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Whereas, this value is quite small to be interpreted by
dissociative recombination, calculation of O.D indicates
that collisional-dissociative recombination through a
level near q=4 could be expected to give an electron-
removal rate of

rrn 10-"——cms/sec at 2000'K.

Consequently, a dissociative state having an energy at
the common equilibrium internuclear separation of the
bound molecular states comparable to or below that

of the fourth hydrogenic level would yield a collisional-
dissociative recombination rate in agreement with that
experimentally determined. Since the states with one
of the possible A values arising from the combination
He(1'S)+He(2'), the 4pZ, has not been experimen-
tally located, such a repulsive state with the desired
energy could exist. Consequently, at least on the basis
of recombination rates, collisional-dissociative recom-
bination offers a promising alternative to dissociative
recombination in the explanation of the dissociation
observed in decaying helium plasrnas.
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Binding energies of electrons in several neutral atoms are calculated for the Thomas-Fermi, Fermi-
Amaldi, and Thomas-Fermi-Dirac models, as well as for three other modi6ed models proposed in this paper.
In the modiled models the self-interaction of the electrons is explicity treated. One of these modifications,
related to the Fermi-Amaldi model, seems to yield results very close to the experimental values for binding
energies above a few tens of eV in atoms with Z up to about 50.

INTRODUCTION

'HE Thomas-Fermi" (TF) statistical model of
the atom is the simplest model which reasonably

describes the electrostatic potential and the electron
density within the atom. Despite the simplicity and
crudeness of the model, one may still use the TI'
potential to calculate binding energies of electrons by
solving a single-particle wave equation. The results of
such calculations might a priori be considered as a first
approximation for calculations on a more refined model
of the atom, such as the Hartree or the Hartree-Pock
self-consistent method. Often, however, the TF binding
energies agree quite well with the experimental values.
This agreement improves when the calculations are
carried out with the Fermi-Amaldi' (FA) or the
Thomas-Fermi-Dirac4 (TFD) potentials.

Extensive calculations of energy terrrts (speci6ed by
the rt and l quantum numbers) for the TF and TFD
models have been carried out by Latter' who solved the
Schrodinger equation. In the present work we repeated
similar computations for energy levels (specified also

' For general reference see P. Gombas, Die Stutistische Theoric
Des Atoms (Springer-Verlag, Berlin, 1949).

E. Fermi, Atti Accad. NazL Lincei. Rend. Classe sci. fis. mat.
e nat. 6, 602 (1927); 7, 342, 726 (1928); L. H. Thomas, Proc.
Cambridge Phil. Soc. 23, 542 (192'l).' E. Fermi and E. Amaldi, Mem. Acc. Italia 6, 117 (1934); see
also Ref. 1, p. 65.' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (l930);
see also Ref. 1, p. 77.' R. Latter, Phys. Rev. 99, 510 (1955).

by the j quantum number) by solving the Dirac equa-
tion. We also computed the energy levels for the FA
model and for three modiGed forms of the above-
mentioned models. In these modiGed models special
attention is explicitly paid to the self-energy of each
individual electron. It appears that for a rather wide
range of elements the binding energies based on one of
these models (a modified Fermi-Amaldi model), on the
average, agree with the experimental values better
than the results based on the more orthodox models. In
this respect the results of this particular model may be
compared even with the Hartree-Fock results. All three
modified models may easily be extended to ions. Two of
them (viz. , the modi6ed TF and the modified FA
models) may also be extend. ed to atoms at 6nite temper-
ature and pressure, whereas the self-consistent-Geld
methods, although more accurate in principle, are
much more dificult to apply to atoms in highly excited
states. The two extended models may therefore be
used as a basis for calculations of opacity in the interior
of stars.

pd ~=Z, given. (2)

MODIFIED THOMAS-FERMI METHODS
All versions of the TF equation (i.e., TF, FA, and

TFD equations) may be obtained from a variational
principle

&oo~+4„=min,
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In all versions the kinetic energy of the electrons El„„
has the same form which corresponds to a plane-wave
approximation,

pP/pdpr ~ x —2 (3~2)2/pgpg

These versions differ by the particular form chosen for
the dependence of the potential energy Ep,~ on the
density of the electrons p. Using a Lagrange multiplier
to account for the extra condition (2), we obtain the
basic equation

(5/3)x.~( )'/'+~E, ./~p+. V.=O. (3)

f/E, .&/bp is the functional derivative of E,.& with respect
to P(r) Th.e following exPressions for Ep, 2 are used in
the various methods:

p(r)
E...= 22e —V—,(r)p(r)d'r Ze2 —dpr, TF

1Z—1

2 Z

/ (r)
V,(r)/p(r)dpr —Zep dpr, FA (4)

/ (r)
V, (r)p (r) 'Ze2 —dpr+E. „,h. TFD

Here V, (r) is the electrostatic potential exerted by all

the electrons on an infinitesimal test charge at a point r,

p(r')
V, (r) =—e dpr'.

[r—r')
(5)

E, ,h is the exchange energy of the atom as a whole.

By the plane-wave approximation one deduces

E h
———x p4/pdpr x = 2(3/pr) '/-pe2

Inserting the expressions (4) into Kq. (3) we obtain
the following relations between the density p(r) and

the potential V,(r):
(5/3)x„p2/2 —eV,—Ze2/r+eVp=O, TF

(5/3)X2p"2 —eL(Z —1)/Z)Vs —Ze'/r+eVp=0, FA (7)

(5/3) X2p2/ —eU,—Zep/r —(4/3) X p'/2+eVp=0. TFD

yield differential equations for V,. These differential

equations, with auxiliary conditions LEq. (2), boundness

near the nucleus and zero pressure at the edge of the

atom), uniquely specify the potential V, of the free
atom for each Z.

The potential V, which should appear in quantum-

These relations together with the Poisson equation,
obviously obeyed by V„

V'V, =pep

mechanical calculations is the potential actually exerted
on an electron of the atom. This potential divers from
the potential V,+Ze/r acting on an infinitesimal test
charge because U.+Ze/r includes the interaction of the
charge of electron with itself, and because it does not
include exchange effects. One is therefore rather free
to choose any of the V, of Kq. (7) and to correct it by a
suitable term accounting for the self-interaction or the
exchange potential. The usual potentials V, used in
quantum-mecha, nical calculations are:

V,= VTP= V,+Ze/r

= VF~ = (Z—1)V./Z+Z%
= VTFD = V,+Ze/r+2X. P'/2/e. (9)

The V, in each version is the potential derived from
the corresponding Eq. (7). This choice is natural as it
is consistent with the expressions (4) for the energy Ep.&.

It is obvious that VTp does not approximate the
physical potential very well, as it does neither account
for the self-energy nor the exchange eGects. The only
advantage of VTp is that it is more convenient for
numerical calculations than the other potentials,
because it has a universal form for all atoms.

The FA potential apparently takes into account the
self-interaction as appears in the expressions either for
Ep $ and for VF+ However, the expression FA for Ep
in Eq. (4) claims only that the self-energy of a/'l the
electrons is 1/Z of their total mutual interaction, which
is a rather plausible assumption. The assumption on
VF~ in Eq. (9) is much more restrictive as it claims
that the self-interaction potential exerted on each
electron is exactly 1/Z of the potential exerted on it by
all the electrons. This is obviously not valid for electrons
not uniformly distributed, as is the case for an actual
atom (except for Z=2, where the statistical model is
naturally not expected to hold).

The TFD potential includes an explicit term of
exchange potential 2X,/pl/2/e. In a rigorous treatment of
exchange effects, the self-interaction is also properly
treated (as in the Hartree-Fock method). In the present
statistical approximation this is not assured.

YVe introduce therefore three modified potentials for
use in calculations of binding energies of electrons:

U, op= Va+Ze/r V,.ll. — (10)

V„lf is the potential exerted on a test charge by the
electron whose level is calculated, and V, is again any
of the potentials defined in Eq. (7).

More explicit expressions for the potential V, „d are

Vq mod VTFM VTF Vself
= Vz~M = (Z/(Z —1)j(Vz~ —e/2') —Usa n

UTFDM VTFD 2xaP % Uself ~ (10')

In these potentials the self-interaction is explicitly
taken into account. One is justified in using V~,d for
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calculations of binding energies, assuming that the
major correction to V,+Z% is V„it, and that the other
corrections due to exchange eRects are negligible. These
modified potentials and the corresponding models are
referred to later as the TFM, FAM, and TFDM
potentials and models.

It should be noticed that any of the V, ,~ has some
advantage on both the TF and TFD potentials. VTp
and VTsz& (but not Vs a) decrease for large r faster than
e/r. It may occur that the number of their bound states
are sensibly smaller than Z, whereas all the potentials
V, ,s decrease like % for r ~ oo, and therefore have
usually more bound states. The modified potentials are
also preferable when treating a system consisting of an
atom with a hole in an inner shell and an outer electron,
having either negative or positive energy. In such
systems the potential exerted on the outer electron is a
potential of the type V, ,q and not the TF, FA, or
TFD potentials, nor the ion potential related to any
of these models. The potential V, ,q is exactly the
model potential of an atom with a hole, provided that the
rearrangement effects after creating the hole are
negligible. Thus the modified potentials may be of some
use, especially for calculations of photoelectric cross
sections.

NUMERICAL CALCULATIONS OF BINDING
ENERGIES

We solved the Dirac equation in several atoms for
electrons whose binding energies are at least of the order
of a few tens of eV. The eigenvalues thus obtained for
all six potentials defined above are presented in Table I.
The eigenvalues, which in our Inodel equal the binding
energies, are obtained with an accuracy better than
0.02 jo by Hartree's method' modified for the Dirac
equation.

The TF potential was taken from a table published
by Kobayashi et eL.' which is accurate to the fifth
significant figure. The other potentials were calculated
by us (see Appendix) with an accuracy better than
0.01'Po. The differential equations defining the potentials
and the wave equation were integrated by the Runge-
Kutta-Gill method. All numerical calculations were
carried out on a Philco, Transac-2000 computer.

The expressions for the modified potentials, Eq. (10),
include a self-potential term V„it(r). This term depends
explicitly on the wave function 4'(r),

V„it(r) = —e

and in general is not spherically symmetric. In order to
simplify the Dirac equation, V„it in expression (11) is

eD. R. Hartree, The Calcatattorc of Atomic Stractlre Qohn
Wiley R Sons, Inc. , New York, 1957).

7 S. Kobayashi, T. Matsukuma, S. Nogai, and K. Umeda, J.
Phys. Soc. Japan 10, 759 (1955).

replaced by a spherically symmetric potential

V„it(r) =—— 4trr"(f (r') s+g(r') sjdr'
r 0

f and. g being the two components of Dirac radial wave
function.

The Dirac equation with the modified potentials
V, ,s, as defined by Eqs. (10) and (11')),is an integro-
differential equation. It is solved by iterations: Solving
the equation for the potential V,+Ze/r, one obtains the
eigenvalue e and the eigenf unction 0 . The self-
potential V'„ig corresponding to 4' is evaluated and,
solving the equation again for V,+Ze/r V'„it, on—e
obtains a new eigenvalue e' and a new eigenfunction 4'.
With the new function 0' the self-potential V'„ig is
calculated, and so on.

This method converges very rapidly. The difference
e'—e' is of the order of a few eV (usually less than 4eV),
and e' —e' is usually less than 0.5 eV. The equality of
the eigenfunctions is also remarkable: In most cases
the ratio (4'—4')/4' is less than 0.5% for the main
part of the function. In fact the eigenvalues for the
modified potentials presented in Table I are those
obtained after a single iteration (i.e. , e ). Only when the
binding energy is low, say a few tens of eV, the eigen-
values ~', obtained after a second iteration, are given.
In the table the eigenvalues for all six potentials
discussed above are given along with the most recent
experimental binding energies available to the author. ' '

DISCUSSION OF THE RESULTS

The binding energies of the pure TF model reveal the
following features: Almost all the calculated binding
energies ~„i are lower than the experimental values
e, o. For a certain level (e.g. , 1s—',) and different values
of Z's, the difference e, ~

—e„& grows roughly propor-
tionally to Z until Z=60, although the ratio (e,„o—e„i)/
e, o decreases like 1/Z. For atomic numbers greater
than 60 the differences themselves decrease, becoming
negligibly small for Z=82, or may even change sign
(e.g. , for Z= 92, Z and L electrons).

The explanation is probably the following: As
mentioned above, the TF model includes self-interaction
and neglects the exchange energy, both aRecting to
lower the binding energies. On the other hand, this
model, and all the other models mentioned in the present
work. , are not relativistic. The neglect of relativistic
eRects reduces the calculated screening of the nuclear

8 A/phu, Beta @ed Gamma Ray Spectroscopy, edited by K.
Siegbahn (North-Holland Publishing Company, Amsterdam,
1965)t Vol. I~ p. 852

9A. Iahlman, K. Hamrin, R. Nordberg, C. Nordling, and
K. Siegbahn, Phys. Rev. Letters 14, 127 (1965). From this
reference the experimental 2s energies for atomic numbers g, 12,
and 13 are cited in Table I.
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potentia, l, specifically near the nucleus, ancl increases
the calculated binding energies. This increase in binding
energies is negligible for low Z's but grows rapidly for
higher Z's; for very high Z's it may become comparable
to or even greater than the decrease in binding energy
due to the self-interaction and the neglect of exchange
eGects, This relativistic eGect is most pronounced for
the inner shells. We limit therefore, momentarily, our

discussion to atomic numbers up to 50, where the
relativistic eGects are not yet pronounced.

The TFM binding energies are, of course, always
higher than the TF values, and are almost always
higher than the experimental ones. However, they are
nearer to the experimental values than the TF results,
for all but the most loosely bound levels.

The FA binding energies are almost always better

TxsLz I. Energy levels in eV for six statistical models.

Experimental
Level Refs. 8 and 9 TF TFM FA FAM TFD TFDM

10
12

37

50

1$1/2

1$1/2
1$1(2
2$1/2
1$1/2
1»/2
2$1/2

2PI/2
2P3(2
1$1(2
2$1/2

2 pl/2
2p3/2
1$1/2
2$1/2

2pl/2
2p3/2
3$I/2
3pl/2
3p3/2
1$1/2
2$1/2
2p3/2
3$1/2
3P3/2
345/2
4$1/2
1$1/2

2$l/2
2PI/2
2P3/2
3$1/2
3p1/2
3p3/2
3d3/2
346/2
4sI/2
4PI/2
4P3/2
1$1/2
2$1/2

P3(2
3$1/2
3P3/2
343/2
4$1/.'
4P3/2
4S5/2
1$1/2

2p3/2
3$1/2
3p3/2
3d5/2
4$ /2

4P3/2
4d5/2

24.6
112
284
532
23.7

867
1305

89.2

52

1560
117

73

7112
842
721
709
94

54

15 200
2065
1805
322
238
110
29

29 200
4465
4156
3929

884
757
715
493
485
137

88

37 441
5987
5247
1293
1061
774
259
176
91

43 569
7126
6208
1575
1294
979
316
225
118
38

10.4
77

221
448

17
764

1171
73
41
41

1411
95
58
58

6752
750
634
623
80
48
47

14 721
1943
1693
294
219
103
27

28 611
4272
3979
3755

802
686
645
440
432
118
81
74

36 806
5736
5019
1152
938
673
194
130
49

42 947
6865
5976
1432
1170
868
259
180
80
26

33.9
135
312
573
34

922
1364
108
77
77

1620
134
98
98

7186
841
739
726
109
75
75

15 354
2079
1850
342
266
150

29 492
4467
4212
3977

874
760
716
518
510
147
108
102

37 809
5960
5271
1235
1021
765
229
163
76

44 033
7109
6249
1524
1261
969
298
216
113
42

26.4
99

247
479

27
798

1209
87
56
55

1450
iio
73
73

6808
776
663
651
91
58
58

14 789
1977
1730
310
235
118
34

28 690
4315
4027
3801

824
708
667
463
455
128
90
90

36 890
5783
5069
1176
962
699
205
141
58

43 034
6915
6029
1458
1197
896
271
192
91
32

26.4
117
290
547
24.4

894
1333

89.6
56
56

1588
113
76
76

7144
806
703
691
89
55
55

15 305
2039
1807
313
237
121
29

29 436
4419
4163
3927

837
722
680
481
472
125
86
86

37 752
5909
5219
1196
981
723
203
138
54

43 976
7057
6195
1482
1219
926
270
189
87
28

25.1
113
280
532
32

874
1308

103

'j4
1560
129
93
93

7087
845
738
725
109
75
75

15 224
2100
1860
349
273
154

29 324
4512
4242
4005

895
782
737
534
524
151
112
103

37 622
6017
5309
1265
1050
786
236
170
82

43 834
7176
6293
1559
1295
995
309
225
120
42

29.3
118
288
543
22.5

887
1323

86
53
53

1576
110
72
72

7110
789
683
672
83
50
50

15 255
2007
1774
298
223
106
25

29 369
4372
4112
3878
811
695
653
452
443
114
76
70

37 674
5854
5162
1163
948
689
188
125
42

43 894
6997
6133
1445
1183
886
253
173
73
23
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Experimental
Level Refs. 8 and 9 TFM TFD TFDM

70

82

92

1$1/9

2p3/2
3$1/2
3p3/2
3d3/9
4$1/2
4P3/9
44/2
5$1/2
1$1/2
2$1/„:

2pl/9
2p3/2
3$1/9
3p1/2
3p3/2
3(f3/2
3(4/2
4$1/2
4P1/2
4P3/9
~3/2
4' 3/2

4'/2
4fV9
Ss1/2
SP1/2
SP3/2
1$1/2
2$1/2

2p1/2
2p3/2
3$1/2
3pl/9
343/2
4s1/2
4P1/2
4' 3/2

4f5/2
5$1/9
SP1/9
543/2

61 332
10 488

8943
2398
1951
1528
487
345
186
55

88 006
15 860
15 198
13 035

3850
3554
3066
2586
2484
902
770
647

422
146
140
156
113
94

115603
21 756
20 947
17 167

5549
5181
3728
1441
1273
780
387
322
260
106

60 879
10 294

8785
2320
1891
1482
484
350
200
67

87 937
15 764
15 171
12 975

3807
3531
3043
2578
2474
897
777
656
457
434
174
169
161
118
93

116111
21 772
21 062
17 190

5497
5158
3710
1400
1245
757
378
291
230
85

62 191
10 591

9110
2432
2002
1606
533
396
244
89

89 556
16 133
15 627
13 365

3947
3680
3178
2736
2627
961
841
714
515
491
231
226
190
146
118

118030
22 211
21 612
17 635

5664
S337
3894
1477
1322
827
450
328
265
113

60 974
10 350

8843
2350
1922
1515
499
364
214

75
88 042
15 828
15 241
13 040

3843
3569
3078
2617
2512
916
796
673
474
451
191
185
170
127
101

116226
21 843
21 139
17 260

5538
5202
3753
1423
1268
778
399
302
241
94

62 130
10 535

9053
2386
1956
1558
500
365
213
70

89 494
16 073
15 564
13 303

3895
3628
3127
2682
2573
923
802
677
478
454
194
189
166
122
97

117 969
22 148
21 547
17 571

5608
5280
3837
1434
1279
786
408
299
237
89

61 952
10 683

9172
2484
2051
1645
552
413
259
92

89 258
16 266
15 719
13 449

4024
3761
3248
2794
2682
993
874
743
542
519
250
243
198
124
121

117 665
22 371
21 729
17 740

5764
5443
3970
1522
1370
865
478
342
280
122

62 035
10 462

8978
2338
1909
1509
475
341
191
46

89 383
15 985
15 472
13 215

3836
3565
3068
2619
2511
887
766
644
444
421
162
157
150
107
83

117 846
22 048
21 441
17 470

5537
5206
3762
1390
1234
743
366
276
216

72

than the pure TF values. Nevertheless they are also
usually lower than the experimental values and agree
with experiment less than the TFM values for the low-

lying levels.
The FAM model is the most consistent in treating

the self-interaction, and indeed yields binding energies
which, on the whole, agree very well with the experi-
ment. In fact its values deviate from experimental
values only rarely by more than 5% and never more
than 10%. The binding energies of the K electrons in
this model are always a little higher than the exper-
imental values, whereas all the rest are usually slightly
lower.

The TFD binding energies are almost always higher
than the experimental values. For the E shell they are
very good especially for low Z. For other shells the
TFD values agree quite well with the experimental
values; only for loosely bound levels they deviate
considerably.

The TFDM values agree usually quite well with
experiment, although a little worse than the TFD

results. However, for the most loosely bound levels they
agree better than the TFD values. The binding energies
obtained by the TFDM model for E-shell electrons are
usually higher than the experimental or the TFD
values, but for the other shells they are usually lower.

For atomic numbers between SS and 80, the range in
which relativistic effects begin to be pronounced, no
potential among the six is predominantly better than
the others. For Z's higher than 80 the models which
yield the lowest results, namely the TF, FA, and
TFDM models, agree quite well with experiment.

For all the potentials the level splitting within any
term is very near to the experimental splitting as may
be seen in Table I for Z= 26, 50, 82. Thus for several
atoms only one level of each term is evaluated and
tabulated.

COMPAMSON WITH A PREVIOUS
CALCULATION

Latter' has carried out extensive calculations of
electron energy terms for both the TF and the TFD
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Tax,E D. Comparison between relativistic self-consistent
Liberman-Waber-Cromer (LWC) and FAM binding energies for
S=26. Values are given in eV.

Level

2$1/o

2P1/2
2P3/2

3PI/2
3p3/2

Experimental
Ref. 8

7112
842
721
709
94

54

I WC
Ref. 10

7081
843
733
720
101
68
66

7144
806
703
691
89
55
55

models. His calculation differs however from the
present in some respects: (a) Latter has solved a
Schrodinger, instead of a Dirac equation. (b) His
potentials were not the exact TF and TFD potentials
but some analytical approximations which were prob-
ably not good enough, especially for the TFD potentials.
(c) Latter has slightly modified the potentials for large
r, a rather arbitrary modification which implies discon-
tinuity of the electrostatic field. Consequently, Latter's
results are very far from either the experimental or our
results for high Z's and inner shells. For low Z's his
TF values nearly coincide with the results presented
here, but there is a relatively large discrepancy between
his TFD results and ours, the latter being nearer to the
experimental values. Also, as Latter bases his calcula-
tions on the Schrodinger equation without spin-orbit
interaction, he obtains only term values (i.e., each
value corresponds to a weighted mean of energy levels
belonging to the same term). In the present calculations,
based on the Dirac equation, level rather than term
values are naturally evaluated.

'~ D. Liberman, J. T. %aber, and D. T. Cromer, Phys. Rev.
157, A27 (1965). In fact the calculations in this reference are not
strictly according to the Hartree-Fock method: The exchange term
in the self-consistent potential is replaced by 2x p'/%.

"R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev.
75, 1561. (1949), R. Latter, ibid 99, 1854 (1955). .

CONCLUSIONS

As a working model for calculating binding energies
the TF model is satisfactory for high atomic numbers
(Z) 80). For Z up to 50 the FAM, TFD, and TFDM
binding energies are much better than the TF values.
The TFD energies agree very well with the experimental
values for E-shell electrons, especially for low Z (even
for Z=2), which is quite unexpected of a statistical
model. On the average, however, the results yielded by
the FAM model are probably the best. They may
sometimes even compete with results obtained by the
relativistic Hartree-Fock method, " as is shown in
Table II for Z=26. The FAM model has also the
following desirable characteristics: (a) It is relatively
easy to extend the model to ions and to atoms at finite
temperature and pressure, as has already been done"
for the TF potential (such an extension is more difficult

for the TFD and TFDM models). (b) The potential
appearing in the Dirac equation may be consistently
applied to calculations of photoelectric cross sections
(this is true also for the TFM and the TFDM models).
(c) The density of the electrons according to the model
is continuous (as opposed to the density implied by the
TFD and TFDM models).

It should be noticed that no potential among the
six discussed in this work fits in the whole range of the
intermediate elements (Z between 55 and 80). An
abnormal feature in this range is the fact that the TFM
binding energies for atomic numbers 56 and 60 are
usually lower than the experimental values. This is
perhaps due to lack of precision of the experimental
data.

It is not being claimed that any of the potentials
discussed in the present paper is in principle better
than the others. It has only been shown that a certain
potential yieMs better binding energies for a certain
range of elements. No attempt has been made here to
include relativistic, kinetic-energy, or correlation eGects.
Taking into account some or all of these sects one may
obtain more refined statistical models of the atom.
Calculations with such models might possibly yield
better results for still wider ranges of elements.

APPENDIX' EVALUATION OF THE FA
AND TFD POTENTIALS

A. FA Potential

The Fermi-Amaldi equation for the potential YFA
in a free atom is'

O'C/dx'= C p/'/x'/' (A1)

with the boundary conditions

4(0)= 1 4(gp) =0 gpss (sp) = 1/Z (A2)

where

C (x)= r(VF~ —%p)/Ze,

x= L128 (Z 1)'/9s'Z—gi/'r/a-

ro, the finite radius of the atom.

Equations (A1)—(A2) transform by x=xp$, C =0'/Z to
the equations

d2@/dp ~@p/2/(1/2 (A3)

ACKNOWLEDGMENTS

It is a pleasure to thank Professor G. Rakavy for
fruitful discussions during the performance of this work,
and for carefully reading and. commenting on the
manuscript. I am also indebted to A. Ron for his very
helpful collaboration in all stages of coding the numer-
ical calculations, and for making available to me some
of his programs.



BINDING ENERGIES OF EI ECTRONS A 1.863

TAmz III. n versus Z for the FA potential. TAmz IV. a versus Z for the TFD potential.

3.58609
7.13143
9.11885

11.49331
12.64957
15.48307
16.79995
17.85750
18.46871
18.96863
19.46596
19.81775
20.06754

2

6
10
13
26
37
50
60
70
82
92

100

0.744985
0.900228
0.992521
1.108271
1.166902
1.317107
1390145
1.450309
1.485697
1.514980
1.544412
1.565414
1.580417

2

6
10
13
26
37
50
60
70
82
92

100

with the boundary conditions

where

n= (Xss/Z)'~'.

The equation is singular at the origin, and it is more
convenient to solve it inwardly. With some chosen value
n, the equation is integrated up to some small P and
then 0' is extrapolated for )=0 by a third-order poly-
nomial in P". The value Z=V(0) thus calculated,
together with n determine C(x), and therefore also
Vp~(r) and the corresponding V,(r) for this Z. This
method is very stable, and for a specified o. yields results
with an accuracy better than 0.01% for Z and. V,. It is
found that e is nearly linear with lnZ. Having a table
of lnZ versus n, we calculated Vp& for any required Z
by interpolating n as a third-order polynomial of lnZ
and integrating Eqs. (A3)—(A4) with this interpolated
0.. The difference between Z thus calculated and the
required Z is nowhere more than 10—4. In Table III
some values of o. with the corresponding Z are listed,

B. TFD Potential

The TFD equation for the potential VTpo in a free
atom is4

with the boundary conditions of Jensen"

C (0)= 1, C (xo) =xoP,'/16, xoC'(x )=C (xo), (A6)

where

C (x)=r$V,(r)+Ze/r e/32''as j—/Ze,

x= r/p ', p = (9p'/12SZ)'I'as,

Ps ——(3/32s'Z') "'
ro=pxo, the finite radius of the atom.

Equations (AS)—(A6) transform by x= xs&, C = b%' (b is
yet unknown) to the equations

(A7)

with the boundary conditions

%(0)= 1/b, 4(1)=y'/16, 0"(1)= 4(1), (AS)

where
n= (xs'b)'~', y= (xs/b)'~'Ps.

With %(1)=1 (and therefore y=4) and some chosen
n, Eqs. (A7)—(AS) are integrated as in the case of the
t/'p~ potential.

The value %(0) together with n determine Z and C (x),
and therefore also the potentials V,(r) and, VTpn(r).
In Table IV some values of o. with the corresponding Z
are listed.

d'C/dx'= xL(C/x)'I'+Poj' (A5) "H. Jensen, Z. Physik 93, 232 (1935). See also Ref. 1, p. 79.


