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In a very pure single crystal of antimony, a complete set of kinetic transport coefFicients of the galvano-

magnetic and thermomagnetic eEects was determined at each of the temperatures 1.6, 2.1, 3.0, and 4.0'K in

fields up to 18 kG. Standard measuring techniques were employed. An electron-phonon normal process was

found to dominate the scattering for both electronic and lattice conduction. The usual theories assuming a
time of relaxation were applied to the gross coefficients, while the oscillations found at the higher fields were

analyzed in terms of the several existing theories which take account of Landau quantization. Both the
lattice thermal and ideal electrical conductivities appeared to be anomalous in magnitude and temperature
dependence, but their ratio was very satisfactorily fitted to the relation expected for an X process. A stand-
ard two-band model assuming a time of relaxation gave remarkably good agreement with data for the field

dependence of the gross effects. The magnitude and large temperature dependence of the Nernst-Etting-
hausen coeKcient were satisfactorily explained by a simple theory of phonon drag. Since the lattice conduc-

tivity was limited by electron scattering, the oscillations in the lattice thermal resistivity were quantitatively
shown to be a result of an oscillation in the density of scattering centers, as a consequence of
Landau quantization.

I. INTRODUCTIOH

Y the application of a magnetic held to a semimetal
it is possible to observe separately some of the~

~

~

metallic properties and some properties of the lattice
in a single specimen. For this reason, and as part of a
general program in the study of transport effects, ' ' a
set of six independent transport coefFicients was meas-
ured in a single crystal of the semimetal antimony,
from which the kinetic tensors" were computed. Anti-

mony, like bismuth, is quinquevalent with two atoms
per unit cell, thus leading to five ulled Brillouin zones.
Overlap at the fifth zone boundary results in a de-
scription of the transport properties and related phe-
nomena in terms of two bands, one of holes, and one
of electrons, each with approximately 1.2Xi0 ' car-
riers/atom and Fermi energy & 10 "erg. Recent opinion
has been divided between this "classic" description and
a three-band model. '

Antimony has been extensively studied by de Haas-
van Alphen eGect, '—"Shubnikov —de Haas effect, '"
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ultrasonic attenuation, "" cyclotron resonance, " '

anomalous skin effect," infrared absorption, " and
galvanomagnetic eHects at high"" and low'" tempera-
tures. The magnetothermopowers and thermoresistance
effects reported here for liquid-helium temperatures
apparently have not been studied since the early work
of Rausch. 23

Models of the band structure resulting from these
studies seem to fall into two categories. In each of
these, the rather well-known set of three tilted (Shoen-
berg') ellipsoids are called electrons. The remainder of
the carriers are presumed to be an equal number of
holes. In one model, these "holes" are described in
terms of a set of three (warped?) ellipsoids with only
slight tilt' ""and in the other model the holes are
divided into two bands of light and heavy holes corre-
sponding to one prolate and one oblate ellipsoid. 4 ' It
should be kept in mind, however, that these models
presume the Shoenberg ellipsoids to be electrons and a
positive identification as such has not been made ""'

Phenomenological definitions, conventions and perti-
nent experimental facts follow these introductory para-
graphs. The results and discussion of each of the
separable aspects of the transport phenomena are then
given. In Sec. IVA the ideal electrical conductivity and
the lattice thermal conductivity are discussed. In IVB
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1'IG. 1.The crystal holder
for the measurement of the
magnetoresistance, Hall ef-
fect, thermal magnetore-
sistance, Righi-Leduc ef-
fect, thermoelectric and
Nernst-Ettinghausen ef-
fects. The orientation of the
antimony single crystal rel-
ative to directions of the
currents (1), of the fields
measurement t (1) and (2)j,
and of the magnetic field
(3) is also indicated.

HEATER

the results of galvanomagnetic measurements at very
low fields are reported. Section IVC deals with the
asymptotic behavior of the various transport coefFi-

cients at high fields. Section IVD gives results and
comparison with theories of the oscillations due to
Landau quantization.

The fluxes %~ and J are the thermal and electrical cur-
rent densities expressed as linear combinations of the
affinities G (the negative of the temperature gradient)
and E~ (the electric field). The asterisk on K* and W*
has been used by jan~ to indicate tha, t the internal
quantities have been modified by a, term involving the
chemical potential f so as to represent measured qua, n-

tities. i' The kinetic coeKcients defined by Eq. (1) are
the quantities calculated in formal transport theories.
Each is a 2X2 tensor, and by symmetry this tensor is
homomorphic" to the complex numbers. These co-
efFicients are named as follows: fJ, the electrical con-
ductivity; A", the thermal conductivity; ~", the
thermoelectric power; and x", the Peltier tensor
x"=To". Each of these coefFicients appears as a sum
of the independent contributions from each carrier

'4 L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931)."J.M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1960), p. 383. The notation prime is used by Ziman in
place of the asterisk.

"See for example C. G. Grenier, J. R. Long, J. M. Reynolds,
and N. H. Zebouni, Proceedings of the 9th International Confer-
ence on Low Temperature Physics, Columbus, Ohio, 1964
(unpublished).

II. PHENOMENOLOGICAL DEFINITIONS
OF THE TRANSPORT EFFECTS

All measurements were made with the magnetic field

parallel to the trigonal axis with the convention indi-
cated by Fig. 1.Threefold (3m) symmetry perpendicular
to the plane in which the eA'ects are measured implies
that the kinetic equations' for two-dimensional iso-
tropic media are applicable. '4 Thev are

J=OK*—e"6
(equipotential)

band plus the phonon contribution, provided band-to-
band interactions and phonon drag are neglected.

The physical conditions leading to Eqs. (1) are,
unfortunately, not readily attainable in the laboratory.
In practice one measures the tensor p (electrical ma, g-
netoresistivity and Hall resistivity) defined by

(isothermal)

and obtains the quantity a by a, simple inversion
0 = p '. The absence of primes on the other coefIicients
indicates the "isothermal" condition. ' Considerable ex-
perimental and computational complexity is added if
the other kinetic coeKcients are to be obtained. One
measures the tensors j (thermal magnetoresistivity and
Righi-Leduc resistivity) and ~ ("adiabatic" Seebeck
and Nernst-Ettinghausen effect) defined by

"adiabatic"

with the "adiabatic" condition' denoted by a single
prime. The remaining kinetic coefFicients are then ob-
tained from the experimental coefIicients through the re-
lations Ii"=$ '(1+Up 'y 'T) and ir"=~"7=p 'c'f 'T
=o5'RT. In practice, the term «"j 'j 'T= e'ir" is
usually negligible compared to unity and it is possible
to write k"=j '=R In the p. resent case, however, this
correction was found to range from 2.5% at 1.6'K to
6.5%%u~ at O'K. Details concerning the foundations of
Eqs. (1), (2), and (3) can be found, for example, in the
articles by Callen' and more explanation concerning
their application in the present notation is in the articles
by Grenier et cl.2 3

III. EXPEMMENTAL DETAILS

The apparatus and measuring techniques were similar
to those used in the earlier work of Grenier et al. ,"and
their description will be abbreviated accordingly.

The crystal was cut with a Servornet spark cutter
from a Cominco ~ grade 69 zone-refined bar. Flat sur-
faces perpendicular to the trigonal axis were obtained
by cleavage and the finished crystal was cleaned in an
acid solution. "Dimensions were 20X4.6)&2 mm with
the 4.6-mm width along a binary axis. The long dimen-
sion was held vertical and the upper end was soldered
to the tip of a No. 9 copper wire (heat sink) passing
from the interior of a s-in. cylindrical high-vacuum
( 4&&10

—'-mm Hg) chamber containing the sample to
the liquid-helium bath. The arrangement is shown to
scale in Fig. 1. All solder connections were made with
nonsuperconducting 60-40 Bi-Cd eutectic. The source
of hea, t current was obta, ined from a, 107-0 hea, ter which
was wound from No. 40 Constantan on a hoop-shaped
core of No. 16 copper wire and soldered to the lower

"Cominco Products, Inc. , Spokane 4, Washington.
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end of the crystal. Electrical current was provided by
leads soldered to the upper and lower ends of the crystal.
A 22-cm length of 10-mil Supercon A33 wire was used
to connect the electric current lead to the heater end
of the crystal. This was done in the hope that all effects
could be measured without disturbing the crystal, the
superconductor being able to carry high electric cur-
rents in the measurement of p, but conducting negligible
heat in the measurement of j and 4'. This procedure
was moderately successful, but some undesirable effects
were observed. "

The difFicult" problem of held orientation was par-
tially solved by 6nding the magnetoresistance mini-
mum" of a zinc crystal mounted parallel to the basal
plane of the antimony.

Magnets and cryogenic equipment were identical to
those used by Rao4 with the addition of devices de-
signed to improve the stability of the bath temperature.

For galvanomagnetic measurements, the current
ranged from 1 mA for measurement of pii at high field
to 1 A for measurements at zero and low field. Heat
currents for thermomagnetic measurements ranged from
0.1 mW at 1.6'K to 1.0 mW at O'K, the main criterion
in this case being to keep the temperature gradient
suKciently small ((0.1'K/cm) to apply various linear
approximations in the computations. "
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FIG. 3. The thermal magnetoresistivity p» is shown as a func-
tion of the magnetic field. It is seen to saturate to the lattice
contribution at a moderate field value. The behavior of y» at
higher fields is shown in Fig. 12.

IV. RESULTS AND DISCUSSION

A. The Lattice Thermal and Ideal Electrical
Conductivities

J. Comparisog with Standard Theories for Metals

The zero-field electrical conductivity was calculated
from resistance measurements taken as a function of
temperature throughout the liquid-He4 range. The
high purity and. dominance of phonon scattering were
demonstrated by the resistivity ratio p3oo/pr, which
varied from 3600 at 4.2'K to 9500 at 1.2'K. When a
residual resistivity po=4)&10 '0 cm was subtracted
from the measured values, the resulting ideal con-
ductivity o.;e= (pr —po) " was found to fit a power law
;o=e3. 70X1 'OT" A/cm V, Fig. 2. Although this is

rather close to the T ' law predicted for electron-elec-
tron interband scattering, '" it will be seen that the
scattering was dominated by an electron-phonon iV
process. The generally accepted Debye-GrQneisen-Bloch
theory predicts, however, a low-temperature T ' law
given by"

j il0 -V)
'K A

FIG. 2. The lattice thermal conductivity ),"and the ideal elec-
trical conductivity cr; are shown as functions of temperature. The
power laws of the individual conductivities do not fit the standard
theory for metals (i.e., T~ and T '), but the T' law found for the
ratio Xg"/cr; is expected for an electron-phonon Ã process.

"J.R. Long, Ph.D. dissertation, Louisiana State University,
1965 (unpublished)."P. B. Alers, Phys. Rev. 101, 41 (1956).

5
— Oa~

for N-process electron-phonon scattering. gs is a Debye
integral, and o-z is the conductivity when T=H the
Debye temperature. Here there is a clear disagreement
with the theory both in power law and in magnitude,
the conductivity being some 1000 times larger than
expected from Kq. (4).

A complementary disagreement was found in the
lattice component of thermal conductivity X,". lt is
possible to write the thermal conductivity as R."+X,"1
where the electronic term R," is of the form H " and
the lattice term A.," is approximately constant at a

~ See Ref. 25, p. 416."See Ref. 25, p. 364.
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Fro. 4. The Righi-
Leduc resistivity y» is
shown as a function of
the magnetic field. The
saturation of y11 at
high 6eld has the ef-
fect of making y» pass
through a maximum
before tending to zero
at higher Gelds.

0 l.0 2.0 3.0 4.0 5.0 6.0 &.0
Hive)

"See Ref. 25, p. 321.

given temperature. Figure 3 shows that at moderately
high fields the thermal resistivity y~~ approaches a
nearly constant value which is identified as p, . This
quenching of the electronic component of y~~ corre-
sponds to the large quadratic magnetoresistance which
causes the electronic term (X»,

" H ') in &»" to be-
come negbgible with respect to the lattice term. Figure
4 shows the Righi-Leduc resistivity y~~ approaching
zero simultaneously with the saturation of y~~. It fol-
lows that X» ——y»/(yqP+y~P) =1/y», and noting that
g"=R(1+e'~"T)=R, it is concluded that the high-
field measurement of y~~ is nearly a direct measure
of 1/Xg".

The corrected X," values are shown, in Fig. 2, as a
function of temperature. It was found to obey the law

X,"=7.5X10 T' W/cm 'K. Neither boundary nor
isotope scattering, from which one expects a T' law,
would result in values as small as those measured.
Electrons are expected to scatter most of the phonons
and for a normal process

27 X.," T 'Lg, (8/T)]' 3.67 T &

X.e" (5)
4+ n.' 8 g, (8/T)

is predicted. "Here P,e" is the zero-field electronic corn-
ponent of V' at the Debye temperature and no is the
number of carriers per atom which for phonon scattering
purposes will be taken as the sum of the absolute values
of the number of carriers per atom in each band.
Electron-phonon A -scattering was expected to dominate
the lattice conductivity, but the experimental result is
clearly diGerent in power law and 1000 times smaller
than that predicted by Eq. (5).

These discrepancies between theoretical and meas-
ured values of 0-;~ and 'A," become more interesting
when the ratio of the two conductivities is examined.

From the curves which fit the experimental points,
Fig. 2, it is found that

l,j"/ o, e= 2.445 X10 "T' joule V/A 'Ksec. (6)

When the ratio of the theoretical Eqs. (4) and (5) is
taken, one obtains

where I„is the theoretical Lorentz number 2.71X10 "
esu. Taking a consensus ' value of 4&10"cm ' as the
number of carriers in each of the (two?) bands, the
value n =2.42X10 ' carriers/atom results. Equations
(6) and (7) are then in perfect a.greement when the
characteristic temperature 8= 178'K is used. This value
is consistent with previously reported values which have
apparently ranged from 140 to 201'K.33 Apparent1y
most of the discussion would pertain to the right choice
of n, .'4

As one might surmise from the agreement, the T'
law is of a more general nature than the power laws
predicted for the individual conductivities. Indeed,
using a variational method, Ziman obtains"

(8)

which reduces to Eq. (7) when the Debye formula C,
= (12m.4/5)Eh(T/8)' is substituted. The inequality in
Eq. (8) results when U processes which behave as
exp(8/T) are present. The fact that an exact Tr law is
followed here means that the only scattering of any
consequence is due to an electron-phonon E process.

The failure of Eqs. (4) and (5) can nevertheless be
made plausible by considering the possibility that the
angle of scatter in the 1V process is larger than T/8, a
condition which may be expected to exist for semi-
metals which contain small Fermi surface pockets.

Z. The Ideal Resistance of the Semimetals at
I.ovo Temperatures

The usual criterion in a metal where an electron-
phonon E process occurs is that the limiting value of
the scattered-phonon wave vector q be taken as qD,
the Debye sphere radius. However, if 2k p, the diameter
of the Fermi sphere, is smaller than qD, the limiting
value of q should be taken as 2k' instead of qa, chang-
ing Eq. (4) into

1 Tq-'- ]8*y--'
&e—p= 5 O8y

4 8'i &ri
where 8*= (2hr/qD)8 is the effective Debye temperature

~ H. M. Rosenberg, Lozv Temperature Solid State Physics
I,'Oxford University Press, London, 1963), p. 8.

'4 If, for example, electrons and holes can be considered inde-
pendent scattering centers with the same scattering efficiency, then
n'=e&'+nP and 8 would be nearly 200'K.
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for electron scattering. In a more usable form,

(pr/pr ). = 4(&/&') P'/0*)'Pgs(&*/&)], (10)

where the low-temperature ideal resistivity pz(, ~) is
compared with a high-temperature 2' (room-tempera-
ture) resistivity. In antimony, the electron Fermi
pockets are not spherical. For example, the Shoenberg
ellipsoids are cigar-shaped with an almost circular cross
section and a long axis about 4 times the small axis4:

(ki,ks,ks )~(4.3,3.8,17)10' cm '. (11)

At low temperatures the relaxation time depends mainly
on the small cross section of the ellipsoid so that the
2k' value to be used for the spherical case can be taken
as the mean diameter of the ellipsoid's small cross sec-
tion. With 8=180'K, qD~10' cm ' and 2k~8.3 10 ',
a, value for 0*=15'K is found.

The T' law for resistivity would occur for T&&8*, but
since in the present range of study, T is still of the
order of 8*, a smaller power of T dependence is to be
expected in the resistivity. For example, the experi-
mental T" law would fit closely within the range
3'& T&6' (i.e., 1/5&2'/0*&2/5) for 8*=15'K or the
range 2'&T(4'K for 8*=10'K, whereas a T" law
would be required for 2'( T&4'K and 8*=15'K. Thus,
the apparently anomalous temperature dependence, re-
ported above, can be made plausible by these
considerations.

Besides the approxima, te match in the temperature
dependence, it is also interesting to check the order of
magnitude of the effect. The experimental value for
pr/psoo is found to be 30 to 40 times smaller than
expected from Eq. (10), and this may also be made
plausible by several possible alternatives. It may be
seen that an almost "full phonon drag'"' " could de-
crease the resistance by such an amount. Also the
experimental p30O' should correspond to a 8~ larger than
its low-temperature value since the phonons involved
in the scattering at room temperatures would have
wave vectors larger than 2k', indeed, U process, inter-
band scattering, and scattering along the large size of
the ellipsoids would not be negligible eftects at room
temperature. Thus the discrepancy in the resistance
ratio can be taken care of by a value 8*=37'K at room
temperature.

Another point of interest about semimetals at low
temperatures as seen from Eqs. (4), (5), (8), and (9)
is tha, t the Debye T' law for specific heat does not
impose the p, ~ T' law nor the Xg" T' law which are
governed by another Debye temperature, but would
impose the ) „"/o.;d Tr law which depends on the same
Debye temperature.

B. Lour-Field Galvanomagnetic Effects

I. Theory

One of the most complete semiclassical treatments of
gross transport phenomena, in a magnetic field is that

of Sondheimer and LVilson. ""Quantum theories yield
few corrections, their effort being directed toward ex-
plaining the oscillatory effects." '0 Sondheimer and
Wilson presented a broad treatment which, in principle,
is applicable to a large variety of transport mechanisms.
In the galvanomagnetic eEects reported here there was
probably a mixture of mechanisms due to scattering of
the electron-phonon, electron-static-defect and electron-
boundary types. From the mobilities, the electron mean
free path was estimated to be on the order of 5% of the
smallest sample dimension. (An a,ttempt to observe
magnetomorphic oscillations" "ofexpected period 5 6
was thus unsuccessful. ) Thus it was considered prudent
to neglect size eR'ects, any correction being small and
hard to make. "The general interpolation formulas""
are applicable to the problem which remains, but are
so intractable as to make quantitative analysis im-
possible. The only manageable formulas are those that
rely on integration of the Boltzmann equation by means
of a relaxation time r. These formulas (in cgs Gaussian
units) are

Hart ecH Q——n,a~ f/(H'+HP), (12a)

ore ecH P .(a——)n;/(Hs+H „s) (12b)

generalized to an arbitrary number of bands. The upper
and lower signs (&) denote hole and electron terms,
respectively. The subscripts 1 and 2 follow the con-
vention of Fig. 1, while e, c, and H have their usual
meanings. The quantities n;, a;, and H; are given for
the ith band and are the carrier density, the orbita, l
ellipticity parameter, and the saturation field, II;
=m, *c/er, , respectively. 's The use of a relaxation time
Land thus Eqs. (12)) at low temperatures is justified
in principle" only if the scattering is of the static
point-defect type (elastic). Furthermore, the condition
ron&1 is stipulated, where ro=eH/m*c, the cyclotron
frequency.

"E.II.Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A190, 435 (1947)."E. H. Sondheimer, Proc. Roy. Soc. (London} A193, 484
(1948}."A. H. Wilson, Theory of 3fetals (Cambridge University Press,
London, 1953), p. 193. In the semiclassical treatment, quantum
statistics are applied to the classical Boltzmann equation."I.M. Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor.
Fiz. 55 88 (1957) LEnglish transl. : Soviet Phys. —JETP 6, 67
(1958) .

ss E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).

~ G. E. Zil'berman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955)
)English transl. : Soviet Phys. —JETP 2, 650 (1956)j."N. H. Zebouni, R. E. Hamburg, and H. J. Mackey, Phys.
Rev. Letters 11, 260 (1963).

~ K.. R. Emerson, C. G. Grenier, and J. M. Reynolds (un-
published).

~ See Ref. 25, p. 464.
44 See Ref. 3. When v is not isotropic g= (1/2) fR /+R ' }.

with R= (nIIv 1) (a22r2) '. Subscripts 1 and 2 correspond to orienta-
tions of long and short axes of the ellipsoid's cross section by the
basal plane. The tensor o. is the inverse mass tensor m, '.
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TAsLE I.Two-band-model parameters as determined by fitting Eqs. (13) to Ha.» and o.» data as shown in Figs. 5 and 6.
The results are compared with those of Rao et al.

Present work at 4'K
Rao et ul. at 4.2'K
Present work at 1.6oK
Rao et ul. at 1.7'K

IJg
(G)

16.1
115

9.88
101

H,
(G)

69.4
540
42.3

453

7.70
10.7
10.23
113

3.56 4.31
10.6 4.7
4.74 4.28

12.4 4.5

HO 11

Q.
+i+h ~e+e

(10» cm-') (10» cm-')
&a
(6)
15.0
86.4
10.0
79.6

25 43 17
492 4.68 5.7

15 4.3 1.5
459 4.93 5.8

Z. Discussion and Results

The high purity of this crystal resulted in a domi-
nance of phonon scattering (the zero-6eld data indicate
that at O'K more than 60% of the resistivity was due
to phonon scattering, though at 1.6'K this 6gure
dropped to 20%%uo) and relaxation times so long that the
value cov =1 was exceeded at 6elds below 100 G. It has
been previously demonstrated that the requirement
ear&1 is not stringent, "but the present case is a severe
test. Rao et al.' applied Eqs. (12) to data from an
antimony crystal in which it could be concluded from
the temperature dependence of the efI'ects that point-
defect scattering was dominant. Except for the failure
of the s&r(1 condition, Kqs. (12) were valid for Rao's
data. Equations (12) were also applied to data for the
crystal reported here. Although phonon scattering was
dominant, Eqs. (12) were found to describe the data
quite well. Qualitative agreement between data at 1.6'
and O'K and a two-band fit to Eqs. (12) is shown by the
curves in Figs. 5 and 6. Parameters of the two bands
determined from the 6ts are shown in Table I where

they are compared to the results of Rao et a/. ,4 Rao's
data having been corrected for an error in the measure-
ment of the sign of the Hall effect.

The results for 0&~ are examined 6rst. The saturation
Gelds are seen to be much smaller than those found by
Rao, and this is the expected result of a longer relaxa-
tion time in a crystal with a lower impurity density.
The temperature dependence of the H; is likewise in-
terpreted as due to a decreasing phonon density. The
H; appear to be decreasing to some residual value
characteristic of the imperfection concentration.

The ratios H./Hq of the saturation 6elds for the two
sets of data are in surprising agreement. The relaxation-
time concept is apparently of broader applicability than
one would expect. '~ There is no obvious reason for the
relative mobilities of two bands to be the same for two
completely diGerent scattering mechanisms. It will be
noticed that the agreement in the ratio H, /Hh, is some-
what better at the lowest temperatures where the
scattering is more nearly comparable.

The only clear discrepa, ncies between these f7qy data
and those of Rao et ul. are in the values of n;a;. The

C9a

b

l.6'K

3-

lO l00
H(G)

FIG. 5. The low-field electrical conductivity is shown at two
temperatures as a function of the magnetic field. The maximum
value of Ho» is in principle related to the carrier density, and the
temperature variation is not expected from simple theories based
on an isotropic relaxation time. The solid curves are least-squares
fits for a two-band model and correspond to the transport pa-
rameters given in Table I.

e
H(G)

FIG. 6. The low-field Hall conductivity 0» is shown as a func-
tion of the magnetic field at the temperatures of 1.6 and 4'K. For
a two-band model the positive value of cr» indicates that holes
are more mobile than electrons. The solid curves are least-squares
fits for a two-band model corresponding to the transport pa-
rameters given in Table I.
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Fro. 7. The high-Geld behavior of the magnetoconductivity 0».
The curves at 4 and 1.6'K show that the II~ asymptotic behavior
is well achieved. The Shubnikov-de Haas oscillations are well
marked at 1.6'K; the beats are due to the misalignment of the
magnetic Geld with the trigonal axis.

FxG. 8. The high-field Hall conductivity cri~ as a function of the
magnetic Geld. The positive, nonzero asymptotic value of JIB»,
which is practically temperature-independent, indicates a slight
excess of holes. The beats in the Shubnikov-de Haas oscillations
are due to misalignment.

values obtained here are smaller than those found by
Rao. Kith a decrease of the temperature from 4' to
1.6'K the peak of the IIaii curve, Fig. 5, is seen to rise
corresponding to an increase of the n;u; value, ap-
parently rising toward the larger values found by Rao
as the realm of static defect scattering is approached.
The apparent lower values of n,c; for the phonon-
electron scattering process can be understood by noting
that a longer relaxation time is expected along the
longer axes of the ellipsoids than along the shorter axes,
and this makes the (r, (1/m), ,j; ratio more isotropic
than for the case of a 7.; independent of orientation.
Thus a value u, closer to unity is expected. ~

The results of ai~ are not so clearly interpreted. as
those for o». Qualitative agreement with a two-band
model is demonstrated by Fig. 6, but the saturation
fields H, of the electron band required to 6t the a~2
data do not agree with the results of the Hajj 6ttings.
Satisfactory agreement was found for the band of holes.
The inconsistency is best expressed through the ratio
H,/Hq which is much lower for the or~ results than for
the aii results. Comparison to Rao's' data, adds con-
fusion. In Rao's data the opposite result was found with
a larger ratio H,/Hq for err than for art. These dis-
crepancies between the relative mobilities required to
6t az~ and ai~ are perhaps due to the failure of the
condition ro7& j. or some other weakness of the trans-
port theory, but it seems also possible that the result
ca,n be explained as a failure of the two-band model.

It has been argued' that a three-band model should
be applied to antimony. Rao et ul. 4 showed that their
Shubnikov —de Haas results were consistent with a
model in which the newer9 carriers are divided into two
bands, and Datars" has reported three cyclotron masses
in the trigonal direction. The discrepancies in the a~~
and a~2 data of Table I can be qualitatively resolved

by introducing a third band of either sign and appro-
priate a; values.

The number n=4.3X10'9 cm ' determined from the
ai2 6tting is a compromise between a best 6t and a
reasonable value of e. An accurate determination of n
cannot be made from ai2 when the saturation 6elds are
not well separated. A consensus value of n=4&10"
cm—' has been used for calculation purposes throughout
this article.

TxnLz II. Quantities determined from the high-Geld limiting
values of the kinetic coefBcients. The precision of these quantities
is generally good except that associated with the quantities
f() Z;z;a;a;.

4'K

Extrapo-
lation

3'K 2.1'K 1.6'K O'K

(Calculated from
Table I)

10 'Z;e;a;H;
(Measured)
10 "Z;e;a;H;
10»(+&—&,)
10 'Sf(n)Z;Z;a;H;
10-~Z;Z;
n = L,yr/LI ——~g/r.
10 ~aZ;Z;

3.71

4.76 4.61
7.6 8.0

13.0 10.5
10.9 7.48
0.091 0.143

1.0 1.1

3.02

438 4.33
7.9 8.1
6.72 4.84
4.45 3.05
0.286 0.333
1.3 1.0

2.4
1.52

C. Gross Behaviox of the Kinetic CoefBcients under
High-Field Asymptotic Conditions

1. Galnanomagnefic Coe/fi cienfs

The magnetoresistivity p» and the Hall resistivity
p2j were published earlier. "The Geld dependence of pii
was quadratic and its high 6eld value was approxi-
mately 30 times that of p» which exhibited a nearly
cubic 6eld dependence rather than the linear depend-
ence expected from the assumption n, =a~.
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Equations (12) predict that II"o» and Ha.» approach
constant limiting values as the condition IJ)&II, is
attained. Figures 7 and 8 demonstrate that the gross
(monotonic) part of o follows this prediction. The
limiting values P,m;a;H, and P, (&)n; are presented in
Table II.

A 0.2% excess of holes over electrons is indicated by
the values of P, (&)n;.

The values of P;I;g;H; decrease with decreasing
temperature as expected, but the temperature depend-
ence is less than that predicted by the low field two-band
parameters, Table I. The magnitudes of P,m,u;H; as
predicted by the low-field two-band model are included
in Table II are seen to be smaller than the measured
values. These features imply a tendency toward a prac-
tical equivalence of static defect and phonon sca, ttering
in high zelda. The larger asymptotic values of g;n;o;H,
are also consistent with the possibility of a third band
having a higher value of H; (heavy carriers).

2. Thermal Condlctieities

The thermal magnetoresistance pj's was large and at
moderate fields was so high as to cause most of the heat
to be transported by the lattice (Fig. 3). The Righi-
I educ resistivity p2~ rose sharply to a low-field maxi-
mum and decayed to the asymptote zero at high field

(Fig. 4). The latter elfect is not so interesting as it
appears. Because 4»)X», it follows that &21 X12/

(X&P+X&P) -+ X»/X~/. At moderate helds, X» decreases
as 1/H' and X~2 decreases as 1/H, thus causing y» to
increase rapidly as H' until X» approaches the constant
value X, causing y2~ to pass through a maximum and
then decrease as (X 'H) '

The kinetic thermal-conductivity tensor was com-
puted and the electronic component R,"and the lattice

Ps

component X,"1 were separated through the rela, tion
A" = R,"+Xr"1. The resulting lattice conductivity is
discussed in Sec. IVA.

Band parameters of R, were not determined because
low-field data were not taken and high-field asymptotic
behavior did not occur until fields in which an accurate
determination of A, was ruled out by the dominance of

X,1. The onset of asymptotic behavior did not occur at
the low fields observed in the galvanomagnetic meas-
urements. Because phonon scattering is more eKcient
in a thermal process than in an electrical process, the
behavior of the thermal effects is characterized by
higher saturation fields EX;q than the fields H, , found in
an electrical measurement.

3.2- 4.0'K

3.0-

O

C5 bC

SS
caJ

2.0-

l.8—
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/
/

/
/

/
/

/
/
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contribution by the lattice has been subtracted, and
then only when the scattering is such (at helium tem-

peratures, static defect scattering) that both thermal
and electrical processes can be characterized by the
same relaxation time. If the scattering is inelastic
(phonons) a small-angle scatter in energy through the
Fermi surface may be as efficient in restoring thermal
equilibrium as an angle x in the electrical process. 4'

In order to adapt the Wiedemann-Franz law to
phonon scattering, a thermal relaxation time r~ and an
electrical relaxation time r, were postulated4' where

2 I ~ I I I I

l2 I3 l4 I5 Ie l7 l8
H(kG)

Fic. 9. The high-held thermoelectric kinetic coefficient F11"as a
function of the field. The positive eGect is characteristic of an
electron-majority type of thermoelectric effect. The held de-
pendence is anomalous in departing clearly from the expected FX '
behavior. The oscillations probably arise from the scattering
mechanism developed in Zil'berman's theory.

3. Lorenta cVNmbers and the Scagering Egciency

It is customary in studies where the electrical and
thermal conductivities have been measured to compare
the results with the Wiedemann-Franz law g"=L„To.
The Wiedemann-Franz law is applicable, however, only
to the conductivity that results after any significant

rg=Arq j 0!(1 ~

the "eKciency" o. becoming unity when the scattering
is strictly elastic.

4' See Ref. 25, p. 386.
4' K. Bordoloi, Ph.D. dissertation, Louisiana State University,

1964 I',unpublished).
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FIG. 10. The high-field Nernst-Ettinghausen kinetic coefficient
~»" as a function of the field. The H ' asymptotic dependence is
well illustrated. The values of H~I2" at the different temperatures
are used for the determination of the density of state Z'" shown
in Fig. 11.The oscillations are probably due to oscillations in the
density of states as a function of the magnetic field.

The efficiency may be determined from the measured
I orentz numbers defined by Lt=ht«"/&r»T and Ls
= F12 /&1sT where V'= R,"+lto"1. When cs= 1, I1=Ls
=I.„. Because the relaxation time appears only in
H, =m, "c/er, the role of a is to replace H;, by H, x
= (1/n)H, . in the expressions for tt," derived by com-
bining Eqs. (12) and the relation P."=L To. Only in
the extremes of low and high field does I.„have a
simple relationship to J & and L&, namely

limH sLt nL„,——limH „Lt——(1/n)L„, (13a)

ltmH oLs=ct L„, limH „Ls=L . (13b)

Thermal data were not taken at fields sufficiently low
for the lower limits to apply and it was difficult to
obtain satisfactory high-field results because of the
dominant lattice conductivity. Values of 0. obtained
from the relation Lt (1/a)L„a——re given in Table II.
An empirical proportionality between 0. and the ef-
fective density of states is noted without further
comment. Division of the H, in Table I by the appro-
priate a should provide estimates of the band parameters
for R,. The increase in a from 1/10 at 4'K to 1/3 at
1.6'K corresponds to the increasing percentage of
boundary and impurity scattering (u= 1) found in the
0 results discussed earlier. Were the impurities not
present, o. should tend to zero at zero degrees in a bulk
specimen.

In a study of the Lorentz numbers of tin, Bordoloi"
found very good agreement with the complete set of
Eqs. (13) thus lending more weight to the relaxation-
time concept. These limited results on antimony sup-
port those findings.

ets" tss——r'h'cTH —Q-
H'+(f( )H )'

(14b)

for the kinetic Seebeck and Nernst-Kttinghausen co-

efFicients. The notations and conventions are those used

for Eqs. (12) with the addition of the densities of

states Z; and an undetermined empirical function f of

the scattering efFiciency n. In view of the success of

Eqs. (12) in describing the galvanomagnetic eRects, a
fit of Eqs. (14) to e" should be attempted, but the

necessary low-field data are not available for this

article.
Figures 9 and 10 show the high-field quantities H'&i~"

and Hets". Equations (14) indicate that these quantities
should become constant at high field. It is evident from
Fig. 10 that ets" has the expected 1/H asymptotic de-
pendence. The sums of the densities of sta, tes Pg;
resulting from the high-field values of H~~2" are given
by Table II. The P;Z; are much larger than the esti-
mated value of 0.8)(10" erg ' cm ' obtained with
quadratic bands. "The large temperature dependence
of P;Z, is also unexpected, but will be seen to be re-
lated to a phonon-drag eGect.""
"Taking only two bands, Rao's (Ref. 4) value g = 1.3X10-"erg

will be assumed for the new carriers (Ref. 9) and a consensus of
&=1.9X10 " erg supported by the temperature dependence of
our Shubnikov —de Haas oscillations will be used for the tilted
ellipsoids (Ref. 8). With m=4)&10" cm ', an estimate Z;Z;= (3/2)Z, n;/g;=0. 8X10~ erg ' cm ' is obtained and is seen to
be much less than the values obtained from f1'".' See, for instance, D. K.' C. MacDonald, Thermoelectricity
(John Wiley R Son, Inc. , New York, 1962), p. 92.

"See, for instance, J. M. Zintan, PrinciPtes of the Theory of
Solids (Cambridge University Press, London, 1964), pp. 209 an/
410.

4. Thermoelectric CoePcietsts

The experimental thermoelectric tensor ~' was re-

ported earlier. '6 The Seebeck coefficient ~~~' exhibited a

complicated behavior at moderate fields of the same

nature as that observed in y2i. The high-field depend-

ence of Lyy was approximately H" with a negative

value, whereas a quadratic dependence was expected.
The Nernst-Ettinghausen coefficient ~2~' was positive
and slightly quadratic at the lowest fields, but exactly
linear above 500 C as expected.

In computing the kinetic tensor ~", no correction was

made for the effect of the Constantan leads. Effects due

to the neglect of e,„were estimated to be on the order

of those due to copper" and hence negligible at all but
the lowest fields.

Integration of the Boltzmann equation by means of
a relaxation time resulted in Eqs. (12). The same

theory, ' '7 when used to calculate a heat current

density, results in the equations

u~f(ct)H, Z;
H„,-= ,'eh'oz'H—p-(~), (14a)

H'+ [j(n)H;]s
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I'n. 11.The values of the apparent density of states Zeff ob-
tained from the asymptotic high-field Hi1~" quantities are plotted
as functions of O'. The T' dependence, as outlined by the solid
straight line, is in close agreement with the influence of phonon
drag on the Nernst-Ettingshausen kinetic coefficient.

The gross term in en" does not have the 1/H' high-
field dependence expected from Eqs. (14), but instead
the equivalent of a 1/H dependence is found as evi-
denced by the linear behavior of the H a»" plot (Fig. 9).
This unexplained Geld dependence may be a phonon-
drag effect, but the unhappy possibility that the
Constantan leads were responsible will have to be
investigated.

—c —x'k'cT
C= —Z. (15)

where t", and Z, are, respectively, the speci6c heat and
density of states of the electrons. The high-6eld e~~"
as well as the specific heat C, are, as seen from Eq. (15),
valuable for the determination of the density of states,
but should a "full phonon drag" induce an apparent
speci6c heat C,+-',C„ then an efI'ective density of
states Z'" would be determined from the experiment «1

&i~" data such that

Z'f'f =Z,+——

5. I'hon, on Drug

The theory of phonon drag takes its simplest form
when the lattice thermal resistivity is due to electron-
phonon X scattering, ""as found in this crystal. In a
naive way, it may be said that the electrons carry not
only their own speci6c heat C„but also part or all of
the speci6c heat of the phonons which they drag along,
i.e., -,'C, (the x corresponding to the fact that only the
longitudinal phonons are involved in the E process).
This should greatly afI'ect the thermoelectric tensor
coeKcient. The simplest relation between the speci6c
heat and these coefBcients is that for the asymptotic
value of the kinetic Nernst-Ettingshausen coefficient

With the Z.=g,;,'(n, /f~) determined from Rao's"
data and 8 taken as 180'K, the expected behavior of
the "full phonon drag" efI'ective density of states is
given by

Z"'= (0.8+0.5&)10"erg
—' cm '.

The same quantity determined from the experimental
high-6eld e»" data wouM be given by

Z'"= (1.5+0.59T') 10"erg ' cm '.
This behavior is illustrated in Fig. 11 where the experi-
mental quantities Z'" are plotted versus T'. The agree-
ment in the drag term can be considered as excellent in
view of the crudeness of the approximation. The ex-
trapolated density of states is reasonable although still
about twice the theoretical value.

It is interesting to note that the exact theoretical
intercept can be obtained with a smooth curve passing
through each data point. One might thus speculate
that an increasing fraction of electron-impurity scatter-
ing with decreasing temperature would so modify the
drag term, but the accuracy of the data does not war-
rant placing any weight on such an extension. A better
free-electron intercept would also be obtained by ignor-
ing the point at 4 K on the grounds that this point was
modified by the last vestiges of the U process. On the
other hand, those who advocate a three-band model
may welcome the high density of states as evidence of a
band of heavy carriers. ~

The high density of states calculated from ~" meas-
urements' for bismuth should possibly also be attributed
to phonon drag, but the interpretation is unclear be-
cause ~" was not significantly temperature-dependent
in bismuth. ~ It has been suggested" that because of the
possibility of "saturation" effects, the absence of tem-
perature dependence in e" should not rule out the
presence of a large phonon-drag contribution to P;Z;"'.
These results may also throw some light on the high
densities of states obtained from speci6c-heat measure-
ments reported for antimony" and bismuth. "

D. Oscillations in the Transport CoefBcients

f. Descripiiw

Oscillations due to Landau quantization with the
trigonal axis period h(1/H) =10.1&&10-' G—' of the
Shoenberg tilted ellipsoids were found in all of the
transport coefFicients except y2~ and the corresponding
Xj2". Faint oscillations were observed in y2~, but were
discounted as a spurious eGect due to probe misalign-
ment or the Peltier heat of phonon drag.

"J.R. Sybert, Ph.D. dissertation, Louisiana State University,
1962 {unpublished)."R. T. Delves (private communication).

'~ See, for instance, C. Nanney, Ref. 19. This is one of several
papers quoting the unpublished results of N. M. Walcott."I.N. Kalinkina and P. G. Strelkov, Zh. Eksperim. i Teor.
Fix. 34, 616 (1958) I English transl. : Soviet Phys. —JETP 7, 426
(1958)j.
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The oscillations, Figs. 7—10, in the galvanomagnetic
and thermoelectric coefFicients are shown in terms of the
quantities H'o~q, Ho j2, etc., which should become con-
stant for the gross component of the effects under
asymptotic (B)&B,) conditions, Eqs. (12) and. (14).
The oscillations contain beats and other irregularities
in the amplitude. The three ellipsoid periods do not
degenerate into a single period unless the field is oriented
well within j.' of the trigonal axis, and it was not
possible to obtain such precise alignment with the rigid
calorimetric apparatus. There are also some slight
change of orientation between diA'erent sets of measure-
ment which add to the confusion. Antimony is thus not
an ideal subject for the measurement of oscillation
amplitudes and quantitative comparison with theory,
though in the present state of the theory this should
cause little concern.

In every effect, the oscillations were almost perfectly
sinusoidal and almost without harmonics, although
some second harmonic could be seen in p2~ during the
beats.

Z. The State of the Theory

A quantitative theory as satisfactory as that of the
de Haas —van Alphen eGect has not been developed for
the transport effects. Because of the complications of
scattering, the eAects cannot be explained directly in.

terms of the grand canonical potential as is done for
the susceptibility. Present theories fall into two cate-
gories: those that treat the oscillations as due to
fluctuation in the carrier density, " and those that
obtain oscillations as a result of the effect that quantiza-
tion ha, s on scattering. "'-' "" In every case, the
oscillations (denoted by symbols with tildes) have been
treated as a modulation of the gross e&'ect (bars).
Thus, the total transport coefIicient is, for example,
written g yy= 0'yy+0'yy.

Three independent mechanisms have been treated:
(1) Zil'herman~ considered scattering between states
of the Landau level closest to the Fermi surface and
states of other occupied levels. Using a distribution
function, ou and en" were calculated. (2) Working
through the grand canonical potential, Lifshitz and
Kosevich" (LK) attempted to extend their suscep-
tibility theory to the transport effects. Formulas for
o~~ and aj.2 were obtained, with oscillations arising
from n, an oscillation in the carrier density at the
Fermi surface. (3) Adams and Holstein" (AH) applied
the density matrix method to Zil'berman's mechanism
and, in addition, obtained a second term representing
the scattering between states entirely within the level
lying closest to the Fermi surface. Only o-~& was
calculated.

"I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. Fiz.
29, 730 (1955) )English transl. :Soviet Phys. —JETP 2, 636 (1956)j."V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 38, 1304 (1960)
/English transl. : Soviet Phys. —JETP 11, 941 (1960)j."P. B.Horton, Ph.D. dissertation, Louisiana State University,
1964 (unpublished).

It should be pointed out that a choice between these
theories is unnecessary. As each mechanism is, to a
great extent, independent of the others, their results
are superposable within a phase. Of these results, the
second AH term was neglected in the comparison of the
theories to the data. Although the second AH term can
be very large at high fields and extremely low tempera-
tures, a simple calculation" from the AH formulas
showed the second AH term to be insignificant in com-
parison to the Zil'berman term for the fields and tem-
peratures of the present work. A visual inspection of
the sinusoidal nature of the oscillations gives, in fact,
a, clear indication that the second AH term should not
be considered.

A useful extension was made by Horton" which
applied the density matrix formalism to the Zil'berman
scattering and extended it to find expressions for 0~~

and ~~2". There is also an important oscillatory term
in 4" which simply arises by substituting an oscillatory
density-of-states term (DS), obtained by differentiating
the phase of Eq. (14), into the classical equations, Eq.
(11)2'

Measured amplitudes of the oscillations reported here
were compared with the amplitudes predicted by the
Zil'herman and Horton (ZH) theories and with the
LK and DS results where applicable. An additional
summary of quantum transport theories in the present
notation may be found in the articles by t "renier et al.' 4

rt'

t.1+i.w rt
(16)

where 0 p is the measured gross component of 0.
~ and

the superscripts on the chemical potential f denote the
bands corresponding to Shoenberg's' tilted (T) and
Saito's' warped (W) ellipsoids. The relative amplitude
of the fundamental oscillation in carrier density is

am'
cos

( 2m'

co
~ +q), (17)
kr,II

where Pr is the period tt(1/H) of the oscillation a,nd
Ar= (2s ItT)/(PPrH) is the temperature factor. The
eGect of the splitting factor cosgm*/mo 0.96 is small.

The ZH formulas used are not strictly applicable, as
they were derived only for a spherical energy surface.
The ZH amplitude is expressed in terms of the contribu-

3. Oscill4ions in the Conductivity 0.

Measured values of relative and absolute amplitudes
of r~~ and aj2 for several temperatures and fields are
compared in Table III with LK and ZH amplitudes.

The complicated LK formulas take a rather simple
form in the case of two compensated bands. ' The three-
ellipsoid LK contribution to be expected in antimony
when all bands are asymptotic is
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TanLE III. Measured amplitudes of oscillations in the components Ir, s of If as a percentage (Ir 22(/Ir s&&100% of the monotonic gross
effect and measured absolute amplitudes ) a p ( .Comparison to absolute amplitudes predicted by Lifshitz-Kosevich (LK}and Zil'berman-
Horton (ZH) theories. LK amplitudes were computed from Eqs. (16) and (17) using the measured gross conductivities for 0 p. ZH
amplitudes were computed from Eqs. (18) using the curve-fit parameters, Table I, of the electron band to compute the contributions
e p to the gross conductivities from the tilted ellipsoids. Data are for three approximate beat-maximum field values at each of four
temperatures.
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0.5
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tion 0. p~ to the gross effect by the band v hich gives the
oscillations, namely,

5&2 Ai 2ir 5it
0 11

—Ir s (PrH) I cos
4 s&nhAI Pi EJ 4

7V2 FI, 2 A, 2~
IT]s Iris (PrH)"'-cos

4 EI sinhAz PIFI 4

(18a)

(18b)

In the present approximation, the LK and ZH equa, tions
differ mainly in their 6eld dependence.

The results for cr~~ differ somewhat from those of
Rao et u/. ' who obtained rather good agreement be-
tween Zil'berman's a~~ formula and their data, but
found the LK predictions for ~lr»~ to be roughly only
1/40 of their measurement. The LK ~lrll~ predictions
are up to about 1/10 of the present results, while the
Zil'berman results are about 10 times the experimental
values. These differences may be consequences of
phonon scattering in this crystal as opposed to impurity
scattering for Rao, although theoretical considerations"'
indicate about equal amplitudes for the two types of
scattering.

Both LK and ZH underestimate the amplitudes of
o.~2, though the ZH predictions are rather close at the
higher temperatures. The LK values are 15 to 40
times too small.

The relative phase of the oscillations bears mention-
ing. Whereas fT~~ and 0~2 should be in phase according to
LK and out of phase according to ZH, the measured
conductivities differed in phase by slightly less than
1

15ir%2
ell ell (PTH)

-1—Ai COthAT 2' ir
cos +—, (19a)

Az sinhAg PLEX 4

21 K2 f( )0 )'(PrR)
EI

1—Av cothA7 2il- 3ir
X cos ——. (19b)

Az sinh~y PzH 4

Again it is noted that the expressions are only strictly
applicable to a spherical band. In computations of the
gross effect contribution from the tilted ellipsoids, it was
necessary to make some assumption as to which band
the tilted ellipsoids should be assigned. The usual""
electron assignment was made, though with some
misgiving.

The DS oscillations originate in the derivative fin/Bf'r
of the factor cos(22r/PrH) in Eq. (17) with the result

Zr ——22r (m "ctcfrH) n, (20)

4. Oscillations i&s the Thermoelectric Tensor ~"

Measured values of relative and absolute amplitudes
of

~

eli"
~

and
~

els"
~

for several temperatures and fields
are compared in Table IV with DS and ZH amplitudes.

In the ZH formulas, Horton's expression for ~~2 has
been modified by the empirical function f of the scatter-
ing n with the result
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Tanxz IV. Measured amplitudes of oscillations in the components e s" of e" as a percentage [e s" ~/e s"X100% of the monotonic
gross effect and measured absolute amplitudes [i s" . Comparison to absolute amplitudes predicted by density of states iDSl oscilla-

tions, and Zil'berman-Horton (ZH) theory. DS amplitudes were calculated from Eqs. (17), (20), and (21). ZH amplitudes were com-

puted from Eq. {19}using parameters of the electron band, Table I, to calculate the gross-effect contributions & P of the tilted ellips-
oids. These numbers are only of order-of-magnitude accuracy because the band parameters entering the thermoelectric e6'ects, having
not been measured, could only be estimated. For f(a) the purely arbitrary function L(1+a'}j2) '/' was assumed. The left-column ZH
values at each point v ere calculated from a fraction t ~j(f~—g~) of the measured (including drag) density of states while the right-
column values in parentheses were computed using the theoretical value $(n jg~).

1.6'K

2.1'K

4.0'K

Meas.
(lo)

20
19

4.5
5.8

3.9
3.4

7.0

5.5
6.8

DS
tt'10 4A

(cm'K

0.62
0.53
0.48

0.67
0.60
0.57

0.57
0.61
0.61

0.40
0.50
0.53

180 (46)
132 {34)
112 (28)

260 {46)
214 (38)
187 (33)

310 (33)
313 {33)
298 (30)

229 {16)
300 (21)
309 (22)

Meas.

0.5

0.6

0.6
0.8
0.8

0.4
0,4

0.1
0.2

29
29
27

25
40

120
126
126

118
131
136

89
118
130

60
92

108

0,53 (0.14)
0.33 (0.08)
0.24 (0.06)

0.91 {0.16)
0.64 (0.11)
0.48 (0.08)

1.5 (0.16)
1.3 {0.13)
1.1 (0.11)

1.5 (0.11)
1.7 (0.12)
1.6 (0.11)

Approx.
meas.
(k.G)

13
16
17.6

13
16
17.6

13
16
17.6

13
16
17.6

valid for a Fermi sphere with I'r= eh/m*el'r. The
classical Eqs. (14) will then oscillate according to the
relation

(21)e~s = eggs Zr/ZT ~

The use of Eq. (21) is not rigorously justified, but gives
some insight, at least, into the role that the carrier's
density-of-states fluctuation plays in the thermopowers.

The DS theory underestimates
~

err"
~

(by about a
factor 10) as should be expected for a longitudinal effect
sensitive ma, inly to scattering. The ZH theory predicts
a result 3 to 8 times that measured for

~

erq" ~.

The converse was found for ~~2" with the DS theory
giving oscillations 3 to 10 times those measured and the
ZH theory predicting less than 1% of the measured
efI'ect. As the transverse effects are not very scattering-
sensitive at high field, the ZH theory should be ex-
pected to give a low result.

The phase between ~~~" and e»" was found to be
approximately 5rr/8, with the er~" oscillation almost
exactly in phase with 0.». The ZH theory predicts a
difrerence of m between ~~~" and ~»".

Oscillatory transport theories usually fail by pre-
dicting a result less than the measured effect. The
present situation, with overestimates for cF» and fy]"
by ZH and for ~»" by DS is unusual. "The possibility
that the predictions could be reduced by collision
broadening may be considered. Jn the DS theory, for
instance, Eq. (21) might. be multiplied by a broadening
term exp(2s. /cur, ) as used by Adams and Holstein, "
where co is the cyclotron frequency and r, is a cutoff
time expected to be comparable in magnitude to the

relaxation time v. But in order to resolve the difference
between the measured and DS values of

~

ere"
~

by such
a term, however, cutoff times of order 10 "sec would
be required, whereas the relaxation times calculated
from the sa, tura, tion fields of the low-field galvano-
magnetic effects are of order 10 "sec.

5. Oscillations in the Lattice Conductivity

Oscillations in the lattice thermal resistivity p», Fig.
12, were not of the usual type that arise by an applica-
tion of the Wiedemann-Franz law to i. It was previously
observed that in fields greater than a few kilogauss,
y» '=X,". In accordance with this observation, the
oscillations in y» will be shown to be the result of
oscillations in the lattice conductivity.

The oscillations in y~~ are in phase with 0» and have
the period and typical beats of the Shoenberg' ellipsoids.
The temperature dependence of the amplitude is ex-
ceptionally large.

As it was known that scattering by electrons limited
the gross lattice conductivity, Fig. 2„ it seemed likely,
upon observing the effect, that the oscillations were due
to the fluctuation in the number of scattering centers.
Several other possible origins were considered, however.

The %iedemann-Franz law is always at least quali-
tatively applicable in a metal. Thus, if cT» oscillates, it
is normal to find oscillations in the electronic com-
ponent of the thermal conductivity with an amplitude
under asymptotic conditions given by ~K,r"

~

= (1/a)
XL„T~rr»~. When the measured values of ~err~ were
substituted into this relation, a number of order
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102.6
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H(kG)
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55.0 2 14oK

34.8-
FIG, 12. The high-Geld thermomagnetoresistivity )r» is seen to

saturate at a constant value characteristic of heat conduction by
the lattice except for a superimposed oscillatory component. The
oscillations can be understood in terms of an electron-phonon
scattering where the number of scattering electrons is affected by
the Landau quantization.

T('K)

1.65

2.14

IV» I/Vrr
oo%%uo

0.20
0.61
0.06
0.15

jn)/e
X 100%%

0.15
0.29
0.11
0.24

1.3
2.1
0.54
0.62

a(kG)
13.0
17.6
13.0
17.6

"J.F. Kunzler, F. S. j, Hsu, and W. S. Boyle, Phys. Rev.
128, 1084 (1962).

10 'W/cm 'K was found at 1.6'K as compared with
a measured

l
Xtt"

l
10 W/cm 'K. Wiedemann-Franz-

law oscillations could also be ruled out from phase
considerations, as y~i and oi~ should be m out of phase
for the Keidemann-Franz law.

The possibility that the oscillations in pi~ might be
a thermoelectric efFect was also eliminated. The kinetic
V' and the experimental $ are related by
& '(1+ e'sp 'r 'T). Thus a case could conceivably arise

where an oscillation of y~i would originate in the term
(e'sp '~')». In the present case, this is approximately
e»"o»/ytt and at 1.6'K, when the largest oscillations
occur, represents a correction of 2.5% to the expression
&tt"= (+')tt. Oscillations in est' and ott were no more
than 2 and 1% of their respective gross effects. The
oscillation in e»"o tt/y» could thus be 0.125% of ytt at
most. As the measured effect is as high as 0.6% of ytt
at 1.6 K, this source of the effect is eliminated from
further consideration.

A third and more likely source of the oscillations
would be the occurrence of a magnetocaloric efFect in
the sweeping Geld. Such an effect, which would be an
"isothermal" form of the magnetothermal oscillations
reported by Kunzler et al. ,"could possib/y be found in
bismuth, if not in antimony, and would, most signifi-

cantly, be a direct measure of the grand canonical

Tp BLE V. Measured relative atnpht«es
i yjr i

/'ru X tOO% of
osciHations in the lattice thermal resistivity y»~ compared to
relative amplitudes at the same two Gelds and temperatures of
the fluctuation R in the number of carriers of the tilted ellipsoids.
Good agreement is found in the parameter p computed from the
relation if~i/yr=tti8/«i and theoretically of order unity. The
values of ) e/e were computed from Eq. (17).

potential Q." There exists a clear experimental dis-
tinction between lattice conductivity and magneto-
caloric oscillations. Since magnetocalorie efFects appear
only in changing Gelds, static-Geld measurements show-

ing the Geld oscillatory behavior of Fig. 12 proved the
effect definitely not of the magnetocaloric type.

Steele and Babiskin'9 observed oscillations of a similar
nature in bismuth which they interpreted as being
oscillations in the lattice conductivity. Unfortunately,
no quantitative analysis of their data could then or can
now be made, as their Geld was directed perpendicular
to, rather than parallel to the trigonal axis; nor is it
clear whether or not a point-by-point measurement
was made.

Although an exact theory of oscillations in the lattice
conductivity would be quite involved, it was found
that a good (for oscillatory transport effects) quantita-
tive description of our data could be obtained from
simple considerations along the lines suggested by
Steele and Babiskin.

If the usual two-band model is assumed, and the
carriers of each band scatter the phonons independently
of the other band, then p, =p,r+p, ~. Equation (5)
then implies a relation y, =AnrP+Bnrrs at a given tem-
perature. Thus, if the oscillations are due to Quctuations
Amp of the Shoenberg ellipsoids, and the constraints
hnp= he~ and ez =e~ of two compensated bands are
imposed, the relation dy, /y, =2dnr/nr results. The
effect was thus analyzed in terms of an expression of
the form

(22)

which relates the relative amplitudes of the thermal
resistivity oscillations to the relative amplitudes of the
number of carrier oscillations as defined by Eq. (17).

The value of P may depend on many factors. The
simplest estimate begins from the condition 8 n~= An~
and the fact Zr/Ztr from which it follows that

l nl/n
&2hnr/nr. Instead, the effective variation in the num-
ber of carriers for a two-band model is hnz=Ae~
=

I Zr/(Zr+Zrr)]nrr+(Zw/(Zr+Zrr) jnr and since
the detected oscillations n are from the tilted ellipsoids
only, one has hnr=D r/(1 r+l rr)jn Thus, f.rom only
these few considerations a value P=1.2 is to be ex-
pected. Values of lyttl/y», lnl/n and p are given in
Table V. They fall in the range 0.5(p(2.1, a rather
remarkable proximity to the predicted value, in view
of the oversimplifications made in obtaining that value.

A more exact theory of this eHect may need to con-
sider such details as the relative scattering efBciencies
of electrons and holes on transverse and longitudinal
phonons, and perhaps some aspect of phonon drag.
Some of those features may be the explanation of the
large temperature dependence (l ytt l

increases tenfold
between 2.1 and 1.6'K), but it should also be pointed

6'M. Ya. Azbel, Zh. Eksperirn. i Teor. Fiz. 39, 878 (1960)
I English transl. : Soviet Phys. —JETP 12, 608 (1961)j."M. C. Steele and J. Babiskin, Phys. Rev. 98, 359 (1955).
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out that the n' proportionality of y in Eq. (5) is already
derived from a partial dependence of the scattering
on the density of states Z, which in turn depends on n.
With (Z~/Z&)~R)/I and diferent temperature con-
tributions for those terms, it appears possible that the
large temperature dependence would be just the ex-
pected behavior of the simple electron-phonon X
scat tering.

V. CONCLUSIONS

This study has brought out some special features of
antimony for the observation of a nearly pure electron-
phonon normal-process scattering and its eRects on the
diRerent transport coeKcients. This conclusion was
first confirmed by a T~ dependence of the ratio of the
lattice thermal and ideal electrical conductivities. The
apparent disagreement between the individual con-
ductivities leading to the ideal T' law and the standard
electron-phonon Ã-scattering theory could also be ex-
plained plausibly through an extension of the Gruneisen
theory of metals to the case of semimetals.

In the low-Geld study of the galvanomagnetic coeffi-
cients, the relaxation-time concept was found to have
wider applicability than generally supposed. All of the
kinetic coefIicients were described quite well by the
standard two-band Sondheimer-Wilson theory based on
the existence of a time of relaxation, with two excep-
tions: (1)Low-field data for o.ii and 0» were individually
very well described by the theory, but a consistent set
of parameters could not be assigned to both conduc-
tivities. This was one of several features of the transport
data thought to be an indication of the presence of a
third band. (2) The field dependence of ~ii" was
anomalous. Phonon drag may have been responsible for
the anomaly.

The existence of the nearly pure electron-phonon
N scattering in both electrical and thermal processes

resulted in an analysis of the large and temperature-
dependent Nernst-Ettinghausen density of states in
terms of a very simple phonon-drag theory. A successful
explanation of the data in this way proved the existence
of a large phonon-drag eRect in a range of temperatures
where it is generally expected to be negligible, and may
have implications toward the large density-of-states
values reported for semimetals in general.

The amplitudes and phases of the oscillatory elec-
trical and thermoelectric coefFicients did not fit any of
the available theories particularly well, but the failure
was unusual in that several of the theoretical amplitude
predictions were greater than the measured e6ect. The
supposition that large predicted amplitudes could be
decreased to the measured values by the inclusion of a
collision broadening term could not be justified with a
reasonable value of the cuto6 time.

Oscillations in the nearly constant thermal resistivity
at high Geld were concluded to be a consequence of
oscillations in the lattice conductivity. Comparison of
measured amplitudes of the oscillations in the thermal
resistivity with the theoretical relative amplitudes of
the carrier density oscillation led to the conclusion that
oscillations in the lattice conductivity were due to
scattering of the lattice wave by Landau-quantized
electrons with the generally accepted n' proportionality,
characteristic of the electron-phonon E scattering.
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