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Theory of a Super6uid Fermi Liquid. I. General Forxraalism and Static Properties~
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The microscopic theory of a superQuid Fermi liquid at finite temperature is developed for the case of a
pure system with S-wave pairing, and applied to the calculation of the static properties. As a function of
e= I'/I',—these properties are determined entirely by the Landau parameters Fe, Fr, Ze, etc., characterizing
quasiparticle interactions in the normal phase. In particular the spin susceptibility x and the density of the
normal component p„are given by

x(e)/x(1) = (1+-'Zo) f(tt)/Lt+Ãof(tt) 5
o /ts= (1+lF ) f(e)/9+V'if(tt)7

where the universal function f(tt) —=—(v(0)) 'Z&(de/dZv) is the effective density of states near the Fermi
surface" relative to its value v(0) in the normal phase. Thus the often-quoted expression p = ,'Zvps(—dl/dEv)
is valid for an interacting system only in the limit T —+ 0. In the latter part of the paper a simple phe-
nomenological theory of "Fermi-liquid" effects on x and p is developed for arbitrary conditions (including
the presence of impurities and pairing with t/0); it is found that under most circumstances explicit ex-
pressions for g and p„may be obtained which involve only the Landau parameters and a suitably generalized
effective density of states. The theory should apply to the possible superfluid phase of Hes and to most
superconductors. It is suggested that the Knight shift in nontransition-metal superconductors should
display some "Fermi-liquid" effects. The weak-Geld dc penetration depth X(T) is shown to be insensitive to
such effects both in the Pippard limit and near T, ; however, in a London superconductor at lower tempera-
tures the correction to k(T) should be observable and yield a direct estimate of Fq.

be taken from experiment, the Landau theory is able
to give an essentially exact account of the behavior of
the system in the region of long wavelengths and low
frequencies. The key to its success is that at sufficiently
low temperatures, all thermal excitations are close to
the Fermi surface. Consequently, the interaction
between two quasiparticles may be regarded as a func-
tion only of the angle between their momenta (or quasi-
momenta) and their relative spin state. To put it more
precisely, let us define a temperature To such that the
scattering amplitude F(p,p', e, e".k,M), considered as a
function of e,e',Ap, hp' (Ap=—

~ p~
—ps) fore given small

values of the momentum and energy transfer (k,M) and
given relative direction of y and y, is eQ'ectively con-
stant in the region vip, vAp', e, s' Ts, where v is the
Fermi velocity. Then the Landau theory will be a good
description of the long-wavelength, low-frequency re-
sponse of the system for temperatures T+ Tp.

Correspondingly, one might expect that it is possible
to develop a similar semiphenomenological description
of the superQuid phase provided that the critical tem-
perature T,&TO and provided also that the pairing
interaction itself is slowly varying over a range of e and
vip comparable to Ts. A system for which these con-
ditions are satisfied will be called a "superQuid Fermi
liquid. "~ The description of such a system will require,
in general, a specification of the usual Landau parame-
ters and also of the pairing interaction as a function of
spins and scattering angle. Actually, however, many
interesting properties can be obtained from a knowledge
only of the Landau parameters and of the gap A (or,

I. INTRODUCTION
' 'N the theory of superconductivity and of the possible
& ~ superAuidity of liquid He', it is generally assumed
not only that the pair interaction between particles of
opposite momentum, which is specifically responsible
for superQuidity, is weak, but also that all other inter-
particle interactions are weak. This second assumption
is by no means justifiable. Indeed, if we denote by Ii a
characteristic interparticle interaction multiplied by the
density of states at the Fermi surface, then we know
from experiment that Il 1 for He', while for metallic
superconductors theoretical estimates predict values of
the order of O.i—0.5. It is therefore of interest to de-
velop a theory in which these interactions are taken into
account.

As is well known, in a normal system at su6iciently low
temperatures the interactions between quasiparticles
may conveniently be handled by the Fermi-liquid
theory of Landau' '; this theory can be applied directly
to liquid He' and, with certain refinements, also to the
electron "liquid" in a metaP 4—provided, at least, one
is content to neglect the effects of anisotropy. ' At the
cost of introducing a few parameters whose values must

6 We put A=k=1 throughout. Energies are measured relative
to the chemical potential.

7 Note that the so-called "strong-coupling" superconductors do
not conform to this definition.

*Work supported in part by National Science Foundation
Grant 2218.

t On leave of absence from Magdalen College, Oxford, En land.
'L. D. Landau, Zh. Eksperim. i Teor Fiz. 30, 1.058 1956)

/English transL: Soviet Phys. —JETP 3, 920 (1957)j.'L. D. Landau, Zh. Eksperim. i Teor. Fiz. 35, 95 (1958)
)English transl. : Soviet Phys. —JETP 8, 70 (1959)j.

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) t English
transl. : Soviet Phys. —JETP 6, 387 (1958)j.

4 D. Pines and P. Nozibres, Theory of QNasstam Ligaids (W. A.
Benjamin, Inc. , New York, 1965).' Formally, a theory of the Landau type can be constructed
which will take into account the effects of anisotropy; in practice,
however, it usually involves too many parameters to be useful.
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equivalently, T,), i.e., for many purposes we can neglect
all harmonics of the pairing interaction except the most
attractive one. Thus the theory is quite economical as
regards phenomonological parameters.

For the case of zero temperature and 5-wave pairing,
such a theory has already been developed by Larkin
and Migdal, and subsequently applied by Larkin' to
the electrodynamics of superconductors. However, there
are some interesting "Fermi-liquid" effects which show

up only at finite temperatures; for instance, it was
shown in Ref. 10 that the temperature dependence of
the paramagnetic spin susceptibility of a superQuid
Fermi liquid may be quite diferent from that predicted
by a "gas" model.

The main purpose of this paper is to develop a general
microscopic theory of the superRuid Fermi liquid at
finite temperatures, which can be used to derive the
response functions throughout the range ~,he+ Tp.
Thus, in principle at least, the theory can describe the
static properties, the response to a space- and time-
varying external fieM, and also the kinetic coefFicients.
Here it is applied to the calculation of the static proper-
ties as a function of temperature. " The model con-
sidered is that of a pure, isotropic, neutral system with
5-wave pairing; translation invariance is not assumed.
Of course, any real system which is not translationally
invariant will ipso facto also display anisotropic be-
havior; however, we may hope that it is a good approxi-
mation in many cases to neglect the latter. Since the
eGect of the long-range Coulomb interactions can be
taken into account at the end of the calculation by the
method of Larkin, ' it should be possible to apply the
results, at least qualitatively, to some real supercon-
ductors. Also, although it is improbable that liquid He
will condense into an 5 state, these results should give
a qualitative guide to the kind of behavior to be expected
in the superfluid phase of He if it exists. However,
quantitative comparison with experiment of the most
interesting predictions derived here, namely the tem-
perature dependence of the spin susceptibility and
London penetration depth, is prevented in many cases
by the presence in the experimental situation of factors
not allowed for by the simple model used (e.g. , im-

purities). Accordingly, having derived these predictions
for the simple model by rigorous microscopic methods,
we go on to generalize them to a rather wider range of
conditions by a more phenomenological argument. It
is shown that the interactions between quasiparticles
lead to "molecular fields" of various types; as a result, if
the response to an external field of a given type is tem-
perature-dependent in the "gas" model, the form of the

A. I. Larkin and A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 44,
1703 (1963) LEnglish transL: Soviet Phys. —JETP 17, 1146
(1963)1.

'A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 46, 2188 (1964)
t'English transl. : Soviet Phys. —JETP 19, 1478 (19tH)g.' A. J. Leggett, Phys. Rev. Letters 14, 536 (I965)."Ihope to devote a subsequent paper to a consideration of the
collective oscillations.

temperature dependence is changed by the quasi-
particle interactions, in a way which depends solely on
Landau's dimensionless F parameters. Thus, under
favorable conditions we can obtain the values of some
of the I's directly from the experimental curves.

In Sec. II a general expression for the autocorrelation
functions is derived in terms of the phenomenological
parameters. In Sec. III the density, spin, current, and
spin-current autocorrelation functions are evaluated
explicitly in the static limit (re=0, k ~ 0). In this way
the compressibility, spin susceptibility, and London
penetration depth are obtained as a function of tern-
perature, and the consistency of the theory is checked
by verifying the longitudinal sum rules in this limit. In
Sec. IV a less rigorous but more general treatment of the
static properties of a superQuid Fermi liquid is given,
and in Sec. V applications to real system are discussed.
Section VI briefly summarizes the results of the paper.
In an Appendix, the microscopic derivation of the
Landau theory for normal systems at finite temperature
is given.

Readers not interested in the details of the micro-
scopic formulation may find it convenient to skip
directly to Secs. IV and V, which are logically inde-
pendent of the earlier sections and do not require an
understanding of field-theoretic techniques.

p p rrrJ

o'p' s//s, e ~y'+s/2, e))—(&)—5(p y+ ) . (1)

In Eq. (1) the "bare vertex" $(p, o.) is some function of
p and" o. (e.g. , 1,p„,o,p„o), a.nd ((A: 8))+(&a) denotes
a retarded Green's function:

((A:B))p(co) = i—(l(&)(A (&)B(0)aB(0)A (i))

Xexpio&t Ch (2).
In this section a general expression will be derived for
E't (k,ro) for a superQuid Fermi liquid under the assump-
tion that ~, eh& To, where T0 is the quantity introduced
in the last section. It will always be assumed that T0 is
small compared to the chemical potential p. The ex-
pression will contain the same phenomenological
parameters as appear in the zero-temperature theory
of Larkin and Migdal, ' namely, the usual Landau
parameters plus a function characterizing the pairing
interaction.

"In all cases of physical interest vie can choose the representa-
tion so that g(p, o.) is diagonal in the spin indices.

II. AUTOCORRELATION FUNCTIONS

Most static, dynamic and kinetic properties of
interest for a many-particle system may be obtained
from a complete knowledge of the long-wavelength and
low-frequency behavior of the autocorrelation functions
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where

I &
II"'"

I ~) I'(E-—E-)XP, (3)
(te+i8)' (E——E )'

(8 ~+0)
A '"=P (P &/rN)// +k/s, I// k/s—

pd

By hypothesis all low-lying energy eigenstates of the
system, and hence all states (m) occurring with appre-
ciable thermal weight in (3), are describable in terms
of Landau quasiparticles. Consider now those states
(e I

occurring in (3) for which E„—E~&Ts. Such states
will not in general be describable in terms of Landau
quasiparticles; moreover, they will be highly de-
generate. Let us use this last fact to choose the energy
eigenstates so that they are rot eigenstates of the total
momentum. Then, we may expect the matrix elements
(e I

Jk„'&
I m) to be smooth functions of k; the same will

be true of the matrix elements of the spin density
fluctuation (e I

pk'&
I m) where

Pk =Z O~y+k/2. o +p—k/s, r ~

PO'

Prom the spin-continuity equation we have, expanding
pk in a series in k,

(is I
k Jk'"

I m) = (E„—E )(e I pk I r/s)

= (E —E„)((/sI S, Im)

+( Ik-I )+ ), (4)

where S, is just the operator of the total s component
of spin of the system and n is some operator independent
of k. Since S, is conserved (so that (eIS,Im)—=0), it
follows from (4) that (eI Jk'&Im) is independent of k
for small k and hence is equal to (eI Jp "Im), where
Js'" is the total spin-current operator of the system.

"We label the various autocorrelation functions by the func-
tions oi p and o which appear in g(p, o); thus, E&, E„E„,E„,
represent, respectively, density, spin density, current and spin
current,

The 6rst—and most tedious —step consists in the
separation of "quasiparticle" and "nonquasiparticle"
contributions to ICr, (k,&o). In the mathematics this sepa-
ration is made whether or not the quantity being con-
sidered is conserved; one then proves that for a con-
served quantity the "nonquasiparticle" contribution is
identically zero. The physics of the separation, however,
is most easily understood by considering a quantity,
such as the spin current, which is not conserved. We
consider therefore the spin-current autocorrelation
function's E~, L((y,o) =p„o/m in Eq. (1)j for small k
and co, and suppose for simplicity that the system is
translationally invariant. We can make a spectral ex-
pansion of Eq. (1):

E„.(k,t0)=2 p e-~ /~

Therefore, if the total spin current were conserved, it
would follow that the "nonquasiparticle" contribution
to Z~ (k,&s) LEq. (3)j, that is, the contribution from
states (e I such that E„E)—&Te, would be identically
zero. '4 As it is, there will be a 6nite contribution which
we label 4„;this, however, is only weakly dependent
on k. It also follows from an inspection of Eq. (3) that
C „,is only wealdy dependent on ce. The (k, ts) depend-
ence of the "quasiparticle" contributions is in general
much sharper. Finally, since only low-lying states of the
system are appreciably affected by the super8uid tran-
sition, C„, is independent of the transition, and hence
a fortiori of T. Thus 4~, (k, re, T)=C„,=—const.

A second, indeed complementary, consequence of the
lack of conservation of the spin current is that the
average spin current carried by a quasiparticle of mo-
mentum y and spin o is r/oI simply (pa/m); we must in
fact multiply this expression by some "renormalization
factor" R„,. It is obvious from symmetry considerations
that R„,must be independent of y and o for

I pI close
to p&. Thus, we should expect the spin-current auto-
correlation function to have the form

K„,(k,M)= c,.+ R„.'I„.(k,& ),
where C „,and R„.are constants, and I„,(k,oi) is some
expression which involves only quasiparticle states.
(When we write down a field-theoretic expression for
K, this means that I„will involve only integrals taken
close to the Fermi surface. )

Very similar remarks apply to the particle current
autocorrelation function in the case where total mo-
mentum is not conserved. In this case the quasiparticle
states are, of course, labeled by values of the pseudo-
momentum and are not eigenstates of the true mo-
mentum; the "nonquasiparticle" contribution C„ then
includes the effect of interband transitions.

Our task, then, is to represent the correlation func-
tions in the form

E((k,oi) =C i+RPIt(k, u&),

where Ct. is some constant (which may be zero), Rt is
also a constant, and It(k, a&) is some expression which
involves only integrals taken close to the Fermi surface,
and therefore is completely speci6ed by the phe-
nomenological parameters of the theory. It is essential
to the theory to be developed here that the constants
C~ and E~ are the same for the superAuid and normal
phases; this of course is just a formalization of the basic
hypothesis that the superQuid state can be described
in terms of Landau quasiparticles whose structure is
insensitive to the transition.

For the zero-temperature case the 6eld-theoretic
techniques leading to expressions of the type (5) are by

'4 Cf. D. Pines, in Proceedings of the ninth Internationat Con-
ference on Low-Temperature Physics (Plenum Press, Inc. , New
cwork, 1965).
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b

FIG. 1. Diagrammatic representation of (a) Eq. (6) and (b)
Eq. (7). Open blocks represent P; shaded blocks, P@&; heavy dots,
the "bare vertices" $(p,e). The two arrows on each internal line
emphasize particle-number conservation in the normal phase.

now well known. "'6 However, for finite temperatures
there does not seem to exist in the literature a complete
derivation even for normal systems (cf., however,
Refs. 17 and. 18), so we give the details of the calculation
in an Appendix. Here we just sketch the main features
and then go on to discuss the generalization to the
superQuid case.

The basis of the derivation, as of all similar ones at
T=0, is the equations expressing Et(k,ot) in terms of the
complete vertex part F, and I' in terms of an "irreduci-
ble" vertex part I'('&: in symbolic form

(AB) (pp io0 ice )=
4~j yl/0/g

tie A (pp io 0 ee i)

X 8(p"p', a"o.',e"e')-, (12)

In the normal case we have

Gn(P, e) = LG~(p, e)j*=a(.—.,+i~,)-ie(.,—I.,I), (10)

where e~ is the quasiparticle excitation energy and p,
the half-width, and a~&1. The cutoff eo in the de6nition
of G is choseii so that T&(ett&&tt. In Eq. (8) the quanti-
ties X;(e,ce) (i=1,2,3) are given by

),= tanh(e/22 ),
Xs——tanh (e+te/2T) —tanh (e/2 T),
) s ———tanh(e+te/2T) .

Summation over repeated indices i, j is implied. More-
over, the second term in (4) is to be understood as a
matrix expression, with matrix multiplication defined

by the relation

Z, = PGGP+gGGrGGg,

I' =I' t"+I' t"GGI'.

(6)

(7)

TrA —= P deA (pp, oo, ee) .
4mi u~

(13)

The graphical representation of Eqs. (6) and (7) is given
in Fig. 1. In the finite-temperature case relations (6)
and (7) hold. between "temperature" functions defined
in the complex energy plane and must be analytically
continued to the real axis. Physically more funda-
mental than I'(" is Landau's "quasiparticle-irreducible"
vertex part I'"(pp', oo') which by definition contains no
pairs of lines corresponding to the propagation of a
quasiparticle-quasihole pair; it is a slowly varying
function of energy and magnitude of momentum near
the Fermi surface. Introducing certain quantities Q,;"
related to I'" (see below) we find the required expression
in the form

);g;
Ji.t=Ct+Rts Tr ~r

1—Q "g
(8)

In Eq. (8) the notation is as follows (see Appendix
for further details). The quantities g;(p, e. k, c )(i=1,2,3)
are various combinations of the siIgular ("quasi-
particle" ) parts of the one-particle retarded and ad-
vanced Green's functions:

gi(p, e..k,ce)—=Gtt(p+k/2, e+ot)Gtg(p —k/2, e),
gs(»': ki")—=Gtt(P+k/2i e+ca)G~(p —k/2i e) i (9)

gs(pie'ki~)=G&(p+k/2i e+te)GA(p k/2i e) .
"A. Abrikosov, L. P. Gor'kov, and I. Dzyaloshinskii, 3fethods

of Qnantnm Fietd Theory in S atisticat Physi. cs (English transl. :
Prentice-Hall, Inc. , Englewood CliGs, ¹wJersey, 1963)."P. Nozieres, Theory of Interacting Fermi Systems (W. A.
Benjamin Inc. , New York, 1964)."G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 41, 1241 (1961)
)English transl. :Soviet Phys. —JETP 14, 886 (1962)g.

'e P. Nozieres and J.M. Luttinger, Phys. Rev. 127, 1431 (1962).

Finally, it is shown in the Appendix that the values of
the constants C~,R~ are as follows: For any conserved
quantity (density, spin and, in the case of translational
invariance, current)

C(=0, Eg=a '; (14)

while (whether or not momentum is conserved), the
constants in the current autocorrelation function are

E m m
C„=— (1+-',Fi)—1, R„=a ' (1+-',Fi), (15)

m, m m*

in the usual notation of Fermi-liquid theory (cf.
Appendix). The corresponding constants for the spin-
current are obtained from (15) by replacing Fi by Z&/4.

Examination of Eqs. (8)—(13) reveals that the inte-
grals over e and p in (8) are effectively taken over a range
e, (I p I

—pt )s max(M, tik, T). Thus we have attained
our object of expressing Et(k, te) in the general form (5).

It remains to examine the quantities Q;sa in Eq. (8).
It is shown in the Appendix that in the range of interest
we can write all Q~t" except Qss" in the form

Q,;"(pp',oo', ec'. kate)=).;(e',te)1'"(pp', o&r'), (16)

where I'"(pp', o.o.') is the usual function introduced by
Landau. ' Equation (16) is also correct for Q»" in the
limit te))y; in the opposite ("hydrodynamic") limit,
however, we must take into account a pure imaginary
term in Q»", which we write as $(pp', oo', ee'). The
physical interpretation of X) is given in the Appendix.
Since however, according to Eqs. (8) and (11),all terms
involving Q»" are proportional to c in the limit ot ~ 0,
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(where the sum over p has been incorporated into the
matrix notation).

In the normal case the evaluation of (Xg) according
to Eqs. (9)—(11) is trivial; having dropped S, we must
of course also put yp —& 0 in (10).We then find

Ep(k, (o) =C )+a'RPp(0) P
vkdQ

8s. co vk—vk—F

where
F=a'p(0)1'", p(0) = 3p&p*P/p p'.

(18)

(19)

Il is still a matrix with respect to direction on the Fermi
surface and spin. Equation (18) is a correct description
of the response of the system to an external field (and
hence also of its free collective oscillations) both for
+=0 and for co»p; it is easy to verify that the results
agree with the usual ones for T=O.' ' For other
purposes we must return to the exact Eq. (8).

Let us now consider the generalization to the super-
Quid case. The treatment given below should be com-
pared with that of Larkin and Migdal for T=O; the
results obtained reduce to theirs in that limit.

In the normal case the "Dyson" Eq. (7) has the
graphical representation shown in Fig. 1(b); in that
figure the intermediate propagators G(p+k/2, &+ra)
and G (p—k/2, e) are written with two arrows to empha-
size that they conserve particle number or, in graphical
terms, direction of the line. In the superQuid case we
must consider also "anomalous" propagators corre-
sponding to the creation or annihilation of pairs with
opposite spin and momentum; if we choose a represen-
tation in which the gap 6 is real we have (cf. Ref. 8)

this term is only important in the absorption region
(co y) or when we consider the kinetic coeflicients
Lwhen in general we may be interested in lim„p
cy '{K(k,co)—E(k,0))].For all other purposes we can
write (8) as

(17)

sible directions of the arrows (they are not, of course,
all numerically different); let us regard these as the
elements of a 4)&4 matrix whose rows and columns are
labeled by the indices ——,++,—+,+— (in that
order). Also we shall regard the pairs of intermediate
propagators GG,GIi,IiIi, etc. as forming the elements of
a matrix &p in the space (hereafter called the "arrow
space"). Then the generalization of Eq. (3) is simply

I'= f'i'&+f'i'&gl' (21)

the circumQexes denoting matrices in the arrow space.
The explicit expression for the elements of j in terms of
the G's and F's will be given below. Note that in this
formalism we must not count separately elements of
I'(" which differ only in having an upper and a lower
line on the same side interchanged. Thus it is consistent
to put the (+—,—+) element, for instance, equal to
zero. Since the "particle-nonconserving" elements of
I'0» are at most of order d/p relative to the "conserv-
ing" elements, I'('& may be taken as a diagonal matrix
to this order.

The generalization of Eq. (6) proceeds similarly. For
the normal case (6) has the graphical representation
shown in Fig. 1(a). The "bare vertex" $(p,o) conserves
particle number and hence, in the superQuid as in the
normal case, at each end of any graph contributing to
E~ one arrow must enter the dot representing ( and
one leave it. It is now important to notice that for any
physical vertex $ in which we are likely to be interested,
the contribution $(p,o) will be either even or odd under
the substitution p —+—p, 0. —+—|T. Since when a line
changes its "direction" it makes just this substitution,
we can verify that a correct generalization of (6) is

&+=Tr{K+(g+iI'g) 5), (22)

where the plus sign is to be taken in the case $(p,o)
= P(—y, —0) and the minus sign in the case

p(p, a)= —$(—p, —0). P~ is an idempotent operator
in the arrow space of the form (see above for the order
of labeling of the vectors of the space)

((apta p&,»=&(ap&,ta pp &)=F,
&(apnea p&&) =&(aptta —pg »= —&

(20)
(23)

(For the moment we need not specify precisely what
kind. of Green's functions we are interested in, since the
formal structure of the equations is the same for all. )
Owing to the nonconservation of particle number, we
now also have to deal with a large number of diferent
complete vertex parts I'. Neglecting the question of
spin dependence for the moment, let us label these
vertex parts by the directions of the arrows involved;
the leftward direction being counted as positive and the
upper line being represented erst. Thus, the right-hand
side of the graphical equation above is labeled+ I'+ .
There are then 16 quantities corresponding to the pos-

We now consider the question of spin dependence
and of the correct sign assignments in the elements of
j.Let us imagine that we have expanded E in an in-
6nite series of diagrams containing the various elements
of j and I'"). The analysis is somewhat simplified by
the fact that $(p,o) is diagonal in the spin index (cf.
footnote 12). Since both the irreducible vertex parts
I'&'& and the propagators (both normal and anomalous)
conserve spin, we always deal, at any subsequent point
in the graph, with total s component of spin S,=O and
with total spin S=0 or 1 according as P(y,a)
= &$(y, —0). Some straightforward though rather
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tedious analysis then shows that we may consistently
take g in the form

—FF —GG —FG —GF

GF —FG G G —FF

FG —GF —FF GG .
Lwhere G—

(p, o„)—=G(—p, —o.)], and

~F&~o~l 0
f (o) I+o(~/&),

k 0 F()Ij (25)

E)(k,(v)=C(+RP Tr gP~
1—Q"g

(27)

provided that the irreducible pair scattering amplitude
I'p&') is taken to be the singlet amplitude if S=O and
the triplet amplitude if S=1, while the irreducible
"particle-hole" amplitude F~"& is taken to be the spin-
independent term for S=O and the spin-dependent
term for 5=1.Thus if we write F(o) (pp', oa', oo': k,co) in

F &o& (o.,o') =A+ Be e' (26)

(assuming, as usual, that the spin dependence is due to
exchange effects) then we must take Fl, &o) in (25) to be
A for S=O and 8/4 for 5= 1.These prescriptions apply
equally well, of course, to the "renormalized" quantities
we shall deal with subsequently. Finally, P in Eq. (22) is
now to be taken as a function only of PL/(p)=g(p, a)—= k(p, —~) «» ~=0, 8(p)—=k(p, )—=—$(p, —~) for
&=1]; and in the matrix multiplication, etc., Po, is
everywhere to be replaced by 2 P,. Thus the spin in-

dices do not enter the problem from now on.
Once we have Eqs. (21) and (22) we can go through

all the procedure of the Appendix, with two minor
caveats to be discussed below. As in the normal case,
the crucial step is the separation of the one-particle
propagators into "polar" and "nonpolar" (incoherent)
parts; the form of the polar parts in the case of interest
is given below. The "nonpolar" part of G is the same as
in the normal phase in our approximation (d,/p((1)
while the nonpolar part of F must be set equal to zero.
Then it is not difIicult to see that the gross renormaliza-
tion factors C~ and E~ (which are determined by inte-
grals over the whole range of energy and momentum)
are indeed the same as in the normal phase LEqs. (14)
and (15)j.Also we must take the particle-nonconserving
elements of Q;;" (i.e., the off-diagonal elements in the
arrow space) equal to zero for all Q;;" except Q~2", the
latter, as in the normal case, contains an imaginary
part which, though small (& (6/p)') must nevertheless
be kept for certain purposes, and this term may in
general have oB-diagonal elements of the same order as
the diagonal ones.

We arrive then at the following generalization of
Eq. (8):

~~(p, o) =~~(—p, —o) =
(e+zy)' —E '

F~=Fa*

(28)

where Eo'=oo'+LB (oo is the normal-state excitation
energy and 6 the gap) and y ~ +0. Moreover, in this
limit we must for consistency neglect the imaginary part
of Q" and hence put

Q,,"(pp', «': k,~) =l ( ')F"(p,p') .

In the arrow space the matrix I'" has the form

pF~1 0 ~

5 0 F"li

(29)

(30)

F&(p,p') is the renormalized pairing amplitude, which
must be taken to refer to the singlet or triplet state
according as $(p,o) =&/(p, —o). F"(p,p') is just the
usual Landau amplitude which occurs in the theory of
the normal Fermi liquid; it is to be taken as the spin-

where all quantities are matrices with respect to the
arrow space, the i j-space, p and o (the dependence on
o was eliminated above). g now denotes only the product
of polar parts of the single-particle functions.

In Eq. (27) we must be a little cautious about the
definition of the quantities j;in terms of "retarded" and
"advanced" Green's functions lcf. Eq. (9)j. In fact,
inspection of the method of analytic continuation from
the complex plane (see Appendix, and Ref. 17) which
gave rise to the combinations (9) in the normal case
reveals that whenever a G occurs we must change
"advanced" to "retarded" and vice versa. (Equiva-
lently, we must insure that all elements of j~ have poles
only in the lower half-plane and all elements of j3 only
in the upper, etc.)

Equation (27), together with a knowledge of the form
of the one-particle functions G and F, provides in prin-
ciple a complete solution of the problem of obtaining
the autocorrelation functions for a superAuid Fermi
liquid in the region o.,kv&(p, and thus of deriving not
only the static and dynamic response but also the
kinetic coefficients. However, once we have to take
"damping" terms into account the forms of Q" and G
become quite complicated. Let us therefore specialize
at once to the limit of infinite lifetimes; this will be
sufficient for consideration of the static properties and
of the response of the system in the region o.))p, except
in the very small temperature region close to T, where

In the in6nite-lifetime limit the one-particle
propagators have the simple form:
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independent or spin-dependent part according as
$(p,a)=+((p, —o) Lcf. Eq. (26)j. There is a slight
difficulty connected with the definition of I'&; see below.

Using (29) and defining a matrix quantity

i(0)
g(p: k,~) —=

krz
des de Q X;(e)g,(p, e: k,te), (31)

we can write (27) in the form:

Ef(k,te) =ef+Ets Tr (P~
1—r"g)

(32)

where all quantities are now matrices only with respect
to the arrow space and direction on the Fermi surface;
as regards the latter, matrix multiplication is defined by

drops out of the final formulas and we can express all
results in terms of h(T). The relation of A(0) to T, and
also the ratio 8 (T)/h(0) as a function of T/T, is of
course given equally well by (35) or (37) and is the
same as predicted by the usual Bardeen-Cooper-
Schrieffer (BCS) theory; we therefore actually have—
apart from the Landau parameters describing the
normal phase —only one undetermined parameter (T,)
in the theory. As a function of the reduced temperature,
the e6ects we shall investigate are completely deter-
mined by the Landau parameters.

Let us collect the results of this section for easy
reference. We have

( g
Et(k, te) =Cf+Rfs Tr $P~!

k1—f'"g

(AB) (n,n') =
dQ"

A (n,n")8 (n",n'), (33)
~(0)

g(p: k,~)=

and we also have &&+ X;(e,(0)g;(p, e: k,ce),

dQ
TrA= —A(n, n) .

4x

There is one last point to clear up. As we have dered
the quantities g above, the elements associated with
GG (and G G) depend logarithmically on the cutoff es

(the dependence of all other elements is much weaker
and can certainly be neglected). Also, the gap equation,
which in our notation reads (from now on the quantities
GG, GIi, etc., are to be understood as the corresponding
elements of g)

1=—r+(GG +FF)g=s,

—IP —GG- —IG —G~

G—F —IiG G G

rrl 0 q
!

r"=
0 r-I)(

(38)

(where rr is the singlet amplitude) appears itself to
depend on the cutoff. Of course there is in reality no
such dependence, since it is easy to show that the Ep

dependence of F& is just such as to cancel that of
(GG +FF). However, it is more convenient to get rid
of ep altogether by a further renormalization: we define

r„r(T)=r~—rr(GG-)„r„r, (36)

where (GG )„is the relevant element of (31) evaluated
in the normal state, with k=O, to=0. In terms of r„&
the gap equation becomes

1=—r„(GG —(GG )„+FF)j,=o, =s (37)

and we may obviously substitute r„& for rr in (30)
provided that at the same time we understand by the
GG (or G G) element of (31) the "subtracted" quan-
tity (GG )—(GG )„.L(GG )„ is to be evaluated. with
k=O, ca=0 in all cases.) From now on we shall do this
and drop the subscript r on I'„~. The integral over &~

in (31) may now be extended to infinity since there is
no longer any sharp dependence on the upper limit. We
shall see that, in the cases of interest to us, F& actually

Here v(0) =3m*X/Prs is the density of states at the
Fermi surface in the normal phase, and, for instance,
G F=G( (p+k/2), —(e—+M))F(p —k/2, e). The form
of the functions G and. F is given by (28) and the con-
stants Rf and If by (14) and (15).

To conclude this section, let us make explicit the
correspondence between the formalism used here and
that of Larkin and Migdal. ' To do this we use the
following symmetry relations between the elements of

g, which hold for arbitrary temperature and arbitrary
values of k and oi:

GG =G G, FG= GF, FG = G—F. (39)—
Now let us examine Eqs. (53), (56), and (32) of Larkin
and Migdal's paper, s using also their Eqs. (50) and.

(55)" and the symmetry properties of the operators p
and 0. Then it can be seen that the diagonal, elements

"The quantity SG '/Bs used in Ref. 8 is of course just a '.
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(in Cartesian space) of (53) and (56) are particular cases
of a relation which in our formalism is written

Et(k, co) =u-' Tr((gT)), (4o)

where T~ is a diagonal matrix in the arrow space. Simi-
larly, Eq. (32) of Ref. 8 /with (50) and (55)) corre-
sponds to the relation

Tt=& '(&+r"gTt} . («)
(To convince oneself of the truth of these statements it
is simplest to effect a partial diagonalization of g along
the lines of the next section. ")Since in the translation-
invariant case considered in Ref. 8 we have C~=O
E~——u ' for both the spin and current autocorrelation
functions, Eqs. (40) and (41) agree formally with the
first of Eqs. (38). Furthermore, some tedious algebra
shows that the elements of g calculated from our defini-
tion )second of Eqs. (38)j correspond in the limit
T —+0 to those obtained from the zero-temperature
definition of Ref. 8. Thus the theory developed here
agrees with that of Larkin and Migdal in the limit of
zero temperature.

III. THE STATIC RESPONSE FUNCTIONS

(0 0 ) (0 0) (1 0)

0 Ilp

~rvi 0 ~

I o r-1) ' (46)

while the trace defining E~ is of course invariant under
the transformation:

E)=Ct+RP Tr )Pg!
&1—r-g)

(47)

dQ GG—FF» K+
1—r"g) 4n 1—I'"(GG—FF)

(48)

In the limit k ~ 0 we have for arbitrary T, as is easily
shown by direct evaluation

From Eqs. (44)—(47) it is obvious that the quantity
FF—GG is of no further interest to us. Moreover, we
can immediately evaluate the autocorrelation function
for any "even" operator ($(p,o)=$(—p, —o)) since it
is clear that

Let us now specialize to the case o, =0. In this case
the quantities g(p: k) take the form

v(0)
g(p: k)=

(GG FF)g=p ——a'v(0) .——

Hence we have

2lri
des de tanh(e/2T)gt(p, e: k) . (42)

lim Et k,o =Ct—a'Rtsv 0k~
Since there is now no danger of confusion with the "un-
integrated" quantities, we shall hereafter write g as j
to emphasize its matrix nature with respect to the
arrow space. Substituting the explicit forms of G and F
from (28), we can verify not only the equalities (39)
but also the following equality which is peculiar to the
case co=0:

GF=G F, G G =GG. (43)

As a result the matrix j contains only four independent
parameters. Let us transform the basis of the represen-
tation (38) with the unitary unimodular matrix r" '.

A ~ v"A. r" ', where

(e oi /1 —1

Eo i) '
I 1 1 )

dQ f 1
X (49)

&1+u&v(0)r-)

$(p,~) =8(—p, —~),

which is just the normal-state result Lcf. Eqs. (18) and
(19)j.Therefore we can state our erst (trivial) result:

The value of any "even" autocorrelation function is
unaffected by the superQuid transition in the limit
k —+0.

Thus, in particular, the compressibility is unaffected
by the phase transition, and the spin current sum rule
continues to be obeyed as in the normal phase.

Now we examine the less trivial case of "odd"
operators. We now have to evaluate the expression

Then (after a trivial rearrangement) we have

FF—GG 0 0 0

dQ g

1—r-g)
(50)

—(GG +FF) 2GF

2GF GG+FF 0

where it is now convenient to take all quantities as
matrices in a 2)&2 "arrow" space:

GG—FF
(44)

~ The quantity I'& of Ref. 8 divers from our j. & by a minus sign
as well as by a logarithmic factor due to the cutoff

&
cf. Eq. (19)

of Ref. 8.

—(GG +FF)
2GF

2GF

GG+FF)
'

rv o oo
(»)

Eo r-i Eo q)
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Since GF is proportional to v k in the limit k —+ 0, it is
tempting to take this limit immediately and replace
(50) by the expression

dQ GG+FF

4ir 1 I'"(—GG+FF)
(52)

However, this clearly cannot be correct in general, since
GG+FF —+ 0 as T~ 0 and hence if we used (52) for the
longitudinal current autocorrelation function we should
violate the longitudinal sum rule.

The difhculty lies, of course, in the fact that the
inatrix 1—I'"g may be singular in the limit k —+0,
since according to the gap equation (37) its (1,1)
element as well as its off-diagonal elements may tend
to zero (or rather, some harmonic of it may). "However,
it is clear that this de.culty does not apply to "spin-1"
operators Lg(p, o) =—$(p, —0)j since, according to the
prescriptions of Sec. II, F& in such cases is to be taken
as the triplet scattering amplitude, whereas it is the
singlet amplitude which enters the gap equation. Thus
we can immediately see that for such operators (50)
may indeed be replaced by (52). (This is, of course, the
mathematical expression of the fact that any collective
mode of the Bogolyubov-Anderson type will have spin
zero. ) For spin-zero odd. operators (e.g., the longitudinal
and transverse current) we must evaluate E'r. (k,0) for
small but finite k and only then take the limit k ~0;
whether or not the result is given by expression (52)
then turns out to depend critically on the symmetry of
the operator in question.

According to (50) and (51) we have to evaluate the
expression

dQ
Q((k) —= —((n)422(k, n),

4x
(53)

where n is a unit vector on the Fermi surface (v—=vn)
and the 2)&2 matrix C satisfies

4(k: n)—

4 (k: n) =g(k: n)4 (k: n),
dQ'

I""(n n')g(k: n')4 (k: n') = j(n), (54b)

gii(k: n) =Ao+n(v k)',
gi2(k: n) =gpi(k: n) =pv. k,
g22(k: n) =v(= (GG+FF).=0),

(55)

where the coeKcients a(T),P(T), and y(T) will be
evaluated below. It will turn out from what follows
that there is no need to expand to any higher order
than is done in (55).

where g, I'", and $ are given by (51).Since we are dealing
with spin-zero operators, I'~ must be taken as the singlet
pairing amplitude and I'" as the spin-independent part
of P"(n n', aa'). Let us write for small k:

Writing out (54b) explicitly, we have (omitting for
brevity the dependence of @on k)

dQ'
r~(n n') pv' k@22(n')+i2(n)—

%22 (ii)—

dQ—I'&(n n')PAO+n(v' k)'j@»(n') =0, (56a)
4n-

dQ'
r"(n n')Pv' N~i2(n')

dQ'
I'"(n n')y+22(n') =0. (56b)

4n.

Inspection of (56a) reveals that unless Vi2(n) is such
that the homogeneous equation,

dQ'
r+(n n')Ap+i2(n') =0, (57)

is satisfied, +i2 is at most of order (vk)%'22 and so can be
neglected in (56b). Also in that case, from (54a),
Cii(k: n) =y%'2i(k: n) and so Qi(0) —= lim& 0 Qr, (k) is
given by the expression (52). Now, in virtue of (37),
(5'7) can be satisfied if and only if 4»(n) is a scalar with
respect to n )we assume of course that there is no exact
degeneracy among the harmonics of I'&(n n')g. But
then, substituting 4'» back into (56a), we see that as
k —+0

%ip(n)= —(p/n)(v k)—'%g2(n), (5&)

and hence 4'22(n) must be proportional to n k (where
k is a unit vector in the direction of k). Hence, finally,
from (56b), g(n) must also be proportional to n k; i.e.,
it must be a "longitudinal" operator: g(y, o) = g(p, —0)
= /on k. Thus, for any "odd" form of P(p, a) except a
longitudinal one, Eq. (52) must be valid:

dQ
Q~(0)=

kr 1—yI""

$(p 0') = —$(—p, —0) W )on k. (59)

I inally let us consider the case of "longitudinal"
operators $(y,o)=—$(—y, —0.) = (on k. Putting

ts~ ——Cn k and substituting in (56a), we get %'»
=—(PC/n)(vk)-'; substitution of this in (56b) then
gives

P' dQ'
C n k+— I'"(n n')n' k

o, 4n-
dQ'

P (n n )n 'k = (pn'k (60)

so that
C= ~.D+-:P.-P -'—v)j-'

Lwhere Fi" is the fLrst harmonic of P"(n n')$. Hence,
finally, from (53) and (54a) we get

—:~"0'/ -v)
Qi(0)=, , if 5(y,~) =bn k (61)

1+-',r,-(P / —q)
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Let us now evaluate the quantities n(T), P(T) and Thus, finally, collecting Eqs. (47), (49), (59), (61),
p(T) [Eqs. (55)g. We have (the subscript zero denotes and (66), and writing F=—a'p(0)1'",2' we get the follow-
k=o, (0=0): ing expressions for the static correlation functions in the

limit k ~ 0:
v(0)

v(T)=
27ri

dade~(GG+FF)o(p, e) tanh(s/2T)
dQ

lim K((k,0)=41—a'Rpv(0)
k~o 4' 1+F

= —a'v(0) dip(2T) 'co—sh='(Ep/2T)

—=—~"(o)f(T),

where f(T) is a universal function of 8—= T/T, :

(62)

k(y, ~)=$(—p, —~);

dQ
lim K((k,0) =C i a—'R r2P(0)
k~0 4s. 1+F

((p,o) = &pn. k;

(68a)

A2 (0) 1 t2

dx cosh-' —x'+ —,(63)
0 28 I,-"

with f(T,)= 1, f(0)=0.According to the definition (63),
f(T) may be regarded as the "effective density of single-
particle levels" near the Fermi surface relative to the
normal-state value i (0). In the BCS model and related
inodels, f(T) is also the relative density of the normal
component as defined from the transverse current re-
sponse in the local limit; however, it is an essential con-
clusion of this paper that this identification cannot be
made in general for a superfluid Fermi liquid (see below).

Let us define for convenience

dn f(T)
lim K((k,o) =4'r —a'RPv(0) 5, (68c)

4~ 1+f(T)F
otherwise.

Fquations (68) constitute the principal results of this
paper, as far as the microscopic theory goes.

Since (68b) is the same as the normal-state result
[Eq. (18)j we see that, at least in the limit k -+ 0, the
usual longitudinal sum rule is satisfied in the superQuid
as in the normal phase, which confirms the consistency
of the calculations.

Physically interesting examples of correlation func-
tions satisfying Eq. (68c) are the spin-spin correlation
function K,[g(pa)=0.=&~if, which is related to the
bulk spin susceptibility by

y= —p' lim K.(k,0),
k~o

v(0)
Z(T) —= where P is the appropriate gyromagnetic ratio, and the

transverse current-current correlation function
K,[g(y,0)=p„/m, k„=Oj, which is related to the
London constant A(T) by

dade~(FF)o(p, e) tanh(e/2T)
2m.i

=-'( (o) '+7(T)) =-' "(o)L1—f(T)j (64)

Then it may easily be shown from (28) and (55) that S
[A(T))—'=e' —+lim K,(k,O)

m k

while after some calculation we get for n(T)

p(0)
n(T)—= lim (v k) '

k~0 2~i
dedep (GG +FF)(y,e: 0)

x(T) =-'P"(o) f(T)/[1+lz f(T)3,

(65)
Using Eqs. (14) and (15) for the constants C~ and R~,
and adopting the normal definition" of the spin-
independent harmonics P~ and spin-dependent har-
monics Zi of the quantity F (n n', 00'), we get

—(GG +FF) (p, e: k) tanh(~-/2T) Xe'
[A(T)] '= (1+-'F )

m*

=—u'i (0)
1 d tanh(Ey/2T)

dip 4' dg

f(T)
X 1—(1+3F&)

1+3Fif(T)
=X/2A2.

From Eqs. (64)—(66) it follows that

(p'/ )-v= "(o)
for arbitrary T.

(66)

(67)

1—f(T)Ãe'
(1+3F&)

m* 1+-,'Fif(T)
(70)

~'Thus E is a matrix with respect to direction on the Fermi
surface, and has the same spin dependance as F"in any given case.

~ A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).
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In the limit T ~ 0, we have f(T) ~ 0 and Eq. (20)
agrees with the result of Larkin. ' For comparison with
the results of the "weak-coupling" theory we write the
second equation as an equation for 1—[A(0)/A(T)];
by de6nition this quantity is equal to the relative den-
sity of the normal component p„(T)/p." Also we
express z(T) in terms of the susceptibility X„of the
normal phase. Thus

x(T)/X„= (1+sZp) f(T)/[1+sZpf(T)], (71)

I A(0—)IA(T) =p-(—T)/p= (I+sF t)

Xf(T)/[I+ lFif(T)] (72)

Thus, in a superfluid Fermi liquid neither )r(T) nor the
"density of the normal component" p„(T), as defined
from the transverse current response, is simply propor-
tional to f(T), i.e., to the "effective density of single-
particle levels. "

Consider Landau's original argument'4 concerning
the density of the normal component; for simplicity let
us assume the system to be translationally invariant. "
Landau decries the "density of the normal component"
p„(T) by considering an experiment in which the system
is made to come to thermal equilibrium relative to
boundary conditions moving with velocity V; then

P—=p„V.

An example of such an experiment is a rotating-bucket
or oscillating-disk experiment, so that clearly this de6-
nition is equivalent to the definition (72) based on the
response to a transverse vector potential in the local
limit. Landau then observes that we may calcllute
p (T), at sugciently low temperatures, by noting that at
such temperatures the few excitations present form an
ideal gas and the standard statistical mechanics of an
ideal gas may be applied to them. In this way he
derives the expression

Thus we get from Eq. (74):

m* ( dss 'l

p-(T)/p= Lv(o)] ' 2 I I= (1+lF )f(T)
m v kdZ)

which agrees with Eq. (72) in the limit T-+0. At
higher temperatures the excitations may no longer be
regarded. as an ideal gas and Eq. (74) is no longer valid.

Actually, Eqs. (71) and (72) have a very simple
interpretation in terms of the two-Quid model. For
instance, let us write the usual Landau expression' for
the spin susceptibility of a normal Fermi system in a
form explicitly involving the density of states v(0):

x= 'P' -(0)/[I+-'( "(0)1'.,o")] (76)

Now in the limit k —+ oo, (GG+FF) (k) -+—a'v(0); so
by using Eq. (15) and after a certain amount of matrix
algebra, we can rewrite (77) to lowest nonvanishing
order in (ek) ' as

(where I', ,
s"=—u'[v(0)] 'Zs). Then we get (71) if we

replace v(0) by v(0)f(T) not only in the numerator but
also in the denominator of this expression. Thus, in
considering the response of the system to probes which
affect only the normal component, we must describe the
latter as a "Fermi liquid" in its own right, with effective
density of states v(0)f(T), and apply to it the relevant
results of Landau theory.

To conclude our discussion of the microscopic theory,
let us derive a result which, though not directly con-
nected with the results of this section, will be useful
when we come to discuss possible applications to real
systems: We consider the static transverse current-
current correlation function in the limit k -+ ~ (ek))h).
In this limit symmetry arguments again allow us to
write

(GG+FF) (k)
limE, (k, )0=Cs+RfsTr $ r . (77)

1—I'"(GG+FF) (k)

d
p. (T)=s Z u'I

&dZ, )
' (74) N m~'

lim Z, (k,o) =—+
m m')

Now, in the case of a superQuid Fermi liquid all mo-
menta are close to the Fermi surface, so that we may
replace p' in (74) by pv' ——3(m*/m)[v(0)] 'p, where
p—=Em is the total mass density. Moreover, in the
translation-invariant case considered the Landau
effective-mass relation' holds:

m*/m=1+-', F, . (73)
s' The definition of p„(T) is of course somewhat arbitrary when

the system is not translation invariant; however, for an impurity-
free system it is most natural to choose it, as we have done, so that
p„(T) -+ p when T-+ T, and -+ 0 when T —+ 0. L'Thus p„(T)/p
would represent the normal component of the quasiparticle exci-
tations rather than of the liquid as a whole. g"L.D. Landau, J. Phys. USSR 5, 7& (194&).

"Although the original derivation was for a Bose liquid, the
generalisation to the Fermi case is easily made fJ. Bardeen, Phys.
Rev. Letters 1, 399 (1959)g.

XTr( k[(GG+FF) (k)+a'v (0)]$)

N 1~'= ——+ I v(0) p 'f(T 6/k v)dQ
m m*)

N ( 1 )' v(0)h=——+I
m &m')

f(T,r)~r

N pv'5=—+ S(T),
m k

(78)

where $(T) is a universal function of T/T, . Thus, in
this limit E,(k,0) depends only on the Fermi momen-
tum and the gap and is given by the same expression
as in BCS theory; it is thus completely insensitive to



A 1880 A. J. LEGGETT

Fermi-liquid effects. (In the case T=O this was pre-
viously shown by Larkin. ' Compare the normal-state
anomalous skin eGect, which is also completely un-
afFected by Fermi-liquid. corrections. ' )

This concludes our discussion of the microscopic
theory. The rest of this paper will be devoted to a semi-
phenomenological generalization of Eqs. (69) and (70)
and to possible applications to real systems.

Hr, = isQ f(py', «'-)Sps(p, o)bpp(p', o') .
pp 0'tp'

(80)

Here O, ~,t is the creation operator for a Landau quasi-
particle, and 5N(y, o)—=np, tnp, —e(pp —

) p~). The quan-
tities e(y) and V(yp', «') are, respectively, the true
(renormalized) 'single-particle energy and pairing inter-
action. In the case of a metal, y must be understood as
the pseudomomentum. The operator U describes any
other interactions which may be important in the
problem, e.g., interactions with impurities. (It is as-
sumed that all quasiparticle-quasiparticle scattering

IV. P. Silin, Zh. Eksperim. i Teor. Fiz. BB, 1282 (1957) LEnglish
transl. :Soviet Phys. —JETP 6, 985 (1958)g.

"The treatment given here follows closely the lines of Ref. 10.
A slight oversimplihcation in that reference will be pointed out.

'8 The results of this argument will actually be applied to some
cases where total spin is not conserved, e.g., because of spin-orbit
scattering. There is no inconsistency in this. All we need for present
purposes is that the average spin carried by a Landau quasi-
particle be effectively ~-„and this will be true provided that
V&&p, where V is a typical spin-orbit interaction energy. On the
other hand spin-orbit scattering will affect the superHuid-state
spin susceptibility appreciably if V~A.

IV. PHENOMENOLOGICAL APPROACH

In this section we give a less rigorous but more general
treatment of the effect of "Fermi-liquid" interactions
on the static properties of a superQuid system. %e shall
consider explicitly only those properties which are
affected by the superQuid transition, namely, the spin
susceptibility X(T) and the London constant A(T). For
simplicity we consider only the case where the normal
phase is isotropic. It will be assumed, as always, that
the system constitutes a "superQuid Fermi liquid" as
dered in Sec. I.

Consider 6rst the simpler case of the spin suscepti-
bility X(T)."According to our hypothesis (see Sec. I)
the ground state and low-lying excited states of the

system (those states excited for T&To) may be de-
scribed in terms of linear combinations of Landau quasi-
particle states. Also, since total spin isco nserved, '8 in
calculating the susceptibility we need deal only with
these low-lying states. Thus for our purposes the
Hamiltonian can be written entirely in terms of Landau
quasiparticle operators. Let us split it into two parts:

H=H„+Hr, ,

&-=Z s(y)&N(y, ~)+ Z I'(yy', «')
pp'o o'

Xnp~tn-p~ tn p u np e+U, (79)

terms except the pairing interaction may be neglected. )
Finally in (80) the function f(pp', oo') is the usual
Landau function used to describe quasiparticle inter-
actions in the normal phase; it may be expanded in the
usual way in Legendre polynomials of cose, where 0 is
the angle between y and y'.

~(yy', «') —=p(0)f(pp', «')
=g (Pi+Zie. e')Zi(cosa), (8l)

where p(0) is the density of states at the Fermi surface
in the normal phase.

Ke shall refer to the problem dered by II„alone as
the "weak-coupling" problem. The susceptibility calcu-
lated from P„, which we denote by X„(T), depends of
course on the precise nature of V and U and cannot be
written down in general form. What we shall show is
that under certain conditions, which will usually be met
in practice, the true susceptibility X(T) is entirely de-
fined by X„(T) and. the Landau parameter Zo.

Notice erst of all that Hl, has no eBect on the super-
Quid condensation itself nor on any "one-particle"
property such as the effective density of single-particle
levels. This follows from the fact that Hl, is a function
only of the quantity

i'(n, ~)—=Z (8N(y, ~)),
Inl

which describes the distortion of the "average" Fermi
surfaces, while the formation of Cooper pairs does not
affect f (n, a.). Consequently, the thermodynamics of the
system in zero external field may be calculated correctly
from B„;in particular, the SCS relation between the
critical 6eld H, (T) and the gap h(T) Land hence the
ratio H, (T)/H, (0) as a function of TjT,j is unaffected
by the presence of Fermi-liquid interactions. "However,
when we consider the response to an external Geld, it is
essential to take Hl, into account, as we shall now see.

According to Eq. (81) we may expand Hr, in terms of
the harmonics of the quantities f (n, o.):
&r.= [»(0)1 '{~o(5Ã)'+ZoS'+&ipr'Q'+ }, (82)

where Q—=Pp, pbri(p, o) is the total momentum if the
system is translation-invariant. Thus, we can see that
HL, gives rise to "molecular 6elds" of various kinds. To
proceed further we make the assumption that either

(a) the superfluid phase is isotropic or (b) all harmonics
Zg with E& i are negligible. If either of these conditions
is fu1611ed, it is obvious from synunetry considerations
that, for purposes of calculating the spin susceptibility,
we need keep in Hr, only the term in S'. Then our total
Hamiltonian in the presence of an external magnetic
Geld K has the form

a=a„+-,'t. (0)7-iZ,Ss—pS Se, (83)
"Although the normal-state susceptibility is of course affected,

the absolute value of x is so small anyway that the effect on II,(T)
is completely negligible.
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dQ
X(T)=!O"(o) f(T—: )

4m.

where

1 dn'
X 1+— Z(n, n') f(T:n'), (85)

4g

f(T,n) —= de~(2T) ' cosh—'(E, (n)/2T),

~ = '+L~())', (86)

and Z(n n') is the spin-dependent part of p(pp', og').
It is also very plausible, in view of the work of Balian
and Werthamer, 30 that the correct generalization to the
case of triplet-spin pairing simply consists of the re-
placement in Eq. (85)

f(T:n) ~ a+sf(T:n)
the quantity f(T:n) remaining an even function of n.
However, we shall not attempt to prove this here. The
evaluation of (85) is dificult in the general case; how-
ever, we can draw some important conclusions im-
mediately. First, of course, (85) goes over into (84) in
the limit T —+ 0 Lthis would not be a trivial statement
for triplet pairing, since in that case X„(0)=-', X„(T,))."
Moreover, the l"0 harmonics of f(T:n) can never
exceed1 —f(T) in order of magnitude, and in particular
they tend to zero as 1—f(T) for T —+ T,. Expanding
(86) in powers of 1—f(T), we then see that the devia-
tionof (85) from (84) isof second order in1 —f(T), while
the deviation of LX(T)/X(T,)) from tX„(T)/X„(T,))
is of first order. Thus, (84) should predict the slope of
X(T) correctly in the limit T +T,. In the in-termediate

"R. Balian and ¹ R. Werthamer, Phys. Rev. 131,1553 {1963).

where P is the appropriate gyromagnetic ratio. Then,
defining X„(T) as above, we easily find by minimizing
the free energy Grst in the absence and then in the
presence of the term containing Zo that

x=X (T)LI+P 'L (o)7 'Z x (T)) '

=X-(T)LI+lZo{X (T)/X-(T.)})', (84)

where we have used the fact that the normal-state sus-
ceptibility calculated from H„, X„(T,), is just the free-
gas value isa'v(0). In the case where H„ is the BCS
Hamiltonian, (84) reduces to (69).

Equation (84) is quite general, provided only that
one of the conditions (a) or (b) above is satisfied. How-
ever, in one case of interest —the possible superQuid
phase of liquid. He'—it is quite likely that neither con-
d.ition is met. Let us therefore digress for a moment to
examine this case, conGning the consideration to a pure
translation-invariant neutral system with singlet-spin
pairing as discussed in Secs. II and III but allowing now
the possibility of l&0 pairing. The generalization of the
theory d.eveloped in these sections is then trivial and we
simply quote the generalization of Eq. (69):

K(T) is related to A(T) by the equation

(X(T))-i=ca((X/m) —X(T)}.
To calculate the effect of Fermi-liquid interactions on
K(T), we shall treat the vector potential A(r) as con-
stant in space and put in the "transversality" condition
only through E (T), the weak-coupling value of E.
This is clearly justified since the "characteristic length"
associated with Fermi-liquid interactions is of order
k p ' and. hence much smaller than any other character-
istic length entering the problem. It will be assumed
that the impurity concentration is too small to invali-
date the Fermi-liquid description of the normal phase;
in metals, this means roughly that the electronic mean
free path must be large compared to the lattice
spacing.

The argument runs closely parallel to the one used
above for the spin susceptibility; however, there are
complications owing to the possible lack of transla-
tional invariance. 32 In general the ground state and low
excited states of the system are not eigenstates of the
total current operator J. However, we can split J into
two parts:

J=Jg+Jgp,

where the operator Jy has no matrix elements between
the low-lying states of the system (though in general it
has matrix elements between low and high states),
while Jqp is diagonal in the Landau quasiparticle repre-
sentation. Clearly in the weak-Geld limit the contribu-
tions to E(T) of Jy and Jgp are additive, and the con-
tribution of Jy )which corresponds to the term C ~ in
Eq. (5)) is insensitive to the superfluid transition.
Therefore we consider only the contribution of Jgp,
which we label X(T): that is,

E'(T) =(Jqp)/A. (89)

In the Landau quasiparticle representation it follows
from the continuity equation and: the kinetic equation

s'E(T) is the negative of the ICi(T) of Sec. IIL
The discussion which follows may be compared with that at

the beginning of Sec. II.

temperature region the higher harmonics Z2, Z4 ~ ~ ~

will have some effect, but since in practice it is likely
that Z2 is considerably smaller than Zo for He', the
effect is likely to be small. Thus, Eq. (84), though not
exact for arbitrary pairing as was stated. in Ref. 10, is
nevertheless likely to be a good d.escription even of a
highly anisotropic superQuid.

Let us now turn to the London constant h(T), o. r to
be more precise, to the quantity E(T)s' which we define
(apart from constants) as the response in the local
limit of the paramagnetic part of the current to a trans-
verse vector potential:

E(T)=lim(J, (I))/A(i), g A=0
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(cf. Ref. 1) that

Jgp ——g (1/m*) (1+-',Fi)pal(p, a)

A. J. LEGGETT

get agreement with Eq. (70). )The quantity f(T) is
defined in Eq. (63).)

In the case where the superQuid phase is highly
anisotropic and the Landau parameters Ii3, Iis ~ are
not negligible, the same sort of remarks apply as we
made concerning the susceptibility.

It should be noticed that nowhere in this section have
we said anything about the presence or absence of long-
range (Coulomb) forces. Actually, these can be handled
by the method first proposed by Silin' (cf. also Ref. 16)
in which the short-range effects are incorporated in the
Landau parameters (and in the pairing interaction)
while the long-range effects are put in at the end of the
calculation by means of Ma+well's equations. These
long-range effects are important only when we consider
processes in which the total local charge density is
changed; they do not affect the spin susceptibility or
the quantity E(T), which by definition measures the
local response to a transverse vector potential (though
they may, of course, mean that this quantity is not ex-
perimentally accessible).

The results of this section allow us to predict un-
ambiguously the temperature dependence of the quan-
tities x(T) (Eq. (84)) and E(T) $Eq. (95)) in the
presence of Fermi-liquid interactions, provided we know
the values X„(T) and E„(T) predicted by the appro-
priate "weak-coupling" theory. It should be empha-
sized that no assumptions have been made about the
nature of the "weak. -coupling" theory involved save
the minimal ones that the superQuid transition does not
change the "average" Fermi surfaces, and that the
superfluid phase is isotropic (we saw that violation of
the second condition is unlikely to affect the results very
seriously). Thus the derivation used in this section is
much more general than that of Secs. II and III, and
should be applicable to almost all cases of physical
interest.

= (1/m*) (1+aFi)&, (9o)

1 tt' m*
Hi, ~ Fi~ pp Jqp .

2 v (0) (1+-,'F i

Thus, again IIJ.provides a sort of "molecular Geld. "In
a weak external field, ignoring the term in Jr.A which
contributes to the constant part of E(T), we can write

H=H „+Hi, Jop A'. — (92)

We define K„(T) as the value of K(T) calculated by
setting Hl. =0.33 Then it follows from (91) and (92) that

K(T)=K„(T)L1+m.(T))-',

1 m*

i (0)pp' 1+-',Fi)

(93)

It is easy to show that the value of X„in the normal
phase $i.e., of K„(T,)) is just equal to i3(pp/m*)'
X(1+3Fi)'p(0); hence we can put (93) into a form
analogous to (84):

K(T)=K„(T)L1+—,'Fi(E„(T)/E„(T,)})—'. (94)

where O is defined as in Eq. (82). Since we may now
restrict our attention to low-lying states of the system,
we can once again write the Hamiltonian in the form
H=H„+Hi„where H„and Hr, are given, respectively,
by (79) and (80). Then, provided either (a) the super-
Quid phase is isotropic, or (b) all harmonics Fi t see
Eq. (81)) are negligible for /) 2, we may strike out
t for purposes of calculating E(T)) all terms in Hr,
except the one containing Q'. Using (90), we obtain

Moreover, it can also be shown (cf. Sec. II) that the
"nonquasiparticle" contribution to K(T) is the quan-
tity —0 „, where C „is given by Eq. (15); thus

iV m
K(T) = 1— (1+-',F—;)

m nz* E(T)'
1+3Fi(E (T)/K (T.)}

(95)

In the case of a pure superQuid with 5-wave pairing we
have

K-(T)= 9'/m*) (1+3Fi)'f(T) . (96)

The constants arise from the fact that the current
carried by the quasiparticles is renormalized according
to Eq. (90) (cf. footnote 33). Therefore, using (88), we

"This quantity differs from the value of IC(2') usually calcu-
lated in the literature by a constant factor due to the renormaliza-
tion of the current carried by the quasiparticles.

V. APPLICATIONS TO REAL SYSTEMS

The only extended, isotropic (in the normal phase)
and neutral Fermi system likely to display superQuid
behavior is liquid He~. This liquid is well described by
Landau's theory of a normal Fermi liquid below about
005'K'4 while T, is certainly not higher than
0.0035'K."Hence, from the point of view of this paper,
He in the superQuid phase, if it exists, should constitute
a superQuid Fermi liquid. Of course, it is unlikely that
the condensed phase is spherically symmetric; however,
as we saw above, Eqs. (84) and (94) are likely to give
a qualitatively good description even of a D- or t -wave

paired system. If we assume a D state, the appropriate
values of X„(T) and E„(T) have been calculated by

"4N. Bernardes and D. F. Brewer, Rev. Mod. Phys. 34, 190
(1962)."%.R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,
Phys. Rev. Letters 14, 129 (1965).
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Anderson and Morep' and may be substituted in
Eqs. (84) and (95) respectively. Then, (84) and (95)
read, simply,

X(T)=-'0"(o) f(T)/9+ 'Zof-(T) j (97)

"P.W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961)."L.H. Nosanow and R. Vasudevan, Phys. Rev. Letters 6, 1
(1961).' D. Hone, Phys. Rev. 125, 1494 (1962)."In fact it may even have an inflection point,

the approximate equality being due to neglect of the
higher harmonics Z~ and Ii ~. If the pairing takes place
in an Ii state (spin triplet), one may hope that the
theory of Balian and Werthamer" may be generalized
by requiring the gap h(n) to have a D-wave depend-
ence. In that case we should expect (98) to be valid as
it stands, while f(T) in (97) must be replaced by
ss+sif(T) (see Ref. 30). The function f(T)=Lv(0)j—'
)&Ps (dl/dEs), though not identical with the BCS
expression for a D-wave dependence of the gap, may be
calculated numerically. 3 ' The spin susceptibility of
liquid He', though very small in absolute magnitude,
may be measured with reasonable accuracy by spin-
echo experiments, " while the quantity E(T) can be
directly measured from experiments of the oscillating-
disk (or rotating-bucket) type (cf. Ref. 34). Since for
He' the Landau parameters are large (Zs ———2.8,
Iir 5.46 at lo——w pressures), " it should be possible to
verify Eqs. (98) and (97) (or its genera]ization to the
case of triplet pairing) quite unambiguously; the curve
E(T) should be much less concave" and the curve
X(T) (in the case of singlet pairing) much more so, than
the curve f(T). In the case of triplet pairing X (0) should
be 0.37 rather than the value —', predicted by the weak-
coupling theory. "

Let us now consider metallic superconductors, As we
saw in the last section, the long-range nature of the
Coulomb interaction is unimportant for our purposes.
As to the electron-phonon interaction, for all super-
conductors except lead and mercury it seems that the
gap 6 is small compared to a characteristic phonon fre-
quency (oo. This means that we can introduce an effec-
tive electron-electron interaction (due in general both
to Coulomb and to phonon effects) which will be nearly
constant over a region e, (~p~

—p~)v h. Thus, apart
from the relatively unimportant question of anisotropy
of the normal phase, the electrons in a superconductor
constitute a superAuid Fermi liquid from the point of
view of the present paper.

Observation of a Fermi-liquid correction to the spin
susceptibility LEq. (84)j is complicated by the fact
that the Knight shift in the transition metals, where it
has been most extensively investigated, almost cer-
tainly receives considerable contributions from sources

4s.Xss (1—f(T))
Xz '(T) = (1+-'sFt)

m*c' I+-'sF,f(T)
(99)

"A. Clogston, A. Gossard, V. Jaccarino, and Y. Yafet, Rev.
Mod. Phys. 86, 170 (1964).' R. H. Hammond and G. M. Kelley, Rev. Mod. Phys. 36, 185
(1964).

~ A. A. Abrikosov and L.P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
42, 1088 (1962) LEnglish trsnsl. :Soviet Phys. —JETP lS, 752
(1962)).

43 G. M. Androes and W. D. Knight, Phys. Rev. 121, '?'?9 (1961).
44 J. R. Waldram, Advan. Phys. 13, 1 (1964).

unconnected. with spin polarization of the conduction
electrons. "Other superconductors which have been in-
vestigated. are Hg, Al, and Sn. Hg, as a "strong-cou-
pling" superconductor, lies outside the scope of this
paper, while the present data for Al" unfortunately show
too much scatter to allow any quantitative conclusions
to be drawn. We are left with the data for Sn, which
should fall under the present theory. If,we assume that
in Sn the Knight shift does indeed measure the spin
susceptibility and nothing else, then to get a 6nite
value of X(0) we must assume that spin-flip scattering
is important, and X„(T) should be given by the expres-
sion of Abrikosov and Gor'k. ov.~ It is then possibly
significant that the experimental curve for Sn" is
definitely more convex than the curve of X (T) pre-
dicted by these authors, whatever the value of the spin-
flip scattering parameter (see Fig. 6 of Ref. 42). This
is what we should expect from Eq. (84) if Zs has a small
negative value, as is expected. on theoretical grounds.
However, probably we should not place too much re-
liance on this evidence, since a constant contribution
to the Knight shift from sources other than spin polar-
ization could upset this interpretation.

Prospects are somewhat brighter as regards the ex-
perimental detection of Fermi-liquid. effects on the
weak-field dc penetration depth X(T), which can be de-
termined with great accuracy; in particular this has
been done by Waldram and Pippard for tin. ' Tin, like
most elemental superconductors, is a Pippard super-
conductor for low impurity concentrations; that is, for
all temperatures except very close to T, we have
$Q)}z(T) where the London penetration depth Xz(T)
is related to A(T) LEq. (88.)$ by }r,

' ——c'A/4s. . Let us
first therefore consider whether we should expect
Fermi-liquid effects to be noticeable in a Pippard super-
conductor. In the Pippard limit $p))}r, the penetration
depth X(T) is determined entirely by the behavior of
E(k,0) for ek))A; as we saw at the end of Sec. III
LEq. (78)j, this behavior depends only on the Fermi
momentum and the gap and is entirely independent of
the Landau parameters. Hence, throughout the tem-
perature region where the Pippard limit applies, the
predictions of the present theory coincide with those of
BCS, and no Fermi-liquid effects are to be expected.
However, in the limit T —+ T, the opposite (London)
limit applies. In that case we have for a pure specimen,
from Eqs. (88), (95), and (96),
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The BCS expression is

4mFe'
&~ '(T) = L1-f(T)j,

m*c'
(100)

From Eq. (102) it is obvious that the most spec-
tacular eGect on the penetration depth will occur for a
pure London superconductor (l-+pe). In this case
(102) reduces to (99), which can be written

so that the two expressions coincide in the limit T~ T,.
Thus, for instance, the quantity lim„„B,(y)//dy,
y(T)—= (1—T4/T, 4) "', should be given by the BCS
expression, as is in fact found with high accuracy by
Waldram. ~ (It should perhaps be noted that the ex-
perimental determination of X and m* from the normal-
state specific heat and anomalous skin effect is un-
affected by Fermi-liquid corrections. )" Thus in the
regions T,—T T, and T,—T&&T„ the penetration
depth X(T) should. not show any appreciable Fermi-
liquid eGects. In the intermediate region we should
expect some small eGect, and it is interesting that
Waldram~ does indeed 6nd a small discrepancy from
the BCS curve. He suggests that this may be due to a
deviation of the temperature dependence of the gap
h(T) from the BCS predictions, but recent measure-
ments of the critical Geld in tin by Finnemore and
Mapother" seem to indicate no such deviation. It is
therefore tempting to speculate that the discrepancy
may be due to Fermi-liquid effects—it is of the right
sign for a positive value of F~—but in view of the com-
plexity of the calculations we shall not pursue this pos-
sibility here. In general the above discussion shows that
Pippard superconductors would not be expected to show
the eGects of Fermi-liquid interactions in any dramatic
way.

With a good London superconductor the situation
should be quite different. In this case the electro-
dynamics is always local and the theory of Sec. IV may
be used directly in all temperature regions. In order to
give a general expression covering both pure and dirty
London superconductors, let us de6ne a quantity
z(T,l) in terms of Xr, (T,l), the penetration depth pre-
dicted by the weak-coupling theory of Mattis and
Sardeen" for the given temperature and normal-state
mean free path l, and Xr, (0, po), the London penetration
depth of BCS theory in the limit T=0, l= ~:
z(T,l)= 1

)I.r, (0, ~)/Xr, (T,l)j—'
= 1—LZ„(T,l)/Z„(T.)j, (101)

with X„(T,)= (E/tN*) (1+rsFr)s )see the discussion of
Eq. (93)g. The quantity pz(T, l) is the effective density
of the superQuid component in the weak-coupling
model. In the limit l&(gp it is given by J'(O, T) (l/$p) pf(T)
where f(T) is defined by (63) and J'(R,T) is the usual
function used in BCS theory (see e.g., Ref. 47, p. 221).
Then from (88) and (95) we find

4rXe' z(T,l)
Xr, '(T) = (1+-',F—t) . (102)

m*c' 1+sFr(1—z(T,l))
4' D. K. Finnemore and D. E. Mapother (unpubhshed).
4p D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
4' J. R. SchrieBer, SupercondlctiMty (W. A. Benjamin, Inc.,

New York, 1964).

P, (T)/X(0)g'=P (T)/X(0)g'Bcs(1+srFr) —Fi/3, (103)

so that the temperature dependence of X(T) will enable
us to determine F& directly as the parameter of an other-
wise parameter-free curve. Pure elemental niobium and
vanadium are probably the nearest things to a pure
London superconductor found in nature, and it would
therefore be of great interest to measure the penetration
depth accurately for these metals. However, even in
the usual case of a dirty London superconductor, where
z(0, l) 0.1 (say), the accuracy of penetration depth
measurements should probably be sufficient to allow us
to detect the effect of Fermi-liquid interactions
LEq. (102)j and even to get at least an order of mag-
nitude value of F~.

To obtain such a direct estimate of F&, even for a very
dirty superconductor, would be of more than academic
interest. As has been shown by Silin, " there exists
another way of obtaining F~ for metals, namely a com-
parison of experimental data on the electronic specific
heat, the anomalous skin effect and the dielectric
constant in the infrared region. However, the values
calculated by Silin from these data for various metals
are very large (comparable to those for Hep) and cannot
be reconciled with any theoretical estimate based on
present ideas about the Coulomb and electron-phonon
interactions (see, for example, Ref. 4). Thus it would
be of great interest to obtain a value of F& directly
from the penetration-depth curve, as suggested above,
even for a dirty metal. The value should be at least of
the same order of magnitude as in the pure metal, so
that such an experiment should constitute a direct test
of accepted ideas about the weakness of electron inter-
actions. One caution is necessary: If the mean free path
l becomes comparable to ks ' (which is of the order of
the interatomic spacing a), then the Landau theory in
its usual form presumably becomes meaningless for the
normal state and F~ is not well defined. Thus, it would
be desirable to work with a specimen such that u((l«$p.

VI. CONCLUSION

In this paper we have developed a formalism suitable
for obtaining the properties of a neutral, isotropic
superQuid Fermi liquid, and have applied it to the cal-
culation of the static correlation functions in the long-
wavelength limit. It has been shown that the "Fermi
liquid" interactions have the eGect of changing the
temperature dependence of the spin susceptibility and
London constant. Further, we have shown that this
effect is not peculiar to the specific model considered,
and in fact the true temperature dependence of the sus-

ceptibility and London constant may almost always be
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obtained from a knowledge of their "weak-coupling"
values and of the appropriate Landau parameters.

The theory should provide a good description of the
properties of liquid He' in the superfluid phase (if it
exists). As to metallic superconductors, it is suggested
that the temperature dependence of the Knight shift
in tin may be due to Fermi-liquid eGects and that other
nontransition superconductors may be expected to
show similar eGects. Also, the temperature variation of
the weak-6eld dc penetration depth in very hard
(London) superconductors should show the effect of the
Fermi-liquid interactions unambiguously. Such experi-
ments should in principle provide much more direct
values of the Landau parameters Zp and P] than any
other methods presently available, and this would be
of considerable interest from a theoretical standpoint.
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APPENDIX

The purpose of this Appendix is to derive an expres-
sion of the form (5) for the autocorrelation function
K~(k,~); that is, to split it into two terms corresponding
to "nonquasiparticle" and "quasiparticle" contribu-
tions (cf., the discussion at the beginning of Sec. II).
The "nonquasiparticle" contribution C~ will be in-
sensitive to the values of k and ~ (for a&, p/p((p) and also

to the onset of superQuidity; the "quasiparticle" term
will consist of some integral I~(k~,) which is taken over
regions near the Fermi surface, multiplied by a constant
R~' which is expressed in terms of integrals over all

regions of energy and momentum. Thus all the de-

pendence on k,a, and T is contained in the function

Ir. (k,o&) which may be expressed in terms of a few phe-
nomenological constants of the Landau type; the con-
stants C ~ and R~ may be evaluated once and for all in
the normal state at any convenient temperature (e.g. ,
T=O). For the sake of clarity the derivation will be
carried out explicitly for a normal system; the general-
ization to the superQuid case is then straightforward
and is indicated in Sec. II of the text. The formalism
used here is based on the work of Eliashberg, ' to which
we refer for details of the analytic continuation
procedures.

We are interested in the quantity

((A:B))~(co)—= i—
/pp' &I&.~'-/pp'+&I&. ~'~~ (op) ~—

0(t)(a(&)a(0)aa(0)a (&))

Xexpmt dt.

(In the one-particle Green's functions occurring sub-
sequently, which will be written without a subscript +,
the + sign must be taken, as usual. ) From now on the
spin indices will be omitted; they enter on an equal
footing with p.

The following statements are proved in the work of
Eliashberg": The quantity Epp'(k, co) is the analytic
continuation of the "temperature" Green's function
Kpp'(k, ~„) from the upper half-plane of ~. Now
Kpp'(k, ~,„) is related to the complete vertex part
I'»'(o„, o '. k,&o ) by an equation of the usual form,
which we write symbolically as

E=GG+GGPGG.

When written out explicitly and continued analytically
to the real axis this equation gives (we omit the indices
k,& for brevity where they are not specially emphasized)

where

Zpp'(k, o&) =
kri

g X;(e)Z,pp'(o)de, (A2)
i=1

Xg (e) = tanh (e/2T),
),2(e) = tanh (e+o,/2T) —tanh (e/2T),
),3(e)=—tanh(e+(o/2T) )

(A3)

and the quantities E;»'(e) are given by

&"'(~)=g'(p, ~)~pp

3

+ . Z «'Q"'(o, ")g (p,"), (A4)
4~i ~=1

where

g~(p, e: k,c )—=Gg(p+k/2, e+(o)G~(p —k/2, e),
gg(p, e: k,M)—=Gg(p+k/2, e+o)G~(p —k/2, e), (AS)

g3(p)e. k)( )—=G~(p+k/2) o+o)G~(p —k/2) ~),

where G and 6& are, respectively, the retarded and
advanced single-particle Green's functions. (Strictly,
the analytic continuation gives us the functions which
are analytic in the upper and lower half-planes of &,

respectively; this must be remembered when we come
to the generalization of the super6uid case.) The fun, c-

Et(kp&) =—Q &(p,o)Zpp' "'(k,co)p(p', o'), (A1)
PP &&

where

Epp ' (k M) =((cp+Jg/p, g Gp Jg/p, gp ~
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tions Q,, (p,p', o, o': k, io) are connected with the various
analytic continuations of the vertex part in a way ex-
plained in detail in Ref. 17. For our purposes it is suffi. -

cient to know tha, t they all have the form [see Eq. (12)
of Ref. 17)

Q,, (o,e': io) =X, (o',io)I'g(o, o',0))

+D,, (o, o', 0,) coth[L(o, o', io)/2T), (A6)

where L (o, o', io) is some linear combina. tion of the quan-
tities o, o',o),L(o,o', a))=aoWo'(+co), F,, (pp', oo'.'k, io) is
some analytic continuation of the "temperature"
vertex part F (o„,o ~

'. &0 ) and D,, is the digereppce of two
analytic continuations, which is always pure imaginary.
In particular we have D,~=—D~;=—0. When the argument
of the hyperbolic cotangent in (A6) is zero the principal
part is to be taken. For a proof of these statements we
refer to Ref. 17.

To simplify the notation let us regard the quantities

Q,, (pp', oo': k,o)) as matrices with respect to p (and o),
o, and i(i=1,2,3). Matrix multiplication will be defined

by

(AB),; (pp', aa', oo')

which is the product of two "polar" terms, which we
label g„, and all the rest, gf=—g—g„.It is convenient also
tO intrOduCe a CutOff oo(o),Vk, T((oo((11) Siich that by
definition g„(p)=—0 if

~ op~) oo. The rationale of the
separation is that, within the limits of our approxima-
tion, all the dependence on k and io (and also on the
superfiuid transition) is contained in g„. It will turn out
that the results are effectively independent of eo in the
normal case, while the dependence in the superQuid
case is easily eliminated (see Sec. II of text). We now
introduce Q by the equation

Q=e"+Q g-Q=Q +Qg-Q". (A11)

Q,, (o, o': oo) is obviously related to the analytic con-
tinuations of a quantity F"(o„,o„:i ) by the analog of
F.q. (A6):

e„-(, ': )=),(', )F,,-(, ', )
+D,)"( , o&o) coth[L(o, o', io)/2T), (A12)

e-=Q "+Q"'g Q-=e "+Q-g e"' (A1o)

(The second equality follows from the first by a simple
matrix identity. ) It then follows from (AS) that

do A ii(pp, aa )oo )
4mi p"~"

and the trace by

where in particular D;2"=—D2;"=—0. The real parts of all
F;," are equal and will be assumed to be slowly varying
functions of o, o',

~ p ~, ~

p' ~,k and co for , opo, p' near the
Fermi surface and ok, oo((11 (this is of course an essential
hypothesis of Fermi-liquid theory):

T1A = Q Q doA jj(pp)aa)oo) .
4zri p~

X&=Tr{8g(1+Qg)5} . (A7)

Note that k and o. are parameters here. We may regard

g, (p, o), g, (o), and. g(p, a) as diagonal matrices. Com-
bining (A]), (A2) and (A4) we can now write concisely

ReF,; = F"(n n', a,a'),

where n and n' are unit vectors respectively parallel to
p and p'. VVe shall subsequently identify I'" with the
function introduced by Landau' at T=O.

Now we use the following matrix identity: if for any
two matrices S,f we have f= fr+ fo aild 5=So+SofoS,
then

Now the matrix Q obeys the "Dyson" equation
(cf. Ref. 17—note that our Q") is Eliashberg's 1"&')

while his 7'io) is not used here):

f(1+Sf)= f, (1+S,f,)
+(1+fiS0)(fo '—So) '(1+Sofi) . (A13)

Q= Qio)+Q(0)ge (AS) Applying this identity to (A7) with the help of (A11),
we get

where Q&") is related, to the usual irreducible vertex
part V" in the same way as Q is to F. Now, following
the original idea of Landau, ' we introduce instead of
Qi") a "quasiparticle-irreducible" vertex part Q", as
follows. At least for p suSciently close to the Fermi
surface, the one-particle Green's function will have a
pole near the real axis plus some incoherent background:

G)1(p&o) = [Gz(p, o))*=ii(o—op+1m p) +Gine y (A9)

where ep is the quasiparticle excitation energy and pp
the half-width, and the constant a is less than unity.
Now we divide the products g, (p, o. k, c ) into the part

Xt =Tr{P gr(1+Q g&)$}+Tr{ )X(1+gfe")
&&[g-(I—Q"g-)-')(I+Q"gr)0 . (A14)

Tllc first tclrll ill (A14) is a collstallt. @o 1t ls lilscllsltlve
to k,M and the superfluid phase transition, since it
contains no terms referring to quasiparticles near the
Fermi surface (except for negligibly small ones). The
second term still needs some rearrangement in order to
ensure that the central integral is taken only over a
region of width ~ or T around the Fermi surface
(rather than oo). Using the fact that gi and go have
two poles close together on the same side of the real
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axis and therefore the rest of the integrand must be
sharply varying in the region e eo to give an appre-
ciable contribution, we see that to order pp/p the con-
tribution to the integral Q,,"g, (j&2) from the terms
containing D;," of order D,,"(pp, pp) at most. But D,,",
which is pure imaginary and related to the probability
of a real collision process, is small for e eo because of
Pauli-principle restrictions. Hence we can neglect this
contribution. Since the contribution of the terms in
hgfQ" containing D» is also of order pp/Ii at most rela-
tive to those containing F,~", while D,~"—=0, we can put
Q"=I'"X everywhere outside the square brackets in
(A14). It should. be noticed that this argument is also
valid. for the superfluid phase. Thus (A14) becomes

E(——C g+Tr{$(1+Xgfl'")
XPg-(1—Q"g-) '](I+r"g I )g . (A15)

The integrals inside the square brackets are now
effectively taken only over a region p, ohp T (or M, if
M)T) (for the term in the denominator containing
Dp, ", see the comments at the end of this appendix).
Therefore, the factors outside the square brackets,
which are slowly varying functions of p and e, may be
evaluated at p= pi, p ——0 and simply act to renormalize
the "bare vertices" g:

~(1+I g,l-) = (1+r-g,I )g=R,P, (A16)

where R~ is a diagonal matrix in i-j space. Inspection
of the symmetry properties of the quantities F,," (see
Ref. 17) then shows that Rii ——Rpp ——real, and. explicit
evaluation of (A15) in the limit ~o))T, T~ 0 and com-
parison with the well-known results of zero-tempera-
ture theory"" then leads to the conclusion that E~ is
just the unit matrix multiplied by the analogous re-
normalization factor of zero-temperature formalism:

R,;$=E((=(1+(GG)"I' )$, (A17)

in the usual notation. "The comparison also leads to
the conclusion:

C,=Tr{g(GG)-(1+r-(GG)-)Pj . (A18)

[In (A17) and (A18) the matrix notation of course now
refers only to p,o and p.]

Thus our final result for the autocorrelation functions
in the general case has the form

Xg
Er(k, pi) =C p+RP Tr

Qlg

(A19)

The physical interpretation of the constants C ~ and E~
is discussed in Sec. II of the text. They will be evaluated
below.

In (A19) the functions Q,,"have the form [see (A12)]

Q;,"(p,p': u)=X, (p', )I';, (,p', pi)+$,, (p, p', p.), (A20)

where X),, (p, p', oi) is a pure imaginary function and
S,p

—=Si;=0. Since the integral containing Q" is taken
only close to the Fermi surface, S;, is everywhere smaL'
and all the analytic continuations may be taken as the
same real function I'"(n n', o,o') defined above:

where
v(0)

dip Jp Q X~(p)(d)g~(p) p: k,pi) I

(A21)

with X,(p,pp) given by (A3) and v(0) the density of states
at the Fermi surface. For consistency we must of course
take the limit p —& 0 when calculating g. Then we easily
get

g=a'o(0) v k/[pp —v k] (A22)

and (A21) agrees with the usual zero-temperature
results provided that we identify I'"[—=I'"(n n', o,o')]
with the quantity defined by Landau. '

It remains to sketch the derivation of the constants
Cr and R~ for the cases of physical interest [((y,o.)
=1,o.,p, (yo.)]. First, using (A18) it is easy to show'P
that for any "conserved" quantity $(p,o) (i.e., any
quantity such that Pp, $(p,o)ap, "ap, commutes with
the Hamiltonian) we have simply

C )=0, E]——u—'. (A23)

We shall assume that the total particle number and spin
are conserved, but not necessarily the total momentum.
Let us consider the autocorrelation function E~(k,pi)
corresponding to a given Cartesian component of
current [t(y,a)=—p„~m]. To derive the corresponding
constants 4 ~, E~ we notice that it follows from the con-
tinuity equation that for p parallel to k E„(k,pi) is re-
lated to the density autocorrelation function Ei(k,pi)
in the limit co))k~ by the relation

E„(k,pi) —E~(k,0) =—cp'k —'Ei(k, pi) .

Therefore, evaluating E„and Ei according to (A21)
and (A22), and using (A23) for Ei, we find

'( /m*)[1+(F /3)], (A24)

in the standard notation [Fi is the first harmonic of the

I';,"(pp', o o', pp': k,M)= I' (n n', o.io') .

From (A20) and (A3) it is clear that we may at once
drop all the imaginary terms S,, in Q,," except for Spp,
which may be important in the limit pi ~ 0 (since then
X2 —+ 0 and g~

' y, which is of the same order of rnag-
nitude as K)»). Actually, it is easy to see that S» will
be important only when we consider either the "absorp-
tion region" t y or the kinetic coefFicients. For all
other purposes we may write
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spin-independent part of the function F (n n', o.o')
—= o',sv(0)1'"(n n', oo') and m*—=Pi ~ V,e,

~
'„=»). Fi-

nally, using the longitudinal sum rule

Z„(l,o)=—N/m,

and Eqs. (A21), (A22), and (A24), we get

It is easy to show by means of a further "renormaliza-
tion" of the quantities Q@" (cf. Ref. 17) that (A27) is
proportional to

X2g2
limlim (io~) 'Tr yo yo.

1—i&g

4 o= (N/m)( (m/m*) L1+ (Fi/3)) —1) . (A25)

PIn the case of translational invariance, combination
of (A25) and (A23) of course gives the well-known
Landau effective-mass relation. ')

The spin-current renormalization constants
PP(p, o) =p„o./m) can be obtained in an entirely analo-
gous way, since a corresponding continuity equation
and sum rule exist in this case:

R~.= g—'(m/m*)L1+ (Zi/12)),

C,= (N/m)((m/m~)L 1+(Z,/12)) —1), (A26)

where Z& is the erst harmonic of the coeKcient of e e'
in F(n n', oo').

To conclude, let us just illustrate the physical sig-
nificance of the quantity S». (For more details, though
in a rather different notation, see the work of Eliash-
berg. 'r) For definiteness consider the spin diffusion co-
eKcient D(T), which is proportional to

lim lim (uo) 'LE„,(k,cu) —X~,(k,0)), (A27)

where E„,is the spin-current autocorrelation function.

( dm)
ip. , (A28)

P0' &de,&

where I)=—i(1+Zi/12) $, and we have used the fact
that the trace of a product of several operators of which
only one is nondiagonal is independent of their order.
On the right-hand side of (A28) y is the diagonal matrix
ys„and S is the matrix X)s, s

=—X)(py', oa.', eses ).
It is obvious from (A28) that the effect of S is to

subtract from the "true" inverse lifetime (collision
probability) 2ys the part due to these collisions which
conserve the spin current, and thereby to define a
"diffusion lifetime" r& by the (matrix) equation

tt' dl) de
(2y —&)-'i Ipo= r yo.

%des) des

Indeed, by proceeding along these lines we recover the
usual expression" for the spin diffusion coefficient of a
normal Fermi liquid.

"D.Hone, Phys. Rev. 121, 669 (1961).


