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The effect of thermodynamic fluctuations on off-diagonal long-range order (ODLRO) is discussed. The
two-particle Yang correlation function is calculated using the Ginzburg-Landau theory allowing such Quctua-
tions. The behavior of the correlation function at large separation is examined and it is found to be con-
sistent with Yang's criterion for ODLRO only in three dimensions. In one and two dimensions Yang's
criterion is not satis6ed.

1. INTRODUCTION

HERE has been considerable interest recently in
the possibility of superconductivity in one- and

two-dimensional systems. Little' has proposed a model
for a one-dimensional superconducting organic molecule
with a high-transition temperature. Ginzburg'3 has
suggested that superconductivity could occur in the
neighborhood of a surface while the bulk material was
in normal state. 1A"e shall not enter into a detailed dis-
cussion of these models or into an evaluation of the
recent experimental evidence concerning two-dimen-
sional superconductivity. ~~ Instead we shall concen-
trate on the theoretical question of whether a one- or
two-dimensional system of fermions interacting with
attractive forces can exhibit oG-diagonal long-range
order (ODLRO) at low temperature. There is a general
theorem that any one-dimensional system with short-
range forces will not undergo a phase transition at any
finite temperature. ' The usual criterion for supercon-
ductivity is that the BCS equation have a nontrivial
solution. ' ' However, for attractive interaction the BCS
equations have a solution in any number of dimensions.
Further it has been shown by Bogoliubov, Zubarev,
and Tserkovnikov' that a system with the model BCS
Hamiltonian is soluble to within terms of order (1/0),
where 0 is the volume of the system, and that a phase
transition occurs. Their proof is independent of the
dimensionality of the system. The interparticle forces
in the model BCS Hamiltonian are long range and so
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this result does not contradict the theorem quoted
above. The absence of a phase transition in one dimen-
sion is caused by the fact that the free energy can
always be lowered by breaking up a very long section
of one phase into subsections with alternate sections of
the other phase. Thus, to treat this problem correctly,
it is necessary to start with a Hamiltonian with short-
range attractive forces and to allow for thermodynamic
fluctuation.

We shall show that if we start with the assumption
that below a critical temperature there is an ordered
phase with a Ginzburg-Landau order parameter, then
because of thermodynamic Quctuations the two-particle
correlation function for one- and two-dimensional
systems will not be consistent with Yang's general
criterion for ODLRO."This result is in agreement with
the general theorem on one-dimensional systems quoted
above. The general theorem does not apply to two-
dimensional systems but our result strongly suggests
that there will be no ODLRO in two-dimensional
systems either.

Ferrell" has also considered the possibility of super-
conductivity in a one-dimensional system and he found
no ODLRO. His treatment is based on the presence of
low-lying compressional modes in a one-dimensional
system and the relationship of his approach to the
general theorem on one-dimensional systems is not
clear. In the present approach the thermodynamic
Quctuations in the phase of the order parameter are
seen unambiguously to be responsible for the absence
of ODLRO.

2. THE TWO-PARTICLE CORRELATION
FUN CTIOÃ

We start by assuming that below a critical tempera-
ture there will be ODLRO present in the system and
that the system can be characterized by a Ginzburg-
Landau order parameter 0 (x). We further assume the
free energy of the system will be given by Ff@(x)j,

» C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).The concept. of
ODLRQ was introduced for boson systems by Penrose LO. Pen-
rose, Phil. Mag. 42, 1373 (1951)j and elaborated by Penrose and
Onsager (O. Penrose and L.Onsager, Phys. Rev. 104, 576 (1956)g.
It is implicit in Gorkov s (Ref. 13) treatment of superconductivity."R. A. Ferrell, Phys. Rev. Letters 13, 331 (1964).
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where"

F[e(x))=a dx~e(x) ~'+(b/2) dx)lIr(x) ('

+c dx(Ve(x)~s.

X exp{i+(x)} we obtain for the change in free energy

aF[+(x)]=F[+(x)$—F.

= —2a 4'(x)dx+c (V4(x) )'dx

+c@o' (V q (x) )'dx,

The critical temperature T, is determined by the
condition that a(T,) =0 and for T(T„a(T)(0.The
minimum value of F[+(x)), Fo for T(T, is given by
ChOOSing %(X)=Toe'l'o and %o' ———a/b and ioo iS an
arbitrary constant. Yang has shown that the criterion
for the existence of ODLRO is that the oG-diagonal
elements of the two-particle correlation function are
finite in the limit as the separation goes to infinity, i.e.,
G(xt, xs) ~ a finite constant as

~
xi—xs

~

~oo where

G(xt)xs) (lpt (xl)lpga (xs)i/i (xs)lpt (X2)) (2)

=COnst(lIf(xt)% (Xs)) . (3)

G(xi, xs) = COnSt $4(X)'k(xr)4 (Xs)

The terms omitted in (3) are negligible when
~

xi—xs
~

is large and the constant is the square of the factor
which relates the Gorkov E function to the Ginzburg-
Landau parameter 4'(x).rs ( ) denotes the thermo-
dynamic average which can be written

where the terms omitted are of higher order in grad p,
4. Substituting into (4) gives

G(Xt,Xs) = COnSt $4(X)X)Ol(X)

X (0'o+4(xi) )(To+4(xs) )
Xexp{i(o (»)—y(xs))

P~F[4—(x), Ã(x)3} (6)

The integrations over the phase and modulus can be
done separately,

To perform the phase integration we expand &p(x) in
a Fourier series

y(x) =p 0'l, exp{ik x}

with C'l =lIl l . We write Cl, ——pl, +ipse and integrate
separately over q» and yi, . The phase integration
becomes

X exp{—P(F[+(x)]—Fo)}, (4)

where X)%(x) denotes the functional integration of %(x)
over all function %(x) and the weighting factor is de-

termined by the free energy given in (1) with P = 1/he T.
We are interested in examining G(xi,xs) in the limit as

Xy—X2

The functional integral in (4) cannot be evaluated
exactly. Instead we shall evaluate it by expanding 4'(x)
about 4'o and keep only quadratic terms. Writing 4'(x)
in terms of its modulus and phase 4'(x) = (0'o+4(x))

Xexp{ip [ql, (cos(k xl) —cos(k xs))

+xl, (sin(k x,)—sin(k x,))j

where 0 is the volume of the system. Since we are only
interested in the dependence of the integral on x~, and
x2, we can evaluate it immediately by completing the
square on p~ and gi, and we obtain

1 s&o( cos(k. xi) —cos(k xs))s+(sin(k xi) —sin(k xs))'
I~ exp

0.0 k'

where n=4Pcg'o' The cu.toff Q is introduced to eliminate in (8) reduces at once to gjve
the short-wavelength Quctuations which are not in-

cluded in the Ginzburg-Landau theory. The integrand 1 "«2{1—cos[k (xi—xs)j}I„exp
0,0 k'

~ V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz
20, 1064 (1950).
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~
xi—xs~, and, then we get
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I~(X) exp{—X/n} 1 dimension

-exp{—Dn(2QX)7/~n} 2 dimensions (10)
exp{—(Q—m/2X)/m'n} 3 dimensions.

The integration over the modulus of %(x) can also
be done in a straightforward manner by expanding in a
Fourier series and we obtain

1 exp{i% (x,—x2)}Ie-+0'+
2PQ ~ —2a+ck'

This integral can be done immediately and combining
the result with that for the phase integration we get

G(X) (4'0'+exp{ —qX}/4Pcqj exp{—X/n}
j. dimension

L+0'+ exp{—qX}/4Pc(27rqX)'i'j

&& exp{—ln(2QX)/mn} 2 dimensions (12)

L+02+exp{—qX}/SPcnXj
Xexp{—(Q m/2X—)/vr'n}, 3 dimensions

where q= (—2a/c)'I' is the reciprocal of the usual corre-
lation length.

Examining the behavior of G(X) as X~~, we see
at once that in three dimensions G(X) —+ a finite con-
stant as X—+~ while in one and two dimensions the
behavior of the oG-diagonal elements of the two-particle
correlation function is inconsistent with Yang s cri-
terion for ODLRO.

For a charged system the foregoing considerations
must be supplemented by a study of the eGects of
charge fluctuations of the free energy. Preliminary work
indicates that these effects do not alter our main
conclusions.

3. CONCLUSIONS

We have shown that if we start with the assumption
of ODLRO and a Ginzburg-Landau order parameter,
and if we calculate the o6-diagonal elements of the two-
particle correlation function allowing for the thermo-
dynamic fluctuations in the phase of the order parame-
ter, then only in three dimensions is Yang's criterion of
ODLRO satished. In one and two dimensions the be-
havior of the oft-diagonal elements of the two-particle
correlation function is inconsistent with Yang's criterion
for ODLRO. This strongly suggests that there can be no
ODLRO in one and two dimensions.

It is of some interest to examine the temperature de-
pendence of the function n(T)=4Pc%'02 which enters
the theory. Note that whereas for a one-dimensional
system ot is a characteristic length, for a two-dimensional
system 0, is dimensionless, and for a three-dimensional
system 0. is a reciprocal length. As a function of tem-
perature n(T) ~ 0 as T -+ T, and n(T) ~m as
T —+O'K. We also note that for a two-dimensional
system n(T) is very large at low temperatures ( Pe&)
and that G(X) will fall off very slowly. Since the results
were derived using the Ginzburg-Landau theory they
are strictly true only in the neighborhood of the critical
temperature, however an examination of a more general
formulation of the theory of superconductivity in terms
of functional integrals suggests that this restriction is
unnecessary.
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