

kgu=-,'.
(114)

Here the I1CS relation' " d, (T=O)P, =ore «=1.76 has
been used, where y is again Euler's constant. The

where y is Euler's constant, y=0.5772 . In the range
1«kyar«ey/6=10', the factor E(ik rth/ e)tis of the
order of ln104=9.2. The corresponding factor in tt(r) is

exp( ktrh/er) =—1. Thus the amplitude of the oscilla-
tions in A(r) is about 10 times that in n(r).

In the normal metal, the long-range oscillations are
caused by the sharp Fermi surface. In a superconductor
at zero temperature, the Fermi surface is "smeared out"
in a narrow range

~
ek

~

(6, which appears in Eqs. (110)
as an exponential cutoff for

kyar))et/6=10'.

Hence the
oscillations are restricted to the range r&ky/mh, which
is the order of the coherence length gs. In an average
superconductor, kt=10s cm—', while /a=10 —' cm, so
that the amplitude of the oscillations is already vanish-
ingly small at distances much less than the coherence
length because of the inverse power of (kyar) At finite.
temperatures, the Fermi surface is "smeared out" in a
range ~ski (p ' even in normal metals, which is the
origin of the cutoff in Eq. (111) for kyar))or 'Pet The.
order parameter vanishes in normal metals, in which
case Eq. (110a) is identical with the usual expression, ' "
while Eq. (111a) provides a generalization to finite
temperatures.

Figures 1 and 2 are graphical illustrations of Eqs.
(110) (T=O) and (111) (T=T,) for tt(r) and h(r), with
the specific values:

-0.08
4

I I I I I I I I I I

5 6 7 8 9 10 11 12 13 14 15 16

k, r

Fro. 2. The asymptotic behavior of the order parameter LEqs.
(110b) and (111b)j far from a hard-sphere impurity. The numeri-
cal value of the parameters is taken from Eq. (114).

dimensionless number gmkt/2or' is the same as the
quantity E(0)V defined in Ref. 1. Only the s state
(l=0) is included in Figs. 1 and 2, since the partial
waves for / 1 are negligible. The oscillations in the
order parameter are somewhat sensitive to temperature,
while those in N(r) are wholly insensitive. Figures 1 and
2 show that the amplitude of the oscillations decreases
more rapidly in tt(r) than in i1 (r)

VII. A DELTA-SHELL POTENTIAL

A delta-shell potential" provides another simple
model of an impurity. The potential is given by

'U (r) = (2ma)-'b(r —a)A. ,

where A is a dimensionless 2)&2 matrix

(115)

(116)

'Nkt(r) = gkt(r)+ (~pka/2rtt) )gkl(a)'A~kl(a))'gkl(r)
—(7rpka/2m) pcjkt(a) tA'Kkt (a)gqjkt (r), (117)

where k and. k are defined in Eq. (76) (k)ki)k). Here,

'JJkt(r) = (2/or)'t'Kkt+&yi(kr)
& (118)

which is analogous to cjkt defined in Eq. (72). In the
second and third terms of Eq. (117), a matrix product

Here X3 is a measure of the strength of the impurity po-
tential, while ) & represents the effect of the impurity on
the order parameter. The magnitude of X~ may be esti-
mated as follows: The spatial integral of the r ~'~ compo-
nent of '0 should be approximately equal to (4/3)7ra'h.
If kta=1, this condition yields )it=-', (6/et) «1.

The integral equation (73) can be solved exactly for
this potential using the coordinate representation of
the standing-wave Green s function derived in Appendix
B.The real wave function for r&a is

28 Q'e follow the notation of Ref. 11, p. 228.
~ This result disagrees with that of C. Caroli, P. G. de Gennes,

andIIJ. Matricon, in Metallic Solid Solutions, edited by J. Friedei
andtlA. Guinier (W. A. Benjamin, Inc. , New York, 1963), Chap.
XXIII.

~ The delta-shell potential is well known as a simple soluble
model, although it appears infrequently. The approach used here
is based on K. Gottfried, mimeographed lecture notes on quantum
mechanics, Harvard University, 1963 (unpublished); and to be
published.
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is implied in the factor within square brackets. The
similar solution for '%1-,q(r) (r)a) is

%s~(r) =grg(r)+ (m pI a/2m) L rlI ~(a)tEPs~(a)g'Jjq~(r)
—(rrpsa/2m)l gs((a)tamed„(a) jets)(r). (119)

If the scalar product Ldefined in Eq. (57)7 of Eqs.
(117) and (119) is taken successively with rlI, &(r)'U(r)
and rl&&(r)'U (r), four coupled algebraic equations are ob-
tained, relating the four elements of the reaction matrix
on the energy shell. The solution is straightforward,

fR s'+~(Rk~'Q» Qa8—aP)
MR=

I

~el ~

sri' Klan—BrI' Boa'Q-.«)I- (120)

X(x)=xj)(x)y)(x) (125)

and the subscript has been suppressed on E and
I el

because Es=Es and
I eel = leal. The common coefficient

in Eqs. (124) is

(ka)P.,+ (~~,/I el)j—X(ka)P, ,—(~&,/I el)j
+X(ka)X(ka) (Xr'+lb. ss) (126)

These relatively complicated expressions can be
simplified in limiting cases. For a normal metal, It' is
diagonal since d and X~ vanish. Even in a super-
conductor, where Xr=h/ey, the off-diagonal elements
(124c) are negligible unless lel«h. Thus, the mixing
between k and k is important only near the Fermi
surface, where the superconducting and normal states
differ appreciably. Equation (126) approaches a finite
limit as k —+kj,

M, =l 1—~,X(k,a)g . (127)

In contrast, Eqs. (124) diverge, and the R matrix
becomes

(128)

where g~ is the Born approximation to 3,
= (P P )"'(a/2m)L8 ~(a)'~8 ~(a)3

and
Q' = (P'P )'"( /2 )I ol ( )'~'JJ. ( )3 (122)

The indices j and e take the values k and k, and

M= (1—~Q») (1+~Qza)+~'QszQ». (123)

The T matrix can be calculated in a similar way, either
directly from Eq. (42) or with the Heitler equation
I:Eqs (79) and (80)3

The evaluation of the matrix elements for 8 is not
diflicult,

R»= (7rM)-'kaL j((ka)g'
X {lb s+ (hXr/I el) —X(ka) prs+Xss) } (124a)

Rrg= (7rM) 'kal jg(ka)]'
X{—'As+ (AXr/I el)+X(ka) P.rs+Xss) } (124b)

Rsj-,=RI-,s= (mM) '(kk)'~'

Xaj&(ka) j&(ka)(E4/I el), (124c)
where

Equation (128) is valid only in the immediate vicinity
of the Fermi surface, Iel &dP/ef. In this region, the
mixing parameter x is mrs. , and the eigenphases are

tanbr ———2Ay~/ I
e I, tangos

——0.

The T matrix can be found from Eq. (92),

1 1)T=-
lel+»~7, 1

(130)

(131)

(a,)= (2E)-'—
f—K

dk' o r(k')

where

= (2~/kfs)gq(2l+1) yq tan '(y~ r) (133)

q (
——(2m'�)/Ekg) . (134)

This series converges rapidly, so that the measured
total cross section is Gnite near ky, which is to be
expected from physical considerations.

As a simple example, the momentum cutoff may be
taken as X=2s-/L, where L is a typical linear dimension
of the sample. With the numerical values in Eq. (114)
and 1.=1 cm, we find

(or)=0.135~kf '=0 54~a' (135)

which exhibits a typicalr esonant form" in all partial
waves simultaneously. These kinematic resonances,
which occur at the minimum in the energy-momentum
relation, are different from the usual dynamical scatter-
ing resonances, which are generally con6ned to a single
partial wave. Equation (131)implies singular scattering
properties at k=kf, where the scattering amplitude is
proportional to a delta function in the scattering angle,
and the total cross section is infinite. These singularities
are essentially mathematical in origin and do not appear
in actual experiments since the measured cross section
represents an average over some momentum resolution
width 2E. Near the Fermi surface, the total cross section
is a sum of resonant terms,

or(k)= (2~/kg)gg(21+1)(2dy, )'
XI es'+ (2hyg)sj '. (132)

Hence the observed (average) value is

kf+K

where
p&=X&Mr-'kgaL j)(kga)7'.

"See, for example, A. Messiah, Quantum iVechunics (John Wiley
(129) R Sons, Inc. , New York, 1961), Vol. I, pp. 396—401.
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The resonant wiclth is small compared to the resolution
width, even for l= 0, and the observed total cross section
at resonance is only about half of the geometrical cross
section.

VIII. DISCUSSION

The wave functions for a superconductor are drasti-
cally modi6ed when the metal contains a single spherical
impurity. The essential feature is the existence of a
minimum in the energy-momentum relation. Two values
of the momentum correspond to a single energy, and the
coupling between the two channels must be included to
achieve a consistent description. Near the minimum

energy, the density of states LEq. (67)j diverges, which
leads to resonant behavior in the quasiparticle scatter-
ing. A related aspect is that the usual approximation
methods, such as the Born approximation, fail com-

pletely in this momentum range. Finally, the sharpness
of the Fermi surface gives rise to long-range spatial
oscillations, not only in the electron density, but also in
the order parameter. A natural question is whether these
oscillations also appear as a change in the energy gap (as
in an energy-absorption experiment). This problem will

be considered in a future publication.
It is important to emphasize the purely kinematic

nature of these effects, which are in no way restricted to
three dimensions. An interesting two-dimensional situ-
ation is quantized Aux line in a type-II superconductor,
which can be formulated as a cylindrically symmetric
l-dependent potential. " Similar effects to those noted
above should appear. Unfortunately the calculation of
the R matrix for the Aux line is much more dificult than
for the simple models treated in Secs. VI and VII. An-

other mathematically similar (but physically different)
circumstance occurs in liquid He II, near the roton
minimum in the energy-momentum relation. The in-

adequacy of the Born approximation in calculating the
cross section for roton scattering by a vortex has long
been recognized. " An improved treatment should in-

clude the coupling in the two different momentum
channels, for which the present formalism might prove
useful.
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APPENDIX A

/pe(
—

& = —7-0& 7 (3& Lgy((+& j@/ (3& 7 0& (AS)

The Green's function for outgoing scattered waves of
positive energy is

g&„(+&(r,r') = (&&(r, r', Ei,+ig) . (A9)

Equations (40), (AS), and (A9) can then be used to
verify that

gi, i(—& (r,r') =g, (r, r', E&,+ir&), —

which is Eq. (41).

(A10)

APPENDIX B

The coordinate representation of the scattering
Green's function has been given in Eqs. (39)—(41) as

symmetry of the matrix single-particle Green's function
G;;(rt,r't'). 83 It follows from Eq. (1) that

Gll(ri r i )= G22(1' f ll) (A1)

in the absence of spin-dependent interactions. Equations
(A1), (7), and (23) show that the spectral functions are
similarly related

A i&(r,r', a&') =$22(r', r, —(0'), (A2)

PAi(r, r', (0')gii ——
t A&(r', r, —(o')$22. (A3)

The exact spectral function in the presence of a single

impurity is given in Eq. (45), and a direct comparison
with Eq. (A3) yields

(», &(+& (r')(&&,i(+'(r)*= u&, i(+& (r)u& i(+'(r')*, (A4)

where u and v are the upper and lower components of the
scattering wave function tt&&(+& (r). Equation (A4) is an
identity for all r, r', and /, which can be valid only if the
positive and negative energy eigenfunctions are re-
lated by

'lt (-& (r) = (—1)'r('&v ('&L'lt&, &(+& (r)j*. (AS)

Both I, &&+' and 'll. &&& ) satisfy an integral equation

~pi(ki —Cpi(k&+gg$(+&/~~pi(ki (A6)

and it is not diKcult to show [using Eqs. (14) and (17)]
that the incident wave in Eq. (A6) already obeys the
condition (A5). The scattered-wave contribution to
Eq. (A6) also satisfies the condition (AS) if

g~i(
—&g'= r0&r(3&Lg~ (+&g'$+r(3&r(i& (A7)

and the explicit form of "U (given below Eq. (2)j
reduces Eq. (A7) to

The relation between the states with positive and
negative energy is best understood in terms of the

(&„i(+&(r,r') = 2m
—' V'de i &(Vr)i &(m')

"H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238,
204 and 215 (1956); E. M. Lifshitz and L. P. Pitaevskii, Zh.
Eksperim. i Teor. Fiz. 33, 535 (1957)/English transl. : Soviet
Phys. —JETP 6, 418 (1957)g.

X t Ei,+r('&e,+r('&h)L(E&+i»)' —e '—6'g—' (B1)
3' The material presented here is similar to that in Appendix A

of Ref. 16, which contains a fuller discussion.



A1934 ALEXANDER L. FETTER

It is necessary to treat separately the cases of incident
momentum above and below the Fermi momentum.
The notation of Eq. (76) will be used here (k)kr) k,
Ek=Ek). The integrand of Eq. (31) may be resolved
into partial fractions, and the integration over q is then
performed with the standard formula'4

", i i(m)i&(m')
g dg ',~ki j&(kr&)h&&'& (kr)), (32)

q' —k' —ig

where r& and r& are the smaller and larger of r and r'.
The explicit coordinate representation is

s. "'(,")= o.—"'(,")
= —2ipkmk&+&Otk&+&' ji(kr&) hi&'& (kr))

—2ipkXk&+&Dt&, &+&tji(kr&)hi&'& (kr)), (83)

where Eqs. (14), (15), and (70) have been used. The
equality of &&ki&+& and Bki&+& is expected from the
definition, Eq. (41), because Ek Ek. Sub——stitution of
Eq. (83) into the integral equation (42) for the scatter-
ing solution then yields the asymptotic expression valid
for r —+~,

'loki&+& (r) -+ I ki&+& (r) —iver pkmk&+&i'(2/m)"'hi&'& (kr) Tkk

iirpkXp —+ i'(2/7r)' 'hi ' (kr)Tkk, (34a}

'ttki&+& (r) —+ 4k&&+& (r) —
iver pkKk&+&i (2/ir) ~ hi& & (kr) Tkk

—iirpkKk + i'(2/x)'~'hi&" (kr) Tkk, (34b) Tmn Rme i&r Pj RmjpjTjn ~ (812)

The integral equation for %L~l&+~ and 'll.~l&+' can be
rewritten as

'ttk&'+' =C'ki +'+ c'ki&"'U''t4& & '
—k.PIC I l&+'TI ~

—ivrPI 4'll&+&Tr~,

'ttki&+& =C k&&+&+&&ki"&'U''ttki&+&

i7rpP—ki&+&Tkk i~prP—k&&+&Trr' (38)

Addition and subtraction of the two Eqs. (38) gives

Il+ ~'Al+ =4'kl+ +4'll+
+B„i&o&g'(~k &+&~Itt-&&+&)

i7rpeak—&&+& (Tkk+ Tkk) i~pk@k—i&+& (Tkk~ Tkk). (39)
The real solutions obey a similar equation

~kd:9& kl= gkl~elk&+gkl'" 0 (9& kl~~kl) (310)

The relation Bki&0&= ski&'& has been used in both Eqs.
(89) and (810).These two equations can be combined
to express%5 in terms of VP,

'll k&'+'& ttk& +' =$ I Vv ki&Vv" ki I'&rpk~k—l(Tkk+ Tkk)

—i7rpeek&(Tkka Tkk) j, (311)

which may be verified by substitution of Eq. (811) into
Eq. (39)."The successive scalar product of Eq. (811)
with 4 I,l

&+&'U' and C kl &+)'U' yields four coupled equations
relating the elements of R and T. These are easily
simplified to the Heitler equation

where the definition of the T matrices LEqs. (61) and
(77)j has been used.

The corresponding real Green's function gk&&'& is
simply the real part of Eq. (33),

APPENDIX C

The momentum integrals in Eqs. (107) and. (108) are
evaluated in this appendix. It is somewhat simpler to

&+&& &+&t
.„,„, consider first the integral appearing in the order

parameter—2pkmk&+&X-&+&t ji(kr&)yi(kr)) . (35)

The integral equation (73) then provides the asymptotic
form of the real standing-wave solutions

dk(A/Ek) tanh2PEk sin3& sin(2kr+3&) . (C1)

The integrand is sharply peaked near k=ky and it is
permissible to evaluate the smooth function bl at—~pkÃk&+&(2/~)'"yi(kr)Rk» (36a) k=kr. Equation (C1) then becomes s&nb&I&(r), where

~kl(r) ~ gkl(r}+~pk&k'+'(2/~)"'yi(kr)Rkk

X &+&(2/ ),l, (k )R (36b) Ii(r) = dk (5/Ek) tanh2pEk sin(2kr+3&)
Pl r I&:k y 0

where the R matrix is defined in. Eqs. (74) and (75).
To derive the Heitler equation, we shall use the rela-

tion between &&ki&+& and, bk&&'&, which follows from the
integral representation, Eq. (38),

&&ki&+& (r, r') = &&ki&" (r,r') i7rpkPki&+& (r)c k—i&+& (r') t

—
iver pkC

k&&+& (r)C ki&+& (r')". (37)
"G. N. Watson, A. Treatise oe the Theory of Bessel Functions

(Cambridge University Press, Cambridge, England, 1962), 2nd
ed. , p. 429, 13.53 (4).

= III18 dk(~/E, ) tanh-,'PE, e2". (C2)

"See Ref. 10, Chap. 5, Sec. 6, for the details of this standard
proof."See, for example, Ref. 24, p. 386.

Here Im means imaginary part. The hyperbolic tangent
is a meromorphic function and may be expanded as"

i tanhs'=8 Q„Per (2++1) +4k j ', (C3)
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4hmkr '(2n+1) ' expL k—rr2c(2n+1)/P2r5

Xsin(2krr+81) . (C10b)
2 Eke

I1(r) =4PA Ime'2' Q„dk
~2(222+ 1)2+p2+2+p22 2

(C4)
For Pc~&&2r(222+1), the terms are exponentially small
Llike exp( —kyar)«1$ and may be neglectecL The ap-
proximate evaluation of Eq. (C9) for Ph»1 proceeds
as follows:

Equation (C4) can be considered as a contour integral
along the real axis from zero to inhnity. The contour
can then be deformed into the upper half-plane by
Jordan's lemma"; an equivalent contour is the positive
imaginary axis plus small circles about any poles in the
6rst quadrant (there are no branch points).

The integral along the imaginary axis can be esti-
mated as follows:

I1(r) cos—81=42rmh sin (2krr+81)
26yf

24(2~ exp( kyrie—/cy)
X

n=O

where the sum is over all positive integers from zero to while if ph((2r(2m+1)&&per, the Nth term is
infinity. Substitution of Eq. (C3) into Eq. (C2) yield. s

dz e 2""fvr2(222+1)2+P262+(P/2m)2(kP+1c2)2j

~ (2/2r)(2r2(221+1)2+p262+p24r2J ' (C5)

since the denominator has been replaced by a smaller
quantity. Equations (C3) and (C4) show that the total
contribution to II, from the integral along the imaginary
axis is not greater than

(6/2crr) cos81 tanh 21Pcr= (6/2crr) cos81

n=PAJ2x

expL —k~~(224+ 1)/p. ,)
kr2r (2m+1)

(C11)

I1(r)= (6/2cyr) cos81+ (26m/kr) sin(2krr+81)

XLexp( —krrh/cr)+Ei(krrh/c~) j, (C12)

The first summation is trivial, and the second can be
approximated by an integral. The Anal result for
Ph»1 is

I1(r)—(6/2crr) cos&1——4PA Q„ Ime' '22ri)Resj, (C6) I,(„) (g/2«) cosy, +(2gm/kr) s;n(2k&+g, )
here Res is an ab re ation for the su of the XE1(2rkrr/per) . (C13)w L j b m

residues at the poles in the 6rst quadrant. The poles of
the integrand occur at Equations (C12) and (C13) can be combined with

Eq. (108) to give the asymptotic form of the order
parameter, Eqs. (110b) and (111b).

The momentum integral that appears in the asymp-
totic evaluation of n(r) is

(C'1)
where

(2m)
—1Pk 2 —L(Pcr)2+2. 4jl/2

x„4= 2r2(222+1)2+ p26,2,

tan2 y„= (Pcr)
—'x„2.

(C8)
dkp1 —(22/E2) tanh2 pE2j sinb1 sin(2kr+81) . (C14)

where Ei (2:) has been defined in Eq. (112).The opposite
since Pc&»1. This exPression is in fact the 6rst term in ljmjt (PQ((1) js obtajned from Eq (C11) by omittmg
an asymptotic expansion for large r Henc. e Eq. (C2) the 6rst summation and setting the lower limit equal to
reduces to zero in the seconcL We then 6nd for ph(&1

I1(r) (6/2crr) cosbg-
=42rhm g„(k„2:„2)—' exp( —2k„r siny„)

Xsin(2k„r cosy„—y„+81). (C9)
s(k) = dk' sinLB1(k') j sin/2k'r+81(k')g, (C15)

The summation may be separated into several partial Eq. (C14) is easily written as
sums. If 2r(2r4+1)«PE, the nth term is

Only a single pole is included in the contour, so that The quantity in square bracI ets is a «smeareg' step
Eq. (C6) becomes function, and it is convenient to integrate by parts. "

Kith the definition

(47cm/kfP) exp( —kZh/cr) sin(2kyr+81), (C10a)

"See, for example, E. T. Copson, Arl Introduction to the Theory
of FNrIctiorls of a Complex Variable (Oxford University Press,
London. , 1957), pp. 136-137.

dk s(k) (d/dk) L(c2/E2) tanh12pE2), (C16)

38 This approach is standard in the theory of degenerate Fermi
systems and may be found, for example, in Ref. 26, pp. 116-119.



A 1936 ALEXAN DER L. F ETTER

where the integrated part vanishes at both limits. If
Bi(k) is a sufliciently smooth function, the dominant
term in s(k) arises from the integration of the oscillatory
factor,

s(k) =—(2r) ' sinLbi(k) j cosg2kr+bi(k) j, (C17)

—(2r)-' sinbrMi(r);

Equation (C3) is then used to obtain

(C18)

Mi(r) = (4P/m) Ree's' Q„ kdk e"~"

X {Pa.2(2N+ 1)2+P2+2+Pse sj—1

—2P'ei, 'Lm'(2N+1)'+P'6'+P'ep'j ') (C19)

where Re means real part. The double poles of the
integrand make a direct calculation laborious, and the
following mathematical device will be used instead. |A'e

"This assumption is valid for a very wide class of potentials.
See, for example, Ref. 10, pp. 285-286.

~The evaluation is straightforward using the formulas and
tables provided in M. J.Lighthill, Introducti os to Fourier Analysis
and Generalized Functions (Cambridge Vniversity Press, Cam-
bridge, England, 1960), Chaps. 3 and 4.

where is is assumed that the phase shift vanishes at
zero energy. "A rigorous proof of Eq. (C17) can also be
given, if Eq. (C15) is considered as the Fourier trans-
form of a function that vanishes for k'&k. Equation
(C17) then emerges as the first term in an asymptotic
expansion for large r.40

The integrand of Eq. (C16) is sharply peaked at the
Fermi momentum, so that the phase shift b~ may be
evaluated at k=kr. We shall write (C16) as

define a function E'i(r), depending on a parameter li,

Ei,(r) =Ree" & P„kdk
Xesikrf&2(2is+1)2+Ps+2+Psyse 2j—1 (C20)

It is easy to verify that

Mi(r) = (4P/m) ( (8/Bl~)PE'i(r)7)
~
i i, (C21)

which reduces the calculation to one involving only
simple poles. The l~ dependence in Eq. (C20) is wholly
equivalent to the substitution m —+ m'=X 'm, and the
evaluation of Eq. (C20) is almost identical with that of
Eq. (C4). The contour can be deformed to the positive
imaginary axis plus circles about the poles in the first
quadrant. The contribution from the imaginary axis is
negligible, and we find

Ity(r) = (arm'/P)P x„sexp( —2k„r sing„)
Xcos(2k„r cosy„+Sr) . (C22)

The notation of Eq. (CS) has been used here, except
that m' appears everywhere instead of m.

The summation over e is approximated as in Eqs.
(C10) and (C11),so that Ez(r) may be written in closed
form for both limiting cases, Ph&)1 and Ph(&1. The
differentiation with respect to X is straightforward:

Mi(r) =2 cos(2krr+8r)L1+ (kirk/er) j
Xexp (—krrh/er) (86&)1) (C23a)

Mi(r) =2 cos(2krr+8i) exp( —irkrr/Per)

(Ph(&1) . (C23b)

Equations (C23a) and (C23b) can be combined with
Eqs. (C18) and (107) to yield the asymptotic form of
ri(r), given in. Eqs. (110a) and (111a).


