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structural details in this region are obscured by the
temperature variation of the modulation wavelength
and the incommensurability of the modulation and the
lattice. However, for the commensurate 4.0 Cy structure
obtained on warming through the 20- to 25°-K region,
a satisfactory model has been obtained. In this model
the basal-plane component assumes a spiral configura-
tion and the c¢-axis component exhibits the variation:
po=—p3=—ps=p7="7.84 pup and p1=—pr=—ps=ps
=6.46 up. In the 4.2- to 20°K region a ferromagnetic
spiral structure is indicated. At 4.2°K, the spiral basal-
plane component is 4.3 up while the ferromagnetic
¢-axis component is 7.9 up. These yield a total ordered
moment in good agreement with the 9 up expected for
the Er®t ion. The magnetic structures of the heavy rare
earth metals have been discussed by several authors!®-12
who conclude that the rather startling variety of ob-
served structures can be explained by the superimposed
effects of an isotropic exchange interaction which
imposes the moment modulation and a temperature-
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dependent crystal-field anisotropy. The exchange
interaction is assumed to be of the Rudermann-Kittel
type which couples localized spins by polarization of the
conduction electrons. It has been shown!'#—16 that this
interaction, when applied to an hexagonal-close-packed
array of localized spins in a system with three conduc-
tion electrons per atom, leads to a modulated-moment
distribution with a modulation wavelength of about
3.6 Coin remarkable agreement with these observations.
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The energy gap of a model anisotropic superconductor is considered. This model calculation forms the
basis of a more realistic theoretical consideration of the energy gap of superconducting Pb, one in which the
phonon density of states is the principal source of gap anisotropy. The effect of energy-band structure,
important only near Brillouin-zone boundaries, is included as a perturbation. The phonon density of states
is calculated from the experimental dispersion curves and singularities—present in the special density of
states entering the superconductivity problem—are discussed. The phonon density of states and the isotropic
gap solution obtained by previous workers are used to calculate the anisotropic part of the energy gap. The
double gap, 24, is found to have an absolute maximum of 2.86 meV in the [100] direction, and an absolute
minimum of 2.55 meV in the [110] direction. Ten other maxima, minima, and saddle points are listed. The
effect of the energy-gap anisotropy on electron-tunneling, electromagnetic-absorption, and acoustic-attenua-

tion experiments is predicted.

I. INTRODUCTION

N the original Bardeen-Cooper-Schrieffer! (BCS)
formulation of the theory of superconductivity, a
constant effective electron-electron interaction and
spherical Fermi surface were assumed. The energy-gap
equation, when solved under these assumptions, yielded
an isotropic solution, i.e., one independent of crystallo-
graphic angle. These assumptions are, of course, too
drastic, as the following experiments have shown:
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In an attempt to explain these results, Pokrovskii?
proposed a model in which he assumed an effective
electron-electron interaction that depended only on the
direction of the electron % vectors. Although he did not
solve any specific model, he was able to obtain certain
“universal”’ relations:

(1) The jump in the specific heat divided by the
specific heat in the normal state at the critical tempera-
ture should be less than 1.4,

(2) the minimum value of the gap at 7=0 divided by
the critical temperature should be less than the BCS
value.

These general relations agree in some cases!'® with the
experimental results for weak coupling superconductors.
However, the relations are clearly violated in the case of
lead and mercury. Since no attempt was made to cal-
culate the form of the interaction, no predictions could
be made as to the variation of the energy gap over the
Fermi surface.

Pokrovskii and Ryvkin!'1? also investigated the
effects of anisotropy on ultrasonic attenuation and elec-
tromagnetic absorption. While they were able to con-
sider the general effect of an angular variation of the
energy gap on these experimental observables, no
quantitative predictions could be made in the absence
of a detailed knowledge of A(6,¢) in an actual metal.

Experimental evidence indicates that, from the stand-
point of its superconducting properties, the most aniso-
tropic metal is probably tin, with indium and gallium
also being highly anisotropic. However, since their elec-
tronic and lattice vibrational properties are not yet well
known, we have chosen lead as the metal in which to
compute the anisotropy. In lead, both the phonon spec-
trum?!?® and the band structure'#!5 are known.

The primary purpose of this paper is to describe a
calculation of A(6,¢) in lead. We use the results of the
calculation to predict certain anomalies in experimen-
tally observed quantities. As will be discussed below, we
believe that the most important source of gap anisot-
ropy is the phonon spectrum, and hence lead, a strong
coupling superconductor, is well suited for investiga-
tion. In Sec. II, a consideration of a simple model of a
superconductor helps to determine a suitable approach
to a more realistic problem. With the use of a Green’s
function formalism (Sec. III) and the details of the
phonon distribution (Sec. IV), we outline the actual
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calculation of the gap anisotropy in Sec. V. Section VI
consists of a description of the lead Fermi surface and its
effects on the gap anisotropy. An analysis of the accuracy
of our calculation is presented. In Sec. VII, we outline
the basic approach used for comparing our results with
experiments, in particular tunneling, infrared absorp-
tion, and acoustial attenuation.

II. SIMPLE-MODEL CALCULATION

In order to investigate the sources of anisotropy in
the energy gap, we first consider a very simplified model
of an anisotropic superconductor. Although, of course,
no rigorous conclusions can be drawn from such a
study, it is a useful guide to the more realistic calcula-
tion presented later. It is assumed that the energy-band
structure of the material is ellipsoidal with complete
azimuthal symmetry, i.e., the band energy ¢ is given by

€=—rT

2

#2k2 fCcos20  sin26
( ) , 2.1)

mi V(2]

where 6 is the polar angle of the 2 vector. We further
assume that the phonon dispersion relation is of the
following form

w(q)=wotwig.?, (2.2)

where g cos® =g, is the projection of the phonon wave
vector on the symmetry axis. This is a modified Einstein
model, whose particular form is convenient for subse-
quent calculations.

We note here that Geilikman and Kresin!® have con-
sidered the gap anisotropy of a somewhat similar model,
one with an ellipsoidal Fermi surface and an isotropic
phonon distribution. Their source of gap anisotropy,
the band-structure anisotropy acting through the matrix
element for a single scattering of an electron by a
phonon, leads to much smaller effects than those calcu-
lated in this section.

In the calculations, we use the following expansions:

Ax=Y» An(€)Py(cosf), = even; (2.3)
Qkk’ = Q(e:el,gﬁl)
=3 1.m Qim(e,¢ ) Pi(cosh) Pr(cos’), (2.4)

where A is the energy gap and Q=pV is the product of a
density of states, defined below, and an interaction
kernel. Here the P, are Legendre polynomials, and sym-
metry considerations restrict # to even values. These
functions satisfy a gap equation of the form

Vi Axr

Ag= Zk' — .
z(ek,2+Ak,2)1/2

(2.5)

Because of the symmetry of Egs. (2.1) and (2.2), the
quantities in Eq. (2.5) are not functions of the azimuthal
angle.

16 B. T. Geilikman and V. Z. Kresin, Fiz. Tver. Tela 5, 3549
(1963) [English transl.: Soviet Phys.—Solid State 5, 2605 (1964)].
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Thus Eq. (2.5) may be rewritten in the form

'V ,0’ I,olA I,al /’01
A= / a¢ / doosty LEDANENRET) )
2(e*+A%(¢,0))1

Using Eq. (2.1), we have replaced the variables % and
k' by e and ¢, respectively. p(¢’,8") is the density of
states such that

o(€,0")d(cosb’)de .7

is the number of states contained in % space between the
surfaces ¢ and ¢-+dé€, and 6’ and ¢’4d6¢’. Thus

0’+do’
o(€,0")de'd(cosh’) =— f / k'2dk'd(cost’)
277.2 8’ b

(2mg)312e'1 124 €' d(cosh’)
4 3(14B cos?0)2

where
r 2(d+de) 2
a= ,
cos?0’ sin26’
()
L m1 me
o 2¢ | 12 (2.8)
cos?0’ sin2§’ ’
()
L mi e
B=(ma—m1)/m1.

We now assume a small anisotropy, i.e., 6<1. The use
of a binomial expansion then gives

o(€,0)=2(2m2)32(1—4B cos20’) 2 /ax2h3.  (2.9)
In order to obtain an approximate expansion for
Viw, we consider, as an example, the Bardeen-Pines
interaction!”19

— 2hwk—xr | grxnn |2
Vige =

. (2.10)
(ek— Ekl)2'— h2wk_k12
Putting k—k'=gq, ex—exr=28¢, and using Eq. (2.2) for
wir—k, We obtain, to lowest order in wi/wy=a,

2g2(1+aq? cos?®)

Viw = .
o[ 1— (8¢/ hiwo)?+ 2aq? cos?@]

(2.11)

We have assumed here, as will be discussed in Sec. III,
that guwa is a constant g. In order to study this expres-
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18 G. M. Eliashberg, Zh. Ekspenm i Teor. Fiz. 38, 966 (1960)
[English transl.: Soviet Phys.—JETP 11, 696 (1960 )]
19 The Ehashberg interaction is, of course more accurate than
Bardeen-Pines interaction, but for the purposes of this discussion
they are equally valid and the latter is simpler in form.

BENNETT

sion, we assume that
2ag? cos?@

:m<l (2.12)

This is certainly not true for all values of de that con-
tribute to Eq. (2.5); it is, however, valid for those values
for which the interaction is most attractive.

A further binomial expansion gives

2g°(14+a®q? cos?@)
T hod[1— (6¢/Tuoe)*]
where (2.13)
2
1= (be/hwn)?
If

(1) use is made of Egs. (2.13), (2.9), and (2.5),

(2) terms of order o2, 82, af or higher are neglected,

(3) orthogonality properties of Legendre polynomials
are taken in account,

(4) only terms of the second order and lower in the
Legendre polynomial expansions are used,

(5) we note that to lowest order the A(¢,8') appear-
ing under the square root in the denominator of Eq.
(2.5) may be replaced by Ay(¢’),

then Eq. (2.5) reduces to,
A(e,0)=2A0(€)+Az(€) Py(cosb)
_ / de,[Qoo(f,6')A0(6')+Q02(6:€')A2(€')]

(A%
Q20(e,€)Ao(e)
+|: m]l’z(cosﬂ) N (2.14)
where
Q=04 , (2.15)
Qoz=ad—@B, (2.16)

and Qqo is, of course, independent of & and 8. 4 and B
are quantities independent of the anisotropy parameters.

Comparison of the coefficients of the polynomials
gives to lowest order

Qoo(&,€')Ao(€’)
A= [de—""" 1 (217)
(@A)
which is the ordinary BCS-type equation, and
Q20(e,€) Ao(€’)
A(9)= [ dé— 2 (2.18)

(@A

We note that in this approximation, Ay(e) is not a func-
tion of B, the energy-band anisotropy. It is, however,
directly proportional to the phonon anisotropy param-
eter a. This observation is of relevance for the more



ENERGY GAP IN SUPERCONDUCTING Pb

realistic calculation of the gap anisotropy to be dis-
cussed below.

The effects of the electron band structure must, of
course, be considered, especially near the Brillouin-zone
boundaries, where the effects of the crystal potential are
strongest and seriously influence the connectivity of the
Fermi surface. Quantitatively, this effect is only of im-
portance in about 10%, of the Brillouin zone. It is con-
sidered as a perturbation (in the sense of degenerate
perturbation theory) after the basic phonon-induced
anisotropy is calculated.

If we make a BCS-like assumption, i.e., assume that
Qo2 and Qg are constants in a small energy interval
about the Fermi energy and zero outside it, we find that

A2= CAO y (2 19)
where ¢ is a constant.

We may see from Eq. (2.18) that it is possible to cal-
culate the anisotropic part of the energy gap by reduc-
ing the integral equation to a simple integral. In a later
section, we use this same type of reduction to solve for
the gap anisotropy in lead.

We now consider, in a more general fashion, the itera-
tion scheme which will be used. If we write

A(e,0> §0) = Aﬂ(e) +A1(€>01 50) ’
where A;<<A,, and
Q(E:O; §0’€,70’7 ¢)= Q0(€75I)+Q1(E70» @,€,0', So,) ’ (221)

where 0:1<<Qo, then these functions satisfy the follow-
ing equations:

(2.20)

0A
= f//de’d(cosl?’)dga’—E s (2.22)
and
e [[ [ ea»
where
Eo=(2+As%())2, (2.24)
E= (2402, 0,¢))12. (2.25)

Substituting Egs. (2.20) and (2.21) in (2.22), we have

A0+A1—///de’d(cosﬁ’)d¢

Q0A0+Q0A1+Q1A0+Q1A1)
, (2.26)
E
but
1 1 E\—E
—=—t ’ (2'27)
E E, EE,
hence

sum [ [ [sctcoras

Xl:Qvo(Eo—E) ' QoA1+0140+ Q141
EE, E

] . (2.28)

A 1905

In order to investigate the relative importance of the
terms on the right-hand side of this equation, we allow
the parameter describing the anisotropy to approach
zero. Then, if we choose the physically meaningful
solution Ay, i.e., the one that approaches zero with the
anisotropy parameter, and note that

(1) the term in (1A; is second order and may be
neglected,

(2) (Ey—E)/EE, can be expanded in powers of
2A0A1/ (+A),

we find to lowest order in the anisotropy that

A= / / / dé'd(cost’)d¢’

% I: —Q0A?A1/ (24 Ao®)+ Qo1+ 0140
E,

:| . (2.29)

In accord with the normal iterative method of solving an
integral equation, we let A;=0 under the integral and

integrate
A= / / / de'd(cosf

We may then use this result in Eq. (2.29) for higher ap-
proximations. In practice, we shall stop after one itera-
tion, since the numerical integrals which must be per-
formed for greater accuracy are very involved. We also
note that if A; contains no angle-independent part, it
can be expanded in spherical harmonics ¥;™(cos, )
with />0. Since for />0

(2.30)

/ / Y ™(cost, ¢)d(cosf)d =0, (2.31)

and Q,, E,, and A, are independent of angle, only the
last term in Eq. (2.29) contributes. In addition, the
angular integration in Eq. (2.30) ensures that only the
part of Q; which is independent of 8’ and ¢’ gives a non-
zero contribution.

III. THE GAP EQUATION FOR STRONG-
COUPLING SUPERCONDUCTORS

We have seen in the last section that in order to cal-
culate the anisotropic part of the energy gap, we must
have an accurate solution for Aq(e), the isotropic part of
the gap. It is well known that some superconductors,
e.g., lead and mercury,? do not satisfy the conditions
of the original BCS model in which the coupling param-
eter N(0)V is small. For these strong-coupling super-
conductors, the electron-phonon interaction is so strong
that the quasiparticles are no longer well defined over

2 J. C. Swihart, D. J. Scalapino, and Y. Wada, Phys. Rev.
Letters 14, 106 (1965).
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the entire energy spectrum. In the remainder of this
section, we shall briefly outline the Nambu?!-Gorkov?2:23
formalism, which allows for the inclusion of damping
and retardation effects, and obtain the equations needed
to calculate the anisotropy.

We start by defining the Green’s functions for elec-
trons and phonons and considering the electron-phonon
coupling. The one-electron Green’s function for the
noninteracting system is given in the momentum repre-
sentation by

Pol—}' €pT3
poP—ep> i
where p and p, are the quasiparticle’s momentum and
energy, e, is the band energy measured from the Fermi
level, and 1, « are the usual unit and Pauli spin matrices.

The matrix form of Dyson’s equation for the Green’s
function of the interacting electron is

Ghl (P;PO) = GO—‘1 (P;PO) - z(p7P0) )

where X, the irreducible self-energy of the supercon-
ducting system, is of the general form

2<p’P0> = [1——Z(l’)?O)]PO]‘_'_X(p)PO)13+¢(p71§0)11 .

This formula should be considered the defining relation
for the functions Z, x, and ¢. We note that

A(p,po)=¢(D,p0)/ Z(p,p0)

can be shown to correspond to the BCS energy gap,
e.g.,

Go(p, po) = (3.1)

3.2)

(3.3)

(3.4)

A(pr,Ascs)= Agcs . 3.5)

Z(p,po) is a renormalization factor that enters into a
calculation of the effective mass, and x(p,po) changes the
effective mass and chemical potential, but does not
enter the superconductivity problem in an essential
way. Using Egs. (3.1), (3.2), and (3.3), one finds

Z@.popol+esito(0,
G(p,p0) = gl tepotole m),n, (3.6)
[Z(p,po)po]*— E*(p, po)+id

where
EX(p,po)= &>+ ¢*(p,p0) .

The one-phonon Green’s function, expressed in terms
of a spectral representation, is given in momentum

(3.7)
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space by
Bx(q,w)dew
0 qo ——w2+¢6

where A designates the polarization mode and Bi(q,») is
the so-called weight function. For bare phonons, it re-
duces to

Dx(q,90)= (3.8)

B)\(q:w) = 5(“’_ qu) 5 (39)

where Qqy is the energy of a bare phonon of wave vector
q and polarization A,

One further quantity needed in the calculation is the
matrix element gypx for the electron-phonon interaction
involving electronic states of momentum p and p’ and a
phonon of momentum p—p’ and polarization \. The
form?* of the actual gyp» may be quite complicated.

Since a reliable calculation of the anisotropy of gppa
has not as yet been performed, we will not attempt to
obtain the anisotropic part of the energy gap due to the
electron-phonon interaction. As will be shown below, the
effect of the anisotropy of gypa is an additive one, i.e.,
one that may be added to that part caused by the
phonon density of states and the band structure.

The self-energy may now be expressed in terms of the
electron and phonon Green’s functions which are them-
selves functions of the self-energy. This procedure, when
carried out to lowest order in the phonon and Coulomb
contributions, results in the following integral equation

=(p,po)=1 / =G (D, p0")ws[2on {gopn}?
diy’

’ ’ ’ 4
XD)\(p_p ’ ?0*?0 )+ Vc(p'“p )](27‘.)4 ’

(3.10)

where V. is considered a statically screened Coulomb
interaction. The terms in the square brackets corre-
spond, in the BCS theory, to the instantaneous inter-
action Vpp. In the isotropic case considered by
Schrieffer, Scalapino, and Wilkins? (SSW), it can be
shown that on the right-hand side of Eq. (3.10), i.e.,
under the integral sign, =(p’,p,’) may be considered a
function of p,’ only. After some mathematical manipula-
tion, including a transformation to the coordinate sys-
tem shown in Fig. 1, and the introduction of a pseudo-
potential U. to represent the Coulomb contribution,
the integral equations determining A and Z are obtained:

A(p,po) N(0) dpo R [ A(po') :I[K honon( o py/)— U] (3.11)
D, = ef ——MmM8M8 phonon , -U.], i
’ Z(p,p0) J Agos po (po>— A2(py)))112 + oo
- / PO, phonon ’
H A IO o Re[m]K— renen(pospo’) s (3.12)

21'Y. Nambu, Phys. Rev. 117, 648 (1960).

21,. P. Gorkov, Zh. Eksperlm i Teor. Fiz. 34, 735 (1958) [English transl.: Soviet Phys.—JETP 7, 505 (1958)].
2 This descnptlon is based on the presentation of J R. Schrieffer’s Theory of Superconductivity (W. A. Benjamm Inc., New York

1964).

2 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960), Chap. V.
% J.R. Schneﬂer D. J. Scalapino, and J. W. Wilkins, Phys Rev. Letters 10, 336 (1963).
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where

K phonon(py po’) = / dw 3\ F x(w)li
0

Here N(0) is the density of electronic states at the Fermi
energy, w. is a cutoff of the order of the Debye energy,
which (as will be discussed below), for p close to the
Fermi surface, restricts p’ to be also close to the Fermi
surface.

FMw) is essentially an effective density of phonon
states. It gives the number of phonons of energy between
» and w+dw and polarization N whose wave vectors q
connect an electronic state of fixed vector p on (or close
to) the Fermi surface and other electronic states
p’=p-+q near the surface. In the isotropic case, FMw)
is independent of the direction of p, and because of the
form of Eq. (3.10), it is essentially independent of its
magnitude.? Thus A and Z given by Egs. (3.11) and
(3.12) depend only on po. When no anisotropy is present,
FMw) may be expressed as

NOP @)= / " gdg / dolgalBrlaw), (3.14)

where pr is the Fermi momentum.
In order to obtain a numerical solution to these equa-
tions for isotropic lead, SSW assumed that

wWwoMr
(0—w1) 2+ (wp)? ’

i.e., FMw) was given by a Lorentzian; they adjusted the
parameters of the Lorentzians so as to reproduce roughly
the phonon density of states obtained from experiment.!?
It was assumed that the constant w) was the same for
all modes and it was chosen so that A(Agcs) equaled
1.34 meV—the value observed in dirty-lead samples. A
successful test of this calculation was its ability to re-
produce the tunneling data of Rowell, Anderson, and
Thomas.?¢

We follow the general approach developed in the pre-
ceding section, and assume that in a first-order calcula-
tion of the gap anisotropy it is not only possible to ignore
the variation of X with p but also its variation with
angle, when £ appears on the right-hand side of Egs.

N(0)FNw)= (3.15)

q

F16. 1. The coordinate system
used in obtaining the gap equations
(3.11) through (3.14).

% J. M. Rowell, P. W. Anderson, and D. E. Thomas, Phys. Rev.
Letters 10, 334 (1963).
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1
po’+?o+w— iélpo'—po—f—w—- 15] '

(3.13)

(3.11) and (3.12). That is, when Z(p,po) and A(p,po)
appear under the integral sign, they may be considered
functions of po only. Using our assumption that the
effects of energy-band anisotropy may be added later,
we need now only consider anisotropy in K 4 Phonon(pg 5y").
The only change in Egs. (3.11) and (3.12) is that now
FMw) must be replaced by FMw,0,¢), where the 8 and ¢
indicate that the effective density of states involved
consists of those phonons whose wave vectors q connect
the electronic state (p,0,¢) on (or close to) the Fermi
surface with other electronic states also on (or close to)
the Fermi surface (see Fig. 2).

We again emphasize that we are ignoring the effect
of the anisotropic part of the electron-phonon coupling.
Because of the linear way in which the anisotropic part
of g would enter Eq. (3.14), and because of our ap-
proximation scheme, this omission can be readily
corrected, when more becomes known about the cou-
pling anisotropy.

The upper integration cutoff in Egs. (3.11) and (3.12)
is determined by noting that the phonon propagator
(3.8) varies as (po— po’)2 for | po— po’| > wp_p. Hence
the major contribution to the integrals comes from
values of | po— po’| less than w,, a cutoff somewhat larger
than the Debye frequency, but much smaller than the
Fermi energy. The particular form of G, Eq. (3.6), en-
sures that the electron energies e,, which are responsible
for the dominant contribution to the integrals are also
less than w., and are thus confined to a small region in
the vicinity of the Fermi surface. For the purpose of
calculating the phonon density of states FMw,0,¢), we
assume that the electron states are confined to the sur-
face of the free-electron Fermi sphere. The work of
Anderson and Gold!’ indicates that the departure of the
Fermi surface from a sphere is small, of the order of
10%. In the next section, we discuss the calculation of
F(w,0,¢) (and thus in essence the kernel) as a series of
angular harmonics.

F1c. 2. The free-elec-
tron Fermi sphere with
some possible phonon
wave vectors, (q, con-
necting the electron mo-
mentum state p with
other electron states
on or near the Fermi
surface.
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IV. THE DENSITY OF PHONON STATES

The usual dispersion relation between w and q is
given by considering q to be defined in the first Brillouin
zone. For the purposes of our problem, however, it is
more convenient to include umklapp contributions by
using a repeated-zone scheme, i.e., by defining a function
w(q), where q ranges over all possible values in reciprocal

space and
w(g+G)=w(Q); (4.1)

G; is any reciprocal lattice vector. As an example, Fig. 3
gives the phonon dispersion curve obtained in this
manner from the experiments of Brockhouse et al.,'
for q along the [110] direction. The experimental data
give the dispersion curves for the three principal sym-
metry directions [100], [110], and [111]. In order to
interpolate between these directions, we expanded w(q)
in the following form:

on(,0,2)=2"r wann(Q)Kn(0,®),

where X indicates the polarization, q is the magnitude of
the wave vector, and ©, ® are its polar and azimuthal
angles. The K, are Kubic harmonics,?” suitable linear
combinations of spherical harmonics that are invariant
under operations of the cubic group. Since the experi-
mental measurements were confined to the three main
symmetry directions, we truncate Eq. (4.2) by including
only the first three terms. These harmonics are given by

K0= 1 5
5.73
K1=(5.73/r9) (x*+y*+2*—0.6r%) =——4—[K1] ,
7

(4.2)

(4.3)

Ka=(147.2/7%)(2%%2+0.0455[ K 1 ]r2—0.00957%) .

These three terms include all values up to /= 6. For each
polarization mode, the w,)\ were calculated for 26 values
of g equally spaced between 0 and 2pg.
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Fi16. 3. Dispersion curve for ¢ in the [110] direction,
with w(q) =w(q+G).

% F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).
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The calculation of F(w,8,¢) proceeded by considering
one state, p(p,0,¢), fixed on the Fermi sphere, and using
a random generating function to call other points,
p'(#,0',¢"), on the sphere. The phonon wave vector,
q=p—7p’, and its associated frequency obtained from
Eq. (4.2) were then calculated. The frequency range
from 0 to 2.18X10™ cps was divided into 88 intervals
and the number of occurrences per interval, for a total
of 4500 points called, was counted.

In order to be consistent with our approximation for
«(q), i.e., an expansion in three Kubic harmonics, we
also expanded Fw,0,¢) in the three lowest harmonics.
Since it was assumed that the coupling strengths were
the same for all polarizations, in calculating the expan-
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F16. 4. The isotropic part of the phonon density of states.
The solid curve gives the lead phonon density of states Fo(w),
found by means of the random generating function. Error bars
show the uncertainty inherent in that calculation. The dashed
line represents the approximate Fo(w) used by previous investi-
gators. The single-headed arrows indicate the usual Van Hove
singularities expected from a knowledge of the measured w-versus-
q curves. The double headed arrows indicate additional singulari-
ties, which are the result of the particular nature of the density of
states that enters the gap equation.

sion coefficients, we first added together, for a given
direction, the contributions from all three modes. We
obtained then

F(w’07‘p)=2)\ F)‘(w70:¢)
=Fo(w)+F1(w)K1(0,0)+ Fao(w)K2(6,0), (4.4)

where the coefficients Fi(w) were calculated by suc-
cessively fixing p in the [100], [1107, and [111] direc-
tions. Figure 4 shows Fo(w); F1(w) and Fs(w) are given
in Fig. 5.

Before proceeding with the calculation of the energy
gap, we digress to discuss the nature of Fy(w), the iso-
tropic part of the density of phonon states, and compare
it with previous work.

As mentioned in Sec. IIT, SSW2® approximated Fq(w)
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by a superposition of Lorentzians [Eq. (3.15)]. They
used the following parameters:

w1= 8.5 meV,

=0. Vv
way Sme , (45)
wi=4.4meV,

w2:=0.75 meV,

where / and ¢ refer to longitudinal and transverse
polarizations, respectively. The density of states with
these values of the parameters is plotted in Fig. 4 super-
imposed on the density of states found in our calculation.
The two curves coincide reasonably well, and thus we
feel justified in using the previously calculated isotropic
gap solutions to calculate the anisotropy.

In addition to the gross features of Fo(w), we may con-
sider its detailed structure which, as may be seen from
Fig. 4, is very rich. We note that the Kubic interpola-
tion used is such that a minimum number of extra
singularities is introduced, since the harmonics are the
smoothest type of functions with the required sym-
metry. This is of experimental interest since McMillan
and Rowell?® have shown that tunneling data may be
inverted to obtain the density of phonon states. The
usual Van Hove singularities in the phonon spectrum
have been used®+® to explain various features of the
d?I/dV?*versus-V curves obtained. Certain anomalies
remain, in particular at low voltages, which are not
accounted for by maxima, minima, and saddle points in
the phonon w(q) curves.

We wish to emphasize some special features? of the
density of phonon states, F(w,0,¢), which enters the gap
equation. Although all the usual Van Hove singulari-
ties’! which appear in the normal density of states also
occur in F(w,8,¢), additional ones are present, which
must be considered in a complete analysis of the tun-
neling data.

The normal density of states is defined as

wtdw
F(w)dw e / dig. (4.6)

However, the density that enters the gap equation is
given by
wtdw
Fdos [ @y,

w

4.7

where 91(q) is a function that guarantees that the ¢
vectors connect two points on (or close to) the Fermi
surface. For a spherical Fermi surface, 91(q) is a func-
tion only of the magnitude of q, and independent of

2W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1965).
(1;961)). J. Scalapino and P. W. Anderson, Phys. Rev. 133, A921
4).
3 J. M. Rowell and L. Kopf, Phys. Rev. 137, A907 (1965).
31 1. Van Hove, Phys. Rev. 89, 1189 (1953).
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FiG. 5. The anisotropic part of the phonon density of states.
The solid curve represents #1(w) and the dashed one—F2(w). The
vertical scale is the same as that used in Fig. 4.

angle. In fact

N(g)=constant 0<qg<2pr,

In the case of a general Fermi surface, the function is
more complicated. When the q involved, for example,
connects two regions of the surface which are essen-
tially flat and parallel, 9U(q) is large. Thus the forms of
the Van Hove-type singularities calculated from Eq.
(4.7) may be different than those obtained from Eq.
(4.6). Since we assumed a spherical Fermi surface in
calculation Fy(w), these changes are not of interest in
the present comparison.

Additional singularities—ones not present in the
usual density of phonon states—should appear because
of the singularity in 91(q), when ¢=2ppr. We consider
first the free-electron case and note that the possible
phonon wave vectors fill a sphere of radius 2pr. For any
given direction, the value of w associated with ¢g=2pp is
an extremal value with respect to changes of ¢ in the
radial direction. If, in addition, v is a maximum or
minimum with respect to changes of the Cartesian co-
ordinates of the local tangent plane, then w is a critical
value, not present in the usual density. In the case of a
general Fermi surface, the same situation may occur
when ¢ is a local extremal caliper dimension of the sur-
face and w is also an extremum with respect to small-
changes in the plane perpendicular to q. For any given
direction, more than one extremal dimension may exist,
corresponding to both local maxima and minima of ¢.
The usual Van Hove singularities are indicated in Fig.
4. Some of the additional ones, those present in the free-
electron model due to ¢ in the three main symmetry
directions, are also shown.

(4.8)

V. CALCULATION OF THE ANISOTROPIC GAP

The calculation of the anisotropy was performed
using the functions Aq(pe) and Zo(po) obtained by
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Fi6. 6. The real and
imaginary parts of A as
calculated by Swihart
q for isotropic lead.

A/4.4 meV
o

-2

€/4.4 mev

Swihart,3? which are essentially the same as those
found by SSW.2¢ He used a lower cutoff of wes=0.774wy;,
ie.,

Flo)=0 w<wyg (5.1)
which we, for consistency, also employ. Swihart’s
curves for the real and imaginary parts of Ay and Z, are
given in Figs. 6 and 7. The value of the coupling param-
eter was determined by demanding that the isotropic
density of states, Fo(w), reproduce Swihart’s values of
the isotropic gap for po=Agpcs. The fact that by using
that value of the coupling constant we were able to re-
produce, within approximately 3%, the isotropic gap
for values of o in the range Apcs < po<2Agcs is another
indication that the calculated Fo(w) and the density of
states used by Swihart and SSW are compatible.

wWe

R (po)=N(0)

Apcs

dﬁo’ Rel:

v 1,

®Wmax 1S the highest phonon frequency =22.17X 102 cps,
and N(0)U,=0.14.

As will be discussed below, our primary interest is in
A(po) for values of po near Agcs, the threshold. Table I
gives values of the isotropic and anisotropic parts of R!
and Z for several values of p,. Table II gives the values
of the energy gap, for a spherical Fermi surface, in the

we

P

R2=N(0) (po'*— A2 (pe))H2

Apcs

TasBLE 1. The various quantities, for three values of o, that enter
Eq. (5.7), the expression for the energy gap.

Ao(pd") ©max
o | IR +
(po?— A% (p0))2 wef po’+potw—id  po’—potw—id

o)

BENNETT

3 T | R B

Real Z-1

F16. 7. The real and

I\a Imag. 2 imaginary parts of Z as
WA calculated by Swihart
- v ‘\ -{  for isotropic lead.
I N
] R
[ e P
/ N
/
A1 1 3
1 2 3 4 5 6 7
E/44 meV

We now describe the actual calculation of the gap
anisotropy. We use the following expansions:

Rl(pa)oy §0) =Z(P0)0) ¢)A(i’0,0, ‘P)

= Ro'(po)+Ri(p0) K1(0, )+ Ro'(po) Ko(6,0), (5.2)
Rz(P%or ﬁo) = [1 _Z(Po;o’ ‘P).]PO
= Ro*(po) +R12(p0) K1(8, 0)+ Re?(po) K2(6,0) , (5.3)
where
Zo(po) =1—Ro*(po)/ o, (5.4)
Z1(po)=—Ri*(p0)/ po, (5.5)
. Zs(po) = —Ro*(po)/ po, (5.6)
an
A({’oyaﬁp):Rl(Po:o: ‘P)/Z(P(he:‘P) . (5'7)

The integrals evaluated were:

1

)dw— Ucal,], (5.8)

1
>dw} s
po’+ potw—1id po’ — potw—id

(5.9)

three principal symmetry directions. Figure 8 shows the
gap in the (110) plane through T.

VI. BAND STRUCTURE EFFECTS. ACCURACY
OF THE CALCULATION
The results of a variety of experiments—magneto-

resistance,?® ultrasonic attenuation,?* cyclotron reso-

TaBtE II. The energy gap, at the threshold, with and without
the inclusion of band structure effects.

bo Rot Ry! Ry!

(meV) (meV) (meV) (meV) Z, Z1 Z2
1.38 3.22  0.0477 0.185 2.398 —0.0165 -+0.0731
1.711 330 0.0497 0.190 2.417 —0.0166 -0.0741
2.61 3.65 0.0515 0.206 2499 —0.0171 -0.0792

Crystallographic direction [100] [110] [111]

Energy gap with no account taken of the 146 1.25 1.38
effects of band structure (meV)

Energy gap with the effects of band 143 128 138

structure included (meV)

3 J. C. Swihart (private communication).

Schirber, Phys. Rev. 131, 2459 (1963).

BE.
HE Rayne, Phys. Rev. 129, 652 (1963).

. E.
. LAl

*
*
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F1c. 8. The double
gap in the (110)
plane through T,
with no account
taken of the effects
of crystal potential
mixing.

3.00

275

2 A (mev)

250

nance®®—attest to the fact that the Fermi surface of
lead is described quite well by the nearly-free-electron
model. Recently Gold and Anderson,!® using the de
Haas-van Alphen effect, have measured a large number
of the extremal cross-sectional areas of the lead Fermi
surface. They were able to describe the surface, using a
four-plane wave interpolation scheme with two pseudo-
potential matrix elements, a spin-orbit coupling factor,
and the Fermi energy as adjustable parameters. The
values of these parameters were determined by means
of a least-squares fit to eight of the observed areas. It
was found that the spin-orbit coupling factor was neces-
sary to obtain any reasonable fit to all the areas.

The free-electron Fermi surface has pieces in the
second, third, and fourth Brillouin zones. Experiment,
however, shows that the energy gaps at the relevant
points are large enough to remove all electrons from the
fourth zone. This is also a feature of the Gold and
Anderson model. Figure 9 shows the second zone free
electron hole surface (reduced zone scheme); Fig. 10 rep-
resents the third zone electron surface (repeated zone
scheme). From Fig. 11, a cross section in the (110) plane
through T, we see that the deviation of the four-
parameter model from the free-electron sphere is large
only in the region of the Brillouin-zone boundaries.

In order to consider the effect of the crystal potential,
we may assume that the actual wave functions can be
expressed as linear combinations of a few functions
of a plane-wave character, orthogonalized plane waves
(OPW), for example. The effect of the mixing on the
anisotropy is taken into account by a procedure essen-

F16. 9. The second Brillouin
zone hole surface of lead, according
to the free-electron model (from
Ref. 15).

35 E.g., R. Mina and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz.
‘zls, 1:;(:)14 (1963) [English transl.: Soviet Phys.—JETP 18, 896
964) ].
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Fic. 10. A schematic representation of the third Brillouin
zone el(;ctron surface of lead in the repeated-zone scheme (from
Ref. 15).

tially the same as that used by Anderson?® in his theory
of dirty superconductors.
An actual electronic state |#) is considered to be of

the form
[n>=2p,v Anpa'l’/“), (61)

where |p/o) indicates an OPW of wave vector p and
spin o.

When no magnetic field is present, the time-reversed
state | —#) is an eigenfunction of the Hamiltonian with
the same energy. In general, Cooper pairing consists of
coupling of the states |#) and | —#). The gap equation is
then given by

Vnn’An’
Ap=3pp ——.

n?

(6.2)

If, for example,'® the Bardeen-Pines interaction!? is
considered,

- me’

> lAnpfr[2[An’p’v’|2lgp’p[2h‘°p—p’
=2.p,p",0,0"

(6.3)

(En_ En’)2" hz“’n~p’2

In the case of crystal potential mixing, in contrast to the
impurity scattering originally considered by Anderson,
the energies of all the plane waves |p) which mix
strongly in a given state |#) are almost the same. Hence,
in the denominator of Eq. (6.3), we may assume that

Fre. 11. (110) Cross section
through T of the lead Fermi sur-
face in the extended zone scheme.
The heavy curve (the four-param-
eter surface) is compared with the
free-electron circle (from Ref. 15).

3 P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
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€.=¢, €v=¢y. With this assumption, the quantity
Vans is given by a weighted average

BENNETT

comprises the part not near a Brillouin-zone boundary,
where the one OPW approximation is good; the second
region includes the remaining portions of the Fermi

V=2 0900 | dnpo|*| Awyor |*Vopr,  (6.4) surface, where the mixing is strong. In the first region,
where V,p is the interaction in the absence of mixing. Ape=0pp10001 (6.5)
We now distinguish two regions of interest—the ’
first occupies 909, of the area of the Fermi surface and and thus for |#) in that region, we have
’A n,p’U’ l 2A7‘I Vplpl APII Vplpl’ lAn'p/‘rl I ZAnl VPIP'
Ap1=2n',p’,a’ —_— = Zpl',ﬂ’ E— ntpe T (6-6)
2E, RECION 1 2E REGION 2 2E,,

The second sum on the right-hand side of the equation is over only approximately 109, of the Fermi surface, and

the error made by assuming that even in that region

Ay o =0ppydsay,

(6.7)

is small. The anisotropic part of the gap is, as calculated above, approximately 10%, and the second sum con-
tributes approximately only 109, of the value of A,,. Hence, the error is of the order of 1%, of A,,, and the energy
gap is essentially unchanged by the crystal potential for values of p away from the Brillouin-zone walls.

When |#) is in the second region, we have
lAnpvl 2 I A"'p’v' ' 2An'Vpp’
2E,

An:Zp,a,n',p’.v'

~Zo el

Again, the error introduced by letting Eq. (6.7) hold
in the second term is of the order of 19, and we find
that for » in region 2

An=2"pe| Aups|2Ap. (6.9)

In order to calculate the mixing coefficients 4,5, we have
used the four OPW approximation of Anderson and
Gold, with the values of the parameters which they de-
termined. The energy gap, in the (110) plane through
T, obtained from Eq. (6.9) is shown in Fig. 12. The
values of the gap for the three principal symmetry direc-
tions are given in Table IT. As expected, the mixing tends
to reduce the anisotropy. It must be emphasized, how-
ever, that the correction is only significant in a small
part of the Fermi surface. Figure 13 is a schematic

[oo]
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Fic. 12. The double-energy gap (meV) in the (110) plane through
T, after the effects of band structure have been included.

Zm’,ﬂ’

REGION 1

Am’ Vppl'

Zn',p’ ,0!
2Eyy

REGION 2

lAnr g | ZAan ’
_P__”] . (68)
2E.,.

representation of the energy gap on the electron and
hole surfaces. Table IIT lists the various critical points
(maxima, minima and saddle points) of the gap
function.

In order to obtain some very rough idea as to the
accuracy of our calculation of the gap anisotropy due to
the band structure and phonon density of states, we
note the following sources of error:

(a) experimental errors in Brockhouse’s phonon data,

(b) approximation of w(q) by three Kubic harmonics,

(c) “random” calculation of F(w,8,¢),

(d) approximation of F(w,0,¢) by three Kubic
harmonics,

(e) errors in numerical procedures,

(f) failure to iterate the first-order solution of the
gap anisotropy.

Brockhouse’s phonon dispersion data were taken with
an accuracy of approximately 3%. Using the effects of
translational symmetry, we estimate that the error due
to the truncated expansion of w(q) is of the order of 159,
of its anisotropy. These two sources of error, coupled to
the inherent V!/2-type error of the random generating
function calculation, lead to an error of the order of
20%, on the F(w,8,¢) calculated for the three (6, ¢) direc-
tions in Sec. IV. This error coupled to the error of the
order of 109, of the density of states anisotropy intro-
duced by the truncated expansion of F(w,0,¢) leads to
an error of perhaps 309, in the coefficients F;(w). The
calculations were performed on the IBM 7094 complex
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of the University of Chicago computation center. The
calculational errors are negligible compared with the
other errors discussed here. Since the various R;! and
Z; coefficients are directly proportional to an integral
of the F; they are calculated with an uncertainty of
about 359, as a result of the errors from the first four
sources in the above list. The last source of error, i.e.,
our failure to iterate the first solution obtained for the
anisotropic gap, is more difficult to estimate. In essence,
however, the solution is good to first order in the anisot-
ropy, and further iteration would introduce corrections
of the order of 109,. Considering all major sources of
error and assuming that some cancellation of the various
errors occur, we estimate that the uncertainty in our
calculation of the anisotropic part of the energy gap,
i.e., that anisotropic part due to the band structure plus
phonon density of states, is less than 309 of its value.

F16. 13. The double-energy gap (meV) on (a) the second-zone
hole surface, (b) the third-zone electron surface. The small Roman
letters refer to the corresponding points in Figs. 9 and 10. The
squares, triangles, and circles indicate maxima, saddle points, and
minima, respectively.

VII. COMPARISON WITH EXPERIMENT

When considering experiments that display the anisot-
ropy of the energy gap, we must distinguish three
different regimes. The first, and least interesting from
the standpoint of anisotropy, is the dirty limit. Here
either surface effects are so strong and/or the impurity
content so high that rapid scattering takes place be-
tween Bloch-like states, i.e., the mean free path is very
short and a mixing mechanism, as discussed by
Anderson,* smoothes out all anisotropy. This is the
region in which only an isotropic Ag(po) exists.

The second regime is that in which the mean free
path is finite, but long enough for anisotropic effects to
remain. A polycrystalline sample is such a system. The
anisotropic energy gap is still well defined for each
crystallite, but the experiments measure only averages.
We expect that, for directional experiments, all crystallo-
graphic directions contribute equally.

The third regime—the one which most clearly reveals

IN SUPERCONDUCTING Pb
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Tapre III. The maxima, minima, and saddle points of the
double energy gap on the second- and third-zone pieces of the
Fermi surface.

Second-zone Third-zone
Critical point hole surface electron surface
Minima (meV) 2.66 2.65 2.60 2.55
Saddle points (meV) 2.70 2.66 2.71 2.65 2.60
Maxima (meV) 2.86 2.77 2.76

anisotropy—is that of the pure single crystal. Here the
mean free path is very long, minimal mixing occurs, and
for directional experiments, only some crystallographic
directions contribute appreciably.

Unfortunately, from the experimental point of view,
the technical problems involved in the preparation of
single crystal lead films for tunneling or other relevant
experiments are severe. Hence, one cannot neglect the
second regime as a source of information.

We will investigate the effects of anisotropy by means
of what is essentially a singularity analysis, i.e., a
search for singularities in experimental observables due
to extrema and other critical values of the gap. The
analysis is confined to effects which are associated with
low-energy quasiparticles, i.e., excitation energies of the
order of the energy gap. These include the so-called
threshold phenomena. A consideration of the isotropic
gap function pictured in Fig. 6 and the values given in
Table I shows that, for these effects, the function A may
be considered to be independent of energy. In addition,
the imaginary part of A is equal to zero in this region.
This enables us to concentrate on the effects of anisot-
ropy, and not concern ourselves with effects connected
with the strong-coupling nature of the superconductivity
in lead.

Whenever possible, we treat the zero-temperature
case. In general, a higher temperature will tend to
smooth singularities, but their basic nature will remain
the same.

A. Tunneling Experiments

The most direct method of observing anisotropy is by
means of tunneling experiments through an insulating
layer between two superconductors, or between a super-
conductor and a normal metal.?” The Hamiltonian3—40
giving rise to tunneling can be assumed to be of the
form

H=Hgr+H;+Hr, (7.1)

where Hg and H, are the Hamiltonians for electrons in
the right and left metals, respectively, and Hr is a
coupling (tunneling) term proportional to a matrix
element 7'y ,*t which will be discussed below. Second-

87 E.g., I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).

38 J. Bardeen, Phys. Rev. Letters 6, 57 (1961).

3 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962).

9 R. E. Prange, Phys. Rev. 131, 1083 (1963).

4'W. A. Harrison, Phys. Rev. 123, 85 (1961).
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24, =2.55mev —

248, =286mev
2 Aggg *2.70meV

= Fi16. 14. The tunneling
density of states, when
| the distribution of gap
values is a constant be-
tween the minimum gap,
-1 Am, and the maximum
gap, Ay, and is zero
elsewhere. A BCS den-
sity of states with Agcs
=1(An+Ax) is also
— shown.

29 3l
V(meV)

order perturbation theory, i.e., the use of Fermi’s
golden rule, yields the tunneling current

21e
I(eV)=7 2o l Tpy [2
X[f<€p)_f(fp'+ev)]5(‘=p_ &),

where V is the voltage applied between the two materials
and f is the Fermi function. There are, as mentioned
above, two experimental regimes of interest, the single
crystal and polycrystal. We first consider only poly-
crystalline materials. The various crystallites are ori-
ented in different ways with respect to the normal of
the tunneling surface. For such materials, the angular
summation in Eq. (7.2) is an effective average over T pp.
The assumption that | T,y |?2 is independent of energy*?
enables us then to replace it by an average matrix ele-
ment 7, and to rewrite Eq. (7.2) as

(7.2)

I(eV)=P / " iE NoR(E)

XNrH(E+eV) f(E)— f(E+eV)], (7.3)

where P=(2we/h)|T|? and the Nrp(E) are effective
densities of states, given by

NQ) [~
N¢(E)= —Z(%)- depf d(cosh)
—c0 -1

T

X / T 4o mG(p,E) (7.4)
0

TaBLE IV. The form of the gap distribution function f(x)
in the vicinity of critical values A, of A(8,¢).

Critical point x<A, x>A,

Minimum C C+D
Saddle point C'—D'lg[1—(x/Asp)] C'—D'Ig[(x/Asp)—1]
Maximum Cc"+D" c”

2 In considering T'ppr, we have also ignored the variation of the
magnitude of the velocity with position on the Fermi surface.
This has no essential effect on the results of the singularity analysis
employed.
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for a superconductor, and

N¢(E)=N(0) (7.5)

for a normal metal. Here G(p,E) is the Green’s function
introduced in Sec. ITI. Integration of Eq. (7.4) over ¢,
gives

N

) 1 2T
/ d(cos) / do
472 J_4 0
E

XRe[ @ —aED, ¢))1/2] . (7.6)

We shall be concerned with tunneling near the threshold,
and hence A(E,f,¢) may be considered real and inde-
pendent of E. It is useful to transform Eq. (7.6) in the
following fashion

No(E)=

(7.7

472

B E
_/;min (Ez_xz)llzf(x)dx’
where

1 1 2T
f(x)=gr; _ld(cose)/ do 8[xz—A(0,0)]. (7.8)

0
When A(6, ) is independent of angle,
fx)=08(x—4), (7.9)
and

Nr(E)=N(0) Re[E/(E*—A%Y*],  (7.10)

the expression used by SSW.
As an example of the changes that gap anisotropy may
introduce, we first consider the effect of having

f@)=F

for values of A between A,, and Ay, the minimum and
maximum values of the gap. Performing the integration

(7.11)

i d’1 &’1
dv? ! av? dv?’
WA, ~log 2 V74 5T
I ’ v V-Asp'
“’As;V
—]
s, V- a,, V= Ay V-
-
V-3,
(o

T1c. 15. The form of d?//dV? for a superconductor-normal
metal junction, when V is in the vicinity of a critical value A,.
(a) Ac=An, (a minimum), (b) A.=Agp (a saddle point), (c)
A=Ay (a maximum). Here eV=V.
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TaBLE V. The leading terms of ¢1/dV and d%I/dV? for a superconductor-normal metal junction, when eV is in the vicinity of a
critical value A, of A(6,¢). The 4 and B are constants which depend on details of f(x), the gap distribution function.

a/ave

ar/av
Critical point eV=A, eV=A, eV=A, eV=A,
Minimum continuous A (A+B)+ (V2/7)BAR2(eV — Ap) 12
2/m)BIg2[ (eV—A Agp 12
Saddle point continuous A'+B'(Agp—eV)12 @/mBIg2L e se)/Ase]
(eV—Agp)t2
Maximum continuous A""+B" A" — (V2/m)B" Ap 2 (eV — Apg) 112
in Eq. (7.7), we find T=0,
dI/dV=PeNr(eV), 7.15
NT(E) FE( . IAM - m) (7 12) / e. T(e ) ( )
= SInT ———S8ImT— . d*l PedN(E
N(0) E E) __=-—£_)) . (7.16)
av? dE P
for £> Ay, and ey
N2(E)/N(©0)=FEGr—sin(An/E))  (7.13) The use of Eq. (7.7) and the expansion forms of f(x)

for An<E<Ajp. Figure 14 shows this form of Np(E)
together with a curve of the BCS form

Np(E)/N(0)=E/(E*— Apcs?)'?, (7.14)

where Apcs=%(An+Ax). The two curves are nor-
malized so that they approach the same limit as E —c0.
We can see that the general effect of anisotropy is to
broaden the density of states.

In order to consider the effects of the critical points
of A(6,0) on Ny(E), we first notice that the two-
dimensional Van Hove®! theorems apply to f(x). This
may be understood by noting that, in the vicinity of a
point (6,¢) on the unit sphere, the difference in area
defined by the Cartesian coordinates in the tangent
plane at the point and the corresponding area on the
sphere is given by [1—cos{], where { is the angle be-
tween a given direction and the point of contact. This is
a second-order effect which does not, to lowest order,
change the values of the integrals evaluated by Van
Hove to obtain the form of his singularities. Table IV
gives the form of the distribution function (7.8) about
a maximum, minimum, and saddle point of A(f,¢).

For a superconductor-normal metal junction at

about A,, a critical value of A(6,¢), yields the form of
N(E) when E is close to A.. In the Appendix, we give,
as an example, the calculation for a local minimum
value of the energy gap. The analytic forms of dI/dV
and d2I/dV? corresponding to various types of critical
points in A(f,¢) are given in Table V. Figure 15 shows
the results for d2I/dV? graphically. The various singu-
larities obtained tend to be smeared out at finite tem-
peratures. A similar analysis may be performed for a
superconductor-superconductor junction. As is well
known,* in the case of isotropic materials, a jump dis-
continuity is present in the I versus V curves for
eV=A1+A,, even for temperatures greater than zero.
We considered the case in which one of the supercon-
ductors is isotropic, i.e., its gap is a constant A, inde-
pendent of angle, and the second superconductor has an
anisotropic gap As(6,¢). We have calculated the form of
dI/dV and d2I/dV? at zero temperature for eV in the
vicinity of Aj;+As,, where As. is a critical value of
As(0,¢). In the Appendix, we show the calculation for
the jump in dI/dV at eV = A3+ As., when As, is a mini-
mum. The analytic forms of dI/dV and d*[/dV? are
given in Table VI. The results are presented graphi-
cally in Fig. 16. As expected, the singularities are

TaBLE VI. The leading terms of dI/dV and 2 /dV? for an isotropic superconductor, (1) anisotropic superconductor, (2) junction,
when eV is in the vicinity of A;+Aq,, where Ay, is a critical value of A2(8,¢). The F, G, and H are constants which depend on details

of f(x), the gap distribution function.

da1/év ar/ave
Critical point eV=A. eV=A, eV=A, eV=A,
Minimum — —F4G(A1Am)12 +G(A1AR) 2e8(eV — Am—Ay)
Saddle point —F'+G'(eV—Asp—Ay) H'lg(eV—Agp—Ay) eG’ eH'(eV—Agp—Ay)!
Maximum —F" —F"—G" (A\AM)2 —G" (A1 AM) 28 (eV — Ay —Ay)

# E.g., D. H. Douglass, Jr., and L. M. Falicov in Progress in Low Temperature Physics, edited by C. J. Gorter (North-Holland

Publishing Company, Amsterdam, 1964), p. 97.
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(a) (c)

41 s

dv? dv?
[N
8(v-8,-Am) T

ArAy
H+Am V— AtDsp V— v
s(v-A,-'AM)

F1G. 16. The form of d2//dV? for an isotropic superconductor,
(1) and polycrystalline anisotropic superconductor, (2) junction
when V is in the vicinity of A;4-Ag. (a) Aze=A, (a minimum),
(b) Az,=Asp (a saddle point), (c) A=A (a maximum). Here
eV=V.

stronger than those in the corresponding curves of the
superconductor-normal metal junction. The jump dis-
continuity in dI/dV, for As. corresponding to a mini-
mum, may be compared with the similar singularity
in the current when both superconductors are isotropic.
Figure 17(a) shows the various singularities that will be
seen with polycrystalline lead samples. In our approxi-
mation, four minima, five saddle points, and three
maxima occur.

We now focus our attention on the singularities ex-
pected when the superconductors are single crystals,

hole surface

(a)

electron surface

hole surface
(b)

electron surface

s % . ' hole surface

(c)

electron surface

hole surface

(d)

electron surface
250 260 270 280 290
24(meV)

F1e. 17. (a) The energies for which singularities are expected
in the tunneling curves of a polycrystalline anisotropic super-
conductor. The contributions of the electron and hole surfaces are
presented separately. Solids lines indicate maxima, dashed lines
indicate minima, and dotted lines indicate saddle pomts (b), (c),
(d) The range of gap values included within the areas on the Fermi
surface of a single crystal anisotropic superconductor that con-
tribute for tunneling in the [100], [110], and [111] directions,
respectively. The contributions of the electron and hole surfaces
are, in each case, presented separately.
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rather than polycrystals. We begin again with Eq. (7.2)
and consider the tunneling matrix element 7'y in
order to determine which carriers will contribute most
for the normal to the barrier oriented in a particular
crystal direction. Using the independent particle model
and the WKB approximation, Harrison*! has derived an
expression for 7'y

ITPP’ l 2 Oy, 0p) exp[—-Z/ Pl(x)dx:l , (7.17)

where p;; and p. are the components of the electron
momentum parallel and perpendicular to the barrier,
and «,, x; are the classical turning points in the right
and left metals.

For parabolic energy bands with a free-electron mass,
we use the approximate expression

[Typ |2 81,0y
Xexp[——nf (U(x)+Epr—Ep coszy)”zdx] , (7.18)
Ty

where U(x)+Er is the height of the effective barrier,
v is the angle between the electron momentum and the
barrier normal, and

1=2(2m)"2/h=1.025 eV-1/2 A1,

In order to obtain an expression for ygy, the angle for
which the matrix element squared is equal to one half
its value for y=0, we take U(x)= Upv and obtain

C0327 HM

2(In2)UyY/2 (In2)?
=1— . (7.19)
1.025(x,—x)Ep  (1.025)2(%,— x1)2Ep

Using the typical values d=20 A, Er=9.5 eV, and
UAV 1 eV we find YHEM= 5

Thus, for a spherical Fermi surface, the electrons that
contribute strongly are those whose quasiparticle mo-
menta are within approximately 5° of the tunneling
direction. For a general band structure, this same condi-
tion holds except that the electron velocity rather than
the electron momentum should be considered. We now
assume that the exponential-like behavior of Eq. (7.18)
may be approximated by a cutoff at 5°, i.e., electrons
whose velocities are within 5° of the tunneling direction
contribute with equal weight and all other electrons
make no contribution. Figure 18(a) is a schematic
picture of the hole surface which shows the areas that
contribute for {001), (110), (111) tunneling directions.
Figure 18(b) is a similar sketch of the electron
surface. Figures 17(b), 17(c), and 17(d) give the
values of the energy gap included within the areas
associated with tunneling in each of the principal sym-
metry directions. If the range of gap values from a given
area includes a critical value, i.e., a local maximum,
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(b)

F16. 18. (a) The second-zone hole surface with the areas shown
that contribute for tunneling in the three main symmetry direc-
tions. (b) A section of the third-zone electron surface with the
areas shown that contribute for tunneling in the three main sym-
metry directions.

local minimum, or saddle point, then we expect to ob-
serve the singularity in the tunneling spectrum associ-
ated with that critical value. Such cases may be
recognized by comparing Figs. 17(b), 17(c), and 17(d)
with Fig. 17(a), and then using Fig. 13 to ascertain the
source, i.e., the area of origin, of the singularities of the
latter figure. In addition, the minimum and maximum
value of the gap within a given area tend to broaden
the tunneling characteristics and effective density of
states, as was discussed above for the case of Eq. (7.11).
If the range of energy values from a given area is very
narrow, because the velocity direction changes very
rapidly and/or A(f,¢) varies slowly in the region, we
then expect the structure typical of isotropic super-
conductors to be present in the tunneling curves.

B. Electromagnetic Absorption

In considering the absorption of electromagnetic
radiation by superconducting lead, we choose to ignore
the precursor absorption,*! i.e., the structure appearing
just before the main edge. This structure is probably due
to a collective mode, and is not directly connected with
anisotropy of the energy gap.*® The latter is shown by
the persistence of the anomaly in heavily doped lead,
i.e., lead with a high content of impurities, where the
gap is isotropic. If, in addition, the coherence length
£ is assumed to be greater than the penetration depth
8, one may obtain the essential behavior of lead in an
electromagnetic field by ignoring all but first order
effects.

The current is given by

Ji(@)=(i/)Pss(9)Es(9), (7.20)
where (3/w)P;; is the conductivity tensor, and Ej; is the
electric field. In general, there are two contributions to
the absorption, represented here by the imaginary part
of P 5.

(1) scattering of the existing quasiparticles,

(2) breaking up of a Cooper pair with the consequent
formation of two quasiparticles.

4 P L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960).

45 Tt is interesting to note that there is a tendency for the pre-
cursor to appear in metals that have an anisotropic gap, and hence

it may be connected with the anisotropic character of the ef-
fective electron-electron interaction.
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At very low temperatures, the number of existing
quasiparticles is negligibly small and no scattering is
possible. Absorption is then caused by the second mecha-
nism and requires a certain minimum frequency. Since
we are interested in this threshold behavior, the gap in-
volved may be considered real and independent of
quasiparticle energy. For the case of an isotropic gap,
the absorption near the threshold has been calculated by
previous investigators.#6—4¢ In general, there are two
features to be considered:

(1) the value of the threshold energy,
(2) the absorption line shape near the threshold.

Simple energy and momentum conservation argu-
ments are sufficient to determine the threshold. Fol-
lowing Pokrovskii and Ryvkin,'? we write for con-
servation of energy

w=Ey+Eyq, (7.21)

where
E,= [5p2+A2(ap, ¢p)]1/2 ) (7.22)
Ey o=[(ep—V-q@)*+A%0pq,0p-o) 2. (7.23)

Here w, q are the photon energy and momentum, and v
is the electron velocity. Since $>3>¢, one may assume that
0,20, q=0, 0y=2p, (= ¢, and solve Eq. (7.21), which
yields two solutions

wz—(v-q)2—4A2(9’*’)]”2}, (7.24)

1
€ )1,2=—{V-q:|:wl:
S W= (v-q)?
Since e, must be real, the threshold frequency @ is
given by

Q*=Min[ (v-q)2+4A2%(0,¢)]. (7.25)

In order to find the (6, ¢) for which © is a minimum, we
first write
A8, )= Ao+ A4(8,0), (7.26)

where A, is an average value and A; includes all the
anisotropy. We see that for

>>A1(0,0), (7.27)

the minimum of Eq. (7.25) occurs when v is almost per-

pendicular to q. In lead, A1(6,¢) is of the order of 109,

of Ao, and assuming that the photon wave vectors of

greatest importance are approximately equal to the

reciprocal of the penetration depth, we have#
g vg &

Ay 0.14, 0186

—_—

(7.28)

4 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

47 A. A. Abrikosov, L. P. Gorkov, and I. M. Khalatnikov, Zh.
Eksperim. i Teor. Fiz. 35, 265 (1958) [English transl.: Soviet
Phys.—JETP 35, 195 (1959)].

4 D. J. Scalapino, J. R. Schrieffer and J. W. Wilkins (private
communication and to be published) have calculated the absorp-
tion for isotropic lead with a complex, energy dependent gap.
Near the threshold, their result coincides with that obtained in
Refs. 46 and 47.
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Pokrovskii failed to note that the criterion for a mini-
mum to occur when v is almost perpendicular to q in-
volves the anisotropic part of the gap and not the gap
itself. Thus Eq. (7.27) is well satisfied in lead even
though the condition for the extreme anomalous
limit, i.e.,

/51 (7.29)
is not well satisfied.
The imaginary part of P;; is given by
sinf
ImP;; // . (p|®:[p—a)p—q|®;[p)
Lo p6(0,0)
E1Es+€p)16p)2— A2(0,0)
{ s e d6de. (7.30)
EP)IEZ_ e1))2El

0a(0,¢) is the Gaussian curvature of the Fermi surface,
® is the momentum operator, and we have assumed
that the matrix elements are independent of e, for e,
small. In lead, the band gaps are on the order of 1 eV,
and hence for absorption near the threshold, i.e.,
fiw=0.027 eV, we may ignore the interband parts of
the matrix elements in Eq. (7.30), and assume that they
are proportional to the product of components of the
usual intraband velocities, v,;.

In order to evaluate Eq. (7.30), we follow Pokrovskii
and Ryvkin. Two contributions are of importance, that
of the area of integration and that of the coherence fac-
tor given by the bracketed expression of the equation.
We use the expansions

A6, 0)=An[1+(a/2)(0—0)+(0/2)(¢— ¢')*],

and

(7.31)

(7.32)

The locally orthogonal coordinates 6 and ¢ are chosen so
that the curve v-q=0 is described by 6=6" and the
energy gap along the curve A(f',¢) takes minimum-
value A, at the point (8’,¢’). Phase-space and energy-
conservation arguments show that the region of integra-
tion is an ellipse with semiaxes,

veq=12gc(6—6").

N2 70 1/2
hh= <—) (——— 1> (7.33)
b Q
and
WV2An[w 12
la= <~——— 1) , (7.34)
vgc \Q

centered at the point o= ¢’, 0=60"—(2aA,%/v*¢%?). If b
is nonzero, the area is proportional to [(w/@)—1]; if,
however, =0, or is very small, the ellipse degenerates
into a strip of width 2/,, running around the Fermi sur-
face, whose area is proportional to [(w/Q)—17]"2. The
coherence factor, on the other hand, depends criti-
cally on the parameter a. A straightforward calculation
shows that for a nonzero a, the leading term goes as
[(w/@)—1]71%; for a=0, the leading term goes as
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[(w/@)—1]"2. For w>Q, the leading term of the
imaginary part of the polarization is then of the follow-
ing form.

ImPije (a/61%c%)[(w/Q) =112, a0, b5<0;
ImPije (1/04%)[(w/Q)—1P/2,  a=0, b0;
ImP;;<a?/c?, a0, b=0; (7.35)
ImPije (1/¢)[(w/@)—1], a=0,5=0.

The last case is the usual result for isotropic super-
conductors. The second case will be observed when light
is incident in a direction perpendicular to a reflection
plane of the crystal, e.g., the (100) and (110) directions
in lead. When ¢ is large, i.e., the angle between v and q
changes rapidly as v is moved off the line §=¢’, only a
small region of integration contributes and the absorp-
tion is reduced.

The use of Egs. (7.31) and (7.32) in (7.25) gives an
expression for the threshold frequency

Q=2An[1—(a?/2¢%)(Am/v9)?].

Since (An/9)?2=0.1, and, for most relevant portions
of the Fermi surface, ¢> a2,

Q=2A,,.

(7.36)

(7.37)

One convenient experimentally observed quantity is
the surface impedance tensor Z;; given in a diagonalized
E4(0)

form by ;
/m] (Z)dzmi(lP“)' (7.38)

Zn=Ry+iX;,=
Here the index % refers to a set of Cartesian coordinates
in the surface plane chosen to diagonalize the polariza-
tion tensor, and in the extreme anomalous limit

for a=0;
for as£0.

=%
=1

The polarization is then of the form

Pj=|P| 8, (7.39)
where, in the general case, when a0, 5720
Pli=4 —Q <0,
|Pli=As . (w—0Q) (7.40)
| P|i=Ar+Bilo—Q)12% (0—Q)>0.

A and By are real quantities whose variation with w
in the threshold region may be neglected.

An unpolarized beam measures some linear combina-
tion Zgbs of Zxi. Expanding (7.38), one obtains

Zovs=p1 (0—0)<0,
and
Zobs=a(w— Q)12+ 64

(w—2)>0, (7.41)

where o and 8 are again real quantities which may be
considered independent of w in the threshold region. For
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Fic. 19. The second-zone hole
surface with the curves defined by
v-q=0, for q in the three main
symmetry directions.

cases other than a0, 5520, the real part of Zss has a
functional dependence on (w—Q) like that of P; in
Eq. (7.35).

We return now to the specific case of lead. In order to
find the values of the frequency at which the real part of
the impedance becomes nonzero, we first located those
curves on the Fermi surface on which v.q=0. In the
free electron model, if the direction of q is defined to be
the polar axis, v is perpendicular to q on the equator.

On the actual Fermi surface, the relevant curves can-
not be described as simply. Figure 19 schematically
shows the curves on the second-zone hole surface on
which v-q=0, for q in each of the three main symmetry
directions. The curves on the third-zone electron sur-
face defined by v-q=0 are more difficult to determine.
A complete analysis has been performed, but we confine
ourselves here to the following remarks:

(1) The quasiparticle velocity at the points 7 and ¢
(see Fig. 10) is in a (110)-type direction, and hence per-
pendicular to any phonon wave vectors in a (110) plane,
in particular those in the three principal symmetry
directions.

(2) The velocities on the line 7fg (see Fig. 10) are
perpendicular to a phonon wave vector in a (110)
direction.

In order to find the threshold frequencies, we then
located the points on the various curves where the gap is
a relative minimum. For light propagation in any given
direction, we expect to find, in general, several minima
originating on different curves and/or different parts of
the same curve. The various minima on the relevant
curves of the second Brillouin zone surface are indicated
in Fig. 19. Since the gap value at the point 7 on the
third-zone surface is an absolute minimum, and since
the velocity there satisfies the relevant condition, a
threshold structure at 2.55 meV should be present for
any q in a (110) plane. In addition, the curve 7{g con-
tributes a threshold structure at 2.71 meV for q in a
(110) direction. Various other threshold structures are
present between 2.60 and 2.65 meV for q in any of the
symmetry directions. Such structure would probably
be difficult to resolve in any actual experiment.

C. Acoustic Attenuation

The BCS expression for the ratio of the acoustic
attenuation in an isotropic superconductor with gap
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Agcs to that in a normal metal is given by
as/an=2f(Ascs/kT),

where f is the Fermi function.

We use the results of Pokrovskii in order to interpret
acoustic attenuation experiments in an anisotropic
superconductor. To be sure, recent experiments4:5
have indicated that the attenuation in lead is amplitude
dependent, and hence that the strong-coupling nature
of the material may play an essential role—one not
considered by Pokrovskii.!! This possibility is, of course,
a suitable subject for a future extensive investiga-
tion. Nevertheless, in order to make some semiquanti-
tative experimental predictions, we quote Pokrovskii’s
expression

(7.42)

as/ay = (T/T)V? exp[—An/kT].  (7.43)

Here A, is the minimum value of the gap on the curve
defined by v-q=0, where q is the momentum of the
sound wave. We are thus concerned with the same curves
on the Fermi surface which were of importance in the
preceding section. Equation (7.43) holds when

2/ Ap\1/2 (Am—Agm)
—<—> expl:——-———]»l, (7.44)
¢\kT kT
and

(An/ET)32%c /K1, (7.45)

where Agn is the absolute minimum gap on the Fermi
surface, ¢ is the velocity of sound in the material, and v
is the Fermi velocity. In lead, ¢/»= 1073, and hence both
of the above conditions are well satisfied in the region
attained in experiments. The basic form given in Eq.
(7.43) is independent of the actual shape of the Fermi
surface which only affects the constant of propor-
tionality. We note that Scalapino, Wada, and Swihart5!
have solved Egs. (3.11) and (3.12), suitably modified
for finite temperatures, and shown that A(Apcs) obeys
the BCS temperature law. It is reasonable to assume
that the anisotropic gap calculated from those equations
has the same temperature dependence. The values of A,,
that enter Eq. (7.43) for sound propagation in each of
the three main symmetry directions are the same as
those found in the last section. Because of the form of
Eq. (7.43), only the lowest value of A, for a given q
direction is observable at low temperatures. Since the
absolute minimum value of the gap, 1.28 meV, appears
for each of the symmetry directions, there is no way to
distinguish between them. However, as the phonon
propagation vector is tilted off the (110) plane, the
smallest gap appearing should become larger than 1.28
meV. The rate of change of the minimum relevant gap
depends on the detailed shape of the tubes near 7 (see
Fig. 10).

4 B, R. Tittmann and H. E. Bsmmel, Phys. Rev. Letters 14,
296 (1965).

©R. E. Love, R. W. Shaw, and W. A. Fate (to be published).

81 D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 14, 102 (1965).
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APPENDIX

We consider, as an example, the effect of a local
minimum (An) of A(6,¢) on N(E) and dN(E)/dE for an
anisotropic superconductor-normal metal junction at
zero temperature. From Table IV and Eq. (7.7), we
have

E
. - g1
Jlim_ N(E)=C 0 (Esz)mdx 1xCE, (A1)
im _dN(E)/dE=}xC, (A2)
and for E> A,
) Am  Edx B Edx )
Jim N (E)=C / W+ (C+D) W= 3m(C+D)E—DE sin™(A,/E), (A3)
m 0 - Am -

i MOy ot

G = =3m(C+ )+m . (A4)

Since the lower integration limit does not affect the results in any essential way, it is taken to be zero for simplicity.
We now consider the effect of An on the derivative of the tunneling current at zero temperature between two
superconductors, one isotropic (1) and the second anisotropic (2). From (A1), (A3), and (7.3), we have

for eV<A1+An,
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and for eV> A1+ An,
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where Q is a lower integration limit which does not affect the results in any essential way. Subtraction, integration,

and differentiation then yield
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