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scattering amplitude before squaring to compute a
scattering cross section, an obvious point theoretically
but one which has not usually been considered in
detailed calculations. I'urther, we have shown how even
in the long-wavelength limit the first Born approxi-
mation may be significantly in error. These two factors
are of general importance in determining Rayleigh-
scattering cross sections.

Vote Added in Proof. A recent paper by M. Yussou6
and I. Mahanty )Proc. Phys. Soc. (London) SS, 1223
(1965)]discusses impurity scattering in the long-wave-
length limit for a three dimensional model with equal
nearest-neighbor central and noncentral forces. Their
relaxation time is obtained from an unweighted total
scattering cross section by application of the optical

theorem and therefore contains no interference terms

between scattering amplitudes corresponding to differ-

ent irreducible representations of the point group of the

impurity. We contend that a more detailed treatment
of thermal conductivity with their model, in which

the various scattering cross sections are consistently

weighted according to their eKciency in destroying

quasimomentum, will reveal results similar to those

presented here.
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The eBects of the three relativistic interaction terms, mass-velocity, Darwin, and spin-orbit coupling,
on the electronic levels of covalent-bond compound semiconductors BN, SiC, AlP, and GaAs h.i,ve been
investigated. Quantitative relativistic shifts and spin-orbit splittings of the appropriate Bloch states at
I', X, and L points in the Brillouin zone have been obtained using orthogonalized-plane-wave crystal wave
functions. Comparisons between available experimental data and calculations of the spin-orbit splittings
of GaAs show a maximum discrepancy of 11%.The inclusion of the relativistic shifts of the energy levels did
not change very significantly the band structure obtained by the nonrelativistic calculations. These eftects
increase, however, as the atomic numbers of the constituent atoms increase.

I. INTRODUCTION

HEN correlation effects are neglected, the system
of electrons in a solid can be described by a one-

electron equation, which is the well-known Hartree-
Fock equation. However, no corresponding equation
has been derived for the relativistic electrons. Thus we
have to rely on the Dirac equation for an electron inter-
acting with a crystal potential. After applying successive
canonical transformations of the Foldy-Wouthuysen'
type to the Dirac equation, the positive and the nega-
tive energy states can be decoupled to successively
higher orders of o., where 0. is the fine-structure constant.
To the order of cP, there appear in the transformed
Hamiltonian three extra terms in addition to the usual
nonrelativistic kinetic energy and the crystal poten-
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Department of Physics, Northwestern University, in partial ful-
fillment of the requirements for the Ph.D. degree.

$ Work supported in part by the Advanced Research Project
Agency through contract with Northwestern University Mate-
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f Present address: Department of Physics, University of
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' L. L. Foidy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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' C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

The first two terms in the above Hamiltonian give the
nonrelativistic Hamiltonian and the last three terms
are the mass-velocity term, the Darwin term, and the
spin-orbit interaction term. The first of these acquired
its name because it could be obtained by simply sub-
stituting into the nonrelativistic Hamiltonian the rela-
tivistic expression for the electron mass and then
making a power-series expansion in terms of (v/c). The
second term was named after Darwin' who first intro-
duced it; it may be attributed to the interaction of the
electron, whose coordinates fluctuate over distances
comparable to a Compton wavelength with a somewhat
smeared-out Coulomb potential. The last term de-
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scribes the coupling between the spin and the orbital
motion of the electron.

It is well known that all thermal, electric, and mag-
netic properties of semiconductors depend largely on
their electronic energy-band structures, especially on
such band parameters as the energy gaps, the position
of the band edges in the Brillouin zone, and the detailed
structures of the energy states around these band edges.
In calculating these band parameters, the inclusion of
the relativistic effects sometimes leads to important
changes in the final results, especially in cases where the
atomic numbers of the constituent atoms of the semi-
conductors are large. This can be seen in the following.

It has been found that, for most of the semiconduc-
tors, the valence-band edge is a p-like state and the
conduction edge an s-like state. Under the spin-orbit
interaction, a degenerate p-like state will split and an
s-like state will remain uneffected. On the other hand,
the inclusion of the mass-velocity and the Darwin cor-
rection terms will usually effect an s-like state more
strongly than a p-like state. Thus, the splitting of the
p-like valence-band edge plus the depression of the
s-like conduction-band edge may significantly alter the
values of energy gaps and other band parameters cal-
culated by neglecting such corrections. This alteration
can become very pronounced in semiconductors com-
posed of atoms with high atomic numbers. For these
semiconductors, the spin-orbit splitting and other rela-
tivistic shifts may become quantitatively comparable
to or even larger than the energy gap itself. Therefore,
the inclusion of these effects in the calculation of energy
bands becomes absolutely essential.

This subject has attracted the attention of several
authors. The group-theoretical analyses of the spin-
orbit splittings of the energy bands for crystals of
diamond and zincblende structures have been made by
Elliott, ' Dresselhaus, and by Parrnenter. ' I.iu' has
carried the investigation one step further by making a
quantitative study of the spin-orbit coupling for several
semiconductors of diamond structure. For crystals of
heavy elements, Conklin, Johnson, and Pratt' have
shown that in PbTe the band. structure calculated rela-
tivistically looked quite different from that calculated
nonrelativistically. Herman, Kuglin, Cuff, and Kortum, '
in the meantime, have introduced a systematic method
for estimating the magnitude of all three relativistic
terms.

The present investigation is devoted to a quantitative
evaluation of the effects of the three relativistic terms
on the one-electron bands of selected III-V and IV-IV
compound semiconductors, namely BN, SiC, AlP, and

' R. J. Elliott, Phys. Rev. 96, 266, 280 (1954).' G. Dresselhaus, Phys. Rev. 100, 580 (1955).' R. H. Parmenter, Phys. Rev. 100, 573 (1955).
L. Liu, Phys. Rev. 126, 1317 (1962).' $. B. Conklin, Jr., L. E. Johnson, and G. W. Pratt, j'r., Phys.

Rev. 137, A1282 (1965).
F.Herman, C. D. Kuglin, D. F.CuB, and R.L. Kortum, Phys.

Rey. Letters 11, 541 (1963).

GaAs, all of which crystallize in zincblende structure.
The problem is approached by perturbation calculations
on the one-electron crystal wave functions represented
by linear combinations of orthogonalized plane waves
(OPW). For the compound semiconductors listed above,
OPW-type wave functions have been calculated by
Bassani and Yoshimine' without the relativistic effects.
Our calculations are based on their wave functions.

An OPW function consists of a smoothly varying
plane-wave part and a rapidly oscillating core part. The
relativistic matrix elements between core parts domi-
nate over those involving plane waves. Therefore, the
relativistic corrections applied to the crystal bands for
heavy elements (Z)10) could be approximated by an
expression in terms of the relativistic corrections applied
to the free atomic-core states apart from certain overlap
integrals. This prescription has been followed consist-
ently in this work except with light elements (Z&10)
in which case the matrix elements between two sets of
plane waves must be considered.

The spin-orbit splittings obtained in these calculations
and those obtained from the available experimental data
do not differ from each other by more than 11%.

s nlm

where n denotes the symmetry of the wave function
belonging to a given irreducible representation. The
first term in (II.1) is a Fourier expansion in terms of
plane waves with wave vector k+K, K being the re-
ciprocal lattice vector. It is written in such a form that
certain plane waves are grouped together to form a
symmetrized combination ~k+K), which takes the
form

1
~k) = — P F (k)e"'

4 Q n[~l
(II.2)

where the summation RLk] is taken over the set of
k's connected by symmetry operations in the group of
wave vectors. The coefficients Ii have specific values
so that ~k)~ should transform like the specified irre-
ducible representation. The symmetrized combination
~k) is normalized to one over the crystal volume Q.

s P.s Iassani and M. Yoshinnne, Phys. Rev. 130, 20 (1963).

II. RELATIVISTIC TERMS TREATED BY
PERTURBATION THEORY

It has been mentioned earlier that the three rela-
tivistic terms in the Hamiltonian (I.1) are of the order
of cP and therefore small in comparison with the non-
relativistic Hamiltonian Ho. This suggests that these
three terms may be treated with perturbation theory.

The unperturbed eigenfunctions of Ho are repre-
sented by OPW functions, each of which consists of a
plane-wave part and a core part:
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The second term in (II.1) is the core part resulting from
orthogonalizing the wave function to the occupied core
states specified by quantum numbers (Nlm). For the
compound semiconductors discussed in this work. , we
use the superscript s to denote the two different atomic
elements involved. The crystal core function g' ~ is
expressed in terms of the normalized atomic-core func-
tions X'„g, which are assumed to be undisturbed by
the crystal fields, as

form:

x(x'.i~IH'Ix'. v~). (II.7)

The assumption has been made that atoms in the
crystal do not overlap. Here B' is the perturbing
Hamiltonian which includes the spin-orbit interaction,
the mass-velocity, and the Darwin corrections:

y*.(„(r)= P e"a"x'.( (r—R —d,), (II.3)
Qa

where E is the number of unit cells in the crystal and d,
represents the position vector of the sth atomic site with
respect to the lattice point R„. LFor instance, in the
zincblende structure, d, has two values, di ——(a/8) (1,1,1)
and d2= (a/8)(1, 1,1).$ Since fq~ in (II.1) should be
made orthogonal to g'„~~, the coeKcient f)"'),, „~~ takes
the form:

b *„,„(,„=—P a (k+K)Q'~i~Ik+K)". (II.4)

H'= H„+H„„+Hg,

H,.=h e,

h= (vv(r) x1),
4m'c'

1 y4
H, =—

2mc' 4m'

(II.Sa)

(II.Sb)

(II.8c)

(II.Sd)

The overlap integral between a symmetrized combina-
tion of plane waves and a crystal-core orbital can be
conveniently expressed in terms of the commonly de-
fined orthogonalization coefficient A'„~(k) ' as follows:

4~ (r)=Z 2 &"",.~-4'-~-(r)
s 1 nLm

(II.6)

With this simplified crystal wave function (II.6), the
perturbation matrix elements appear in a very simple

where V~ is the spherical harmonics and z specifies a
crystalline direction chosen as the quantization axis
for all the atomic-core orbitals.

Since the crystal wave functions are represented by
OPW functions (II.1), each of which consists of a plane-
wave part and a core part, matrix elements between
any two of these OP% functions will have three parts.
The erst of these parts will involve two sets of plane
waves; the second will involve a set of plane waves and
a set of ion cores, and the third will involve two sets of
cores. The importance of these three relativistic terms,
however, is appreciable when the electron is close to the
nucleus where the OP% function is dominated by its
core part and diminishes rapidly as it gets away from
this core region. This domination of the core part in the
region close to the nucleus becomes more pronounced
in the atoms with greater atomic number. Liu has
shown that for the spin-orbit splitting in Si, the core-
core term contributes to about 96'Po of the entire
matrix element. Thus for crystals whose constituent ion
cores having atomic numbers around or higher than this,
we can safely neglect the plane wave part in (II.1) and
write

Hg V'V——(r),
Sm'c'

(II.Se)

—1
(x-(r) I(E-—I'(r))

2mc
X(E- —I'()) Ix- ( )) (» 9)

As for the Darwin term, we may use the Green's
theorem and arrive at

(x.(r) I v2v(r)
I
x„.(r))

Sm'c'

—A2

((Vx-(r) I «(r) I
x- (r))

Sm'c'
+(x„(r) I VU(r) I

Vx„,(r))) (II 10)

As mentioned previously, the mass-velocity and the
Darwin terms are important near the nucleus where

where e in the second of the above equations represents
the Pauli spin matrices.

From the above equations we see that the mass-
velocity term is proportional to y' and the Darwin term
to V'V(r) which are rather diff)cult to handle in actual
calculations. For an approximation in the nonrelativistic
limit, however, the kinetic energy of an electron in a
certain state can be expressed in terms of its unperturbed
energy eigenvalue in that state minus the potential
energy experienced by it, i.e.,

y' 2mLE —V (r)g .
In this approximation. the mass-velocity term becomes

y4
x (r) x (r))

2mc' 4m'
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only s-like atomic orbitals give rise to any appreciable
charge density. For this reason, in crystal we would
only expect the s-like levels to be affected appreciably
by these terms. Since for the s-like state there always
exists in the OPW function a l=0 core part, the plane-
wave part in the OPW can always be neglected in the
calculation of the effects due to these two relativistic
perturbations, and (II.6) is sufficient.

As for the spin-orbit term, although it is of the nature
of r~, it is in the meantime proportional to the angular
momentum. (For the atomic case, it takes the form of
'As 1.) Therefore, it vanishes for the s state. For crystals
of light elements where there exists no occupied atomic-
core orbital with angular momentum equal to or greater
than one, the approximated expression (II.6) is no
longer sufhcient to describe the electron wave function
in the calculation of the spin-orbit splitting. In such
cases, the OPW function for a p-like state only possesses
the plane-wave part. Hence, for a crystal of light
elements where there exists only an s-core orbital, the
spin-orbit matrix element must be separately treated
in the following manner.

We assume that the crystal potential can be repre-
sented by a sum of all the atomic potentials centered
around the lattice points and they have spherical sym-
metry with respect to their respective atomic sites. We
further assume that there is no overlap between the two
atomic potentials V~ and V2. The perturbation matrix
elements of the spin-orbit interaction, H„, for any
crystal having ion cores of orbital angular momentum
not higher than /=0 (i.e., Z&10) becomes

tion can be simpli6ed to

Q:~.l&-l&"'~;)
—7rjp 2

P P P a *(k+K,)a (k+K;)e'"d"'
m2~'gp '='

"BV, K;;j,(K; r)rmdr . )((kd-K))
IK;, I

~ &~'I.lp;), (».»)
p Br

where the spherical Bessel function of the 6rst order,
jk(Z;,r), results from expanding the exponential in
Legendre polynomials.

Since each term under the double summation depends
on the direction of (k+K;) relative to K;;, the per-
formance of the summation is a tedious job. The labor
of performing such sum increases with the increase of
the number of plane waves employed in the construction
of the crystal wave function, but can be reduced with
the aid of an electronic computor.

(III.ia)

III. PERTURBATION MATMCES AT
SYMMETRY POINTS

The compound semiconductors which are included
here in our discussion all crystallize in zinc-blende
(sphalerite) structure. Since the zinc-blende structure
belongs to the cubic system, it is more convenient to
express the atomic orbitals X„& in an OPW crystal
wave function in terms of the cubic harmonics, which
take the following form:

&Q a (k+K,)e'("+xd&'I
4m'C2ÃQp «

vV(r) XI& I p a. (k+K;)e'o'+&r&&')

.
&~'I l~;)

iVS2 2

P P P a.'(k+K~)a. (k+K,)
4m2C'Qp ~-~ «K~

&3q'~' P.„(r) x
x-(r) =

I

—
I(4i

/15''~2 P„,(r) ys
x-"(r)=

I

—
I

kdbri r r'

(5y P„e(r) 2
&-'(r) =

I

—
I

&4&i

(III.1b)

(III.1c)

(III.1d)

BV, ( R,
e'(x~ x*& *I'''X (k+K;) I(Ero,

o, ag, (IR, I

where the integration is taken over the unit cell of
volume Op. R, is the radius vector of an electron with
respect to the origin of the sth atom and

I P;) denotes the
eigenstate of the spin operator 0-,. If for each term under
the double summation, gx,. Px, , the direction of
K;;= K,—K; is selected as the zenith, the above equa-

where P„&(r)/r is the radial part of the atomic wave
function of the (el) electron.

The type of core orbitals contained in the OPW
function of a particular crystal state is determined by
the symmetry of that state. For the states which trans-
form like diferent irreducible representations at points
I'Lk= (0,0,0)j, LLk= (m/a)(1, 1,1)j, and XI k= (2~/a)
X (1,0,0)j, the core parts of the space-wave functions
are found. to be as described in the following para-
graphs. The irreducible representation symbols have
been used. to denote the core part of the wave functions
with superscripts specifying the symmetry type.
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There are three degenerate functions for the irre-
ducible representation F~s, the following and its two
cyclic permutations in the order x-y-s:

The first summation on s is to sum over the contribu-
tions from the two different atoms and the second sum-
Ination is over the appropriate principal quantum
numbers of all the occupied atomic core states. The
wave function for the irreducible representation F~ is
nondegenerate. It is

l~i&=+ 2 b'r . .I4* .) ~ (III.3)

Similarly for the irreducible representation X&, the wave
function is

and for the irreducible representation X3, we have

I &a& =P (b xe, ny I P nz)+b xe, nyz I eb nyz)

+b'x„.s I g'nz)+b'xe .*s
I
P'nze

The two degenerate functions for the irreducible repre-
sentation X~ are

I %) P (b xi, as
I 4 ns)+b xi nze

I 4 azz 2p aye y4' nz )

+b'x,

nylon'

n&z+'bx, , ayIe4'nyz)), (III 4)

The total wave function of a state is the product of
the space-wave function and the spin wave function.
The spin-orbit or the relativistic perturbation matrices
are being set up in this representation in which the non-
relativistic Hamiltonian Ho is diagonal. We shall discuss
these matrices separately at the symmetry points F, X,
and L in the reduced zone in the remainder of this
chapter.

At the Symmetry Point F[A= (0,0,0)$

At the center of the Brillouin zone in the zincblende
structure, the irreducible representation F& is s like,
nondegenerate when excluding spin and doubly de-
generate when spin is included. The irreducible repre-
sentation I'iy is p like, triply degenerate without spin
and sixfold degenerate when spin is included. Since F~5
is p like, it will be split under the spin-orbit interaction
into two levels, F7 and F8, which are twofold and four-
fold degenerate, respectively, ' while the s-like state F&

is not expected to be effected by this interaction but to
be shifted by the relativistic shifts.

The valence band edges for the III-V and the IV-IV
compound semiconductors are at F~5 which is split by
the spin-orbit interaction. Since the perturbation
Hamiltonian only connects the state in the irreducible
representation F~5 with another degenerate FI5 state,
we only need to evaluate the 6X6 matrix on the basis
of the six degenerate functions of F~5 if the inQuence of
the other F~5 can be neglected. Its nonvanishing spin-
orbit matrix elements are

+b x„„„,ly „„+y„.„)), (III.6a)

(III.6b)

For L point, we have the nondegenerate irreducible
representation L~,

IL'1) 2 2 (b Li, nels ae)+b Lli,

nylon

an+4 ny+zb az)

+b rgiinyelg nyz+efe aza+eb azy)) e (III 7)

(b'rie, y*b'rie, 'y(~' y le lx' '*)
s n, n'

+b rie, nyz*b rie, a'yz(x azzl Iizlx n'ay)

—=—iS
(I'icy'~

I & I
I'is'y+

&

(I icy*~
I K.I

I'is**~)

—=WiS,

(III.9a)

(III.9b)

(III.9c)

and the two degenerate functions for the irreducible
representation L3.

Xb ie, aye le ayz P nza)

+b'r. e,.*'l4' "—4' ")) (III 8a)

1
Il z+y—2z) — Q g (be Iys +.ys 2@e )

and their complex conjugates, where h, is the x com-
ponent of the operator h defined in (II.Sc) and I+)
and

I
—) are used to denote the usual spin-up and spin-

down wave functions. The phases of the wave functions
can be so chosen as to make S a real quantity.

By means of a unitary transformation this 6)&6
matrix can be brought into the form of having two
equivalent 3&&3 submatrices on the diagonal. So the
problem is further reduced to a 3X3 matrix,

0 —iS S

+b Le, nyz I eb nyz+eb nza 2P azy)

+b'ie, „,e I p'„,e+p'„ye —2&e„,s&) . (III.Sb)

iS 0

.S iS

—iS

0 .
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(&„Ilk lx„.l)= i-
4m'c'

1dV
d~rnZIn Z—

r dr

~nz, n z

2l+1
(III.10)

For e=e', the spin-orbit overlap integral A„z, z de-
fined in the above becomes the spin-orbit splitting of
the atomic-core state. This relation enables us to
express the spin-orbit splitting of the crystal valence
state in terms of that of the atomic-core states and their
overlap integrals. Finally, we can write

Aso(rly) =2 Q (b'r„,.„*b'r„, ,&',
e n, n'

', b'r„, n—„,-*b'r„,n yz&'nd, n d) s (III.11)

where s denotes the two different atoms.
The spin-orbit perturbation Hamiltonian also con-

nects two different I'~5 states. However, in the com-
pounds under investigation in this work. , the two levels"and /~50» "0"»are far apart as compared wi
the spin-orbit splitting itself. Therefore, we should
expect these interband connections to be very small
and the above considerati. on based on a 3&&3 matrix
alone is sufficient.

In contrast to the fact that the diagonal matrix ele-
ments of the spin-orbit matrix vanish, the relativistic
matrix (the mass-velocity correction plus the Darwin
correction) is diagonal, i.e., the matrix elements between
states belonging to different irreducible representations
or to different columns in the same irreducible represen-
tation vanish. This is due to the fact that the two rela-
tivistic correction terms have the same symmetry as
that of the nonrelativistic (unperturbed) Hamiltonian
IIO. Consequently, the perturbations to the energy
levels due to these two relativistic corrections in the
perturbing Hamiltonian are just solid shifts by an
amount equal to the corresponding diagonal matrix
elements.

As in the spin-orbit splitting, these relativistic shifts
of the energy levels in crystals, AE„&, can also be ex-
pressed in terms of the relativistic shifts of the atomic-
core states in the corresponding isolated atoms, E'„z,
The relativistic shifts of the crystal energy levels F»
arid I y are Ilow:

+Eel(rib) Z E (b Frz, ny b Frz, n'y+ ny, n'y
e n, n'

+b I'rz, nyz b F , 'yz+rznndn'd) s (III, 12a)

The equivalence of the two submatrices implies that
the split-off levels from the F» state are at least doubly
degenerate. This submatrix can be readily diagonalized
to yield the eigenvalues S, S and —2S, and the splitting
of the I'&5 level becomes

Aso (r„)=3S.

The spin-orbit matrix element between two atomic-
core functions X„z contained in S has the explicit form

+arel(rl) P Z b Fr, ns b Fr, n'P ns, n's s

e n, n'

where
R „,„.,= (x „,l

II „+lid!x „.,),

(III.12b)

which can be evaluated according to (II.9) and (II.10).
Again as in the spin-orbit calculation, because of the

large spacings between two different levels of the same
symmetry, inQuences from other levels of the same
symmetry are negligible to the results obtained by
(III.12).

Aso(X)=2IE 2 (—1)'+'
e=I n, n'

X (yb*x, , *b'x, , "„6' „, ~

+le5~ Xs, nyz ~ X5, n'yzd-s nd, n'd (III.14)

The two relativistic correction terms cause shifts to
the energy levels, which are listed below:

A~rel(XI) = 2 (b xl, ns*b xr, n's& ns, n's
ny n

+b Xr, ny b Xl,n'yR ny, n'y

+b'x, .*b'x,

+b xr, nyz*b xr, n'yzR nd, n'd) s (III.15a,)

At the Symmetry Point XLk= (2yy ja) (1,0,0)$
Based on the nonrelativistic calculations of Bassani

and Yoshimine, the conduction-band minima of the
III-V and the IV-IV compound semiconductors under
investigation here are at the X point in the reduced
zone. The nonvanishing spin-orbit matrix elements are
found to be

(xyy+'a !II„!xyy-*w)
2

=2 2 (—1)' Z (b'x, .-.*b'x, .-'
e=l n, n/

X(x., lb. l~ ..) bx. .-..*b x,
x(x ...lb. lx ..„))=—iE (II1.I3)

and their complex conjugates. The influences of the
levels X~ and X3 on the spin-orbit splitting of the X5
level are of second order if the energy gaps between X5
and these levels are large. Then, a 4)&4 matrix set up on
the basis of the four degenerate eigenfunctions at X5 is
sufhcient for the spin-orbit calculation. We further
notice that a unitary transformation can reduce this
4X4 matrix into two equivalent 2&2 submatrices on
the diagnonal, each in the form

(
0 iraq

—iZ 0 i!

This secular matrix has eigenvalues Z and —E, which
yield a spin-orbit splitting 2E for the level X5. As done
in the previous section, this crystal spin-orbit splitting
can be expressed in terms of atomic-core spin-orbit
splittings together with their overlap integrals. We have
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AF,y(Xs) = Q (b'x, ,„,*b'x, ,R'„,,„,
n.n'

+b xs, ny*b xs, n'yR ny, n'y

+b xs, nyz b xs, n'yzR nd, n'd

+b'x, , n*s*b'x, ...sR'nd, n d),
&&rel(Xs) = 2 Q 2 (b xs, ny*b x,s'n Ryny, n'y

s n, n'

(III.15b)

If we assume that the quantity V3A is roughly equal
to the quantity S from the spin-orbit matrix for I'~5, we
will see that the splitting of the level 1.3 is about two-
thirds of that of the level F~5.

Similar to the relativistic shifts to the energy levels
at I' and. I, the energy shifts to the levels at I are the
diagonal matrix elements, which are being presented as
follows:

+b xs, nyz b xs, n'yzR nd, n'd) ~ (III.15c)

At the Symmetry Point 'Lfk= (ssja) (l,l, l))
The spin-orbit splitting of the degenerate p-like level

I 3 can be arrived at by diagonalizing a 4X4 spin-orbit
matrix with nonvanishing matrix elements:

(Ls'+" sz~
~
Hso (

Ls* y& )
=a2 p g (bs„,„y*bs» „.y(xs„y~h, ~xz„,.)

s n, n'

b is, nys*b rs, n'yz(X nyz j &z~ n'zg)

2b rs y b Ls gz(x ngy(Is (x ))
=—&id

(Ls*+y-s ~
~
a»

~

Ls*-y~)
= (a1+i)A .

(III.16a)

(III.16b)

Again, this 4)&4 matrix can be transformed into two
equivalent submatrices each in the form

(
—rA (—r —

~)A)

(1—i)A iA

The difference between the two eigenvalues, 2%3A, is
the spin-orbit splitting of the level L3. In terms of the
atomic-core splittings and their overlap integrals, it
becomes

&so(Ls) =4 E 2 (sb ~s, „y*b'zs...y& „„,„.,
s n, ny

5~ L3, nyz b 13,n'yz~ nd, n'I

b'r, y.*b'r,s, ,sA'. d, „d) . (111.17)
5

From the double group irreducible representation for
the diamond structure, it can be seen that the fourfold
degenerate level X4 does not split under the spin-orbit
interaction. Liu' has shown that for the silicon crystal
the spin-orbit splitting of 65 at a point near X4 was only
about 3% of the splitting of I'ss, which is the valence
band edge. Since the X5 state in the zincblende struc-
ture has the same symmetry as 65 in the diamond struc-
ture, we do not anticipate the spin-orbit splitting at X~
state in the zincblende structure to be too large as
compared with that at I'~~ state. As can be seen from
(III.14), it is essentially the difference between the
atomic splittings of the two diferent atoms, each
weighted by a weighting factor. When the two species
of atoms become one common species, the difference
between the two weighted atomic splittings will vanish.

&&re](Ls)= 2 2 2 (b're. ny'b'ra, n'yR'ny, n'y
e n, nd

+b Ls, nys b rs, n'yzR nd, n, 'd

+asbsrs ngz*bzre n gzRsnd n d), (III.18a)

+arel(L1) 2 Z (b Lr, nz b Lr, n'zR nz, n's
e n, n

+3b'», -y*b'«."4' y, y

+3b rr, nyz b rr, n'ysR nd, n'd) ~ (III 18b)

As mentioned earlier, in heavy elements where the
energy levels are close together, inQuences from other
levels may become important. A larger matrix including
all these connections must be constructed to handle the
problem. Although this is not necessary for the present
investigation, such consideration has been incorporated
into the computor programs for future investigations.

IV. RESULTS OF CALCULATION

The method developed in this work. can be applied
to semiconductors of diamond and zincblende struc-
tures. However, owing to the unavailability of the
OPW crystal wave functions, only four compound semi-
conductors having zincblende structure, namely BN,
SiC, AlP, and GaAs, have been selected for the investi-
gation of the relativistic effects in their energy-band
structures. The crystal wave functions of the OPW type
obtained by Bassani and Yoshimine' have been used
for constructing the perturbation matrices. As men-
tioned. previously, only the core part of each OPW was
used in our calculations except in the case of BN where
the core part of an OPW contains only s orbitals, which
do not contribute to the spin-orbit splittings.

In the OPW's the coefficients, b '~, „~, associated.
with the core orbitals @'„~ at some symmetry points
in the Brillouin zone are calculated according to
Eqs. (II.4) and (II.5)," summing over 88 plane waves
at the symmetry points 1 and X, and summing over
120 plane waves at I.The parameters used in these cal-
culations, i.e., A „~(k), a (k), and F (k), are taken from
the work. of Bassani and Yoshimine. '

It has been shown that the crystal spin-orbit split-
tings can be expressed in terms of the atomic-core split-
tings and their overlap integrals. Similarly the rela-
tivistic shifts of crystal states can be expressed in terms
of the atomic relativistic shifts and their overlap inte-

I Slight modification is needed for (II 5) because of the use of
cubic harmonics instead of spherical harmonics.
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TAnLE I.Atomic spin-orbit splittings and relativistic shifts (energy in eV). A(so)exp is the experimental one-electron spin-orbit split-
ting. Those of the electrons in closed shells are taken from the x-ray data given in Ref. 12 and those of the valence electrons are derived
from the spectroscopy data given in Ref. 13.

Core

1S R(vel)
R(dar)

2S R(vel)
R(dar)

2P R(vel)
R(dar)
6 (so)calc
d (so)exp

3S R(vel)
R(dar)

3P R(vel)
R(dar)
A (so)calc
A (so)exp

3D R(vel)
R(dar)
A (so) calc
A (so)exp

4S R(vel)
R(dar)

4P R(vel)
R(dar)
A(so)calc
A(so)exp

—0.4258
0.3864

—0.0255
0.0189

—0.0011—0.0002
0.0033
0.002

—0.9176
0.8178

—0.0602
0.0436

—0.0032—0.0005
0.0093
0.0061

N

—1.7463
1.5373

—0.1229
0.0855

—0.0083—0.0010
0.0204
0.013

—22.487
19.054

—1.9487
1.3200

—0.1960—0.0147
0.4596
0.40

—0.1438
0.0948

—0.0087—0.0005
0.0170
0.014

Si

—30.458
25.723

—2.7577
1.8581

—0.2921—0.0200
0.6698
0.72

—0.2422
0.1585

—0.0183—0.0010
0.0347
0.029

—40.381
34.006

—3.7963
2.5459

—0.4196—0.0266
0.9440
1.1

—0.3726
0.2420

—0.0323—0.0015
0.0593
0.056

Ga

—769.48
635.77

—94.495
61.057

—13.834—0.3971
27.150
27.0

—14.915
9.1943

—2.3891—0.0526
3.5909
3.9

—0.3270—0.0193
0.4950
0.41

—1,1385
0.6957

—0.0846—0.0017
0.1223
0.10

As

—990.32
817.42

—123.39
79.542

—18.339—0.4947
35.706
35.8

—20.174
12.395

—3.3378—0.0691
4.9593
5.7

—0.5205—0.0283
0.7709
0.55

—2.0163
1.2269

—0.2126—0.0041
0.3024
0.28

1S2S R(vel)
R(dar)

1S3S R(vel)
R(dar)

2S3S R(vel)
R(dar)

2P3P R(vel)
R(dar)
A(so) calc

—6.5659
5.0360

—9.0897 —12.279
6.9410 9.3402

—267.04
197.48

—105.22
76.649

—37.460
23.718

—5.7022—0.1167
9.5421

—346.13
255.55

—138.77
100.90

—49.781
31.432

—7.7550—0.1478
12.8465

grals. These atomic values are calculated according to
(II.9), (II.10), and (III.10) using the atomic wave
functions and atomic energy eigenvalues obtained by
Herman and Skillman. " The results of these atomic
values are presented in Table I together with the cor-
responding experimental spin-orbit splittings of the core
states obtained from x-ray data" and of the valence
states from optical data. " In the present calculations,
the experimental atomic-core values and the calculated
overlap integrals have been used.

The spin-orbit splittings of the crystal states in AlP
and GaAs are calculated according to (III.11), (III.14),
and (111.1/). For BN and also for the contributions due
to C in SiC, the spin-orbit matrix elements are calcu-

"F. Herman and $. Skillman, Atomic Structure Calcu/atioes
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

"A. E. Sandstrom, Hcndbuch der I'hysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. 30, p. 224.

&' C. E. Moore, Natl. Bur. Std. Circ. No. 467, 1949.

lated according to (II.11) and then the spin-orbit
matrices are diagonalized in the same manner as stated
in the previous section. The calculated results for the
spin-orbit splittings are listed in Table II. The rela-
tivistic shifts for all the above listed semiconductors
are calculated according to (III.12), (III.15), and
(III.18).The results are given in Table III. With these
relativistic corrections applied to the energy levels cal-
culated by Bassani and Yoshimine, we arrived at the
values for various direct and indirect energy gaps which
are listed in Table IV.

In order to see whether enough orthogonalized plane
waves had been used in these calculations, a conver-
gence study has been carried out for the spin-orbit
splittings of the four semiconductors under investiga-
tion. %hen only the core part of an OPW is used to
approximate the electron wave function, the con-
vergence is quite satisfactory. I'or instance, in the case
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of the splitting of the valence I'15 state in GaAs, after
applying 58 plane waves, adding 30 extra plane waves
to the calculation only increases the result by 4%.
When the OP% is represented only by the plane-wave
part, however, as in the case of BN, the convergence is
not as rapid as in the previous case. We have found that
the calculation of the spin-orbit splitting of the valence
I'ts level in BN increases 18/q in the range between 58
and 88 plane waves. This rather poor convergence is
inherited from the poor convergence in the original
OPW function calculation because occupied core states,
to which the wave function must be orthogonalized,
are Inissing in BN.

V. COMPARISON WITH EXPERIMENTS
AND DISCUSSIONS

In the next step, we would like to compare the cal-
culations with physical observations. Some available
optical transitions and the spin-orbit splittings deduced
from these transitions are listed in Tables II and IV
next to their corresponding calculated values. The
majority of these data quoted have been obtained from
analyzing the reAectivity spectra in optical experiments.
Among the four compounds under investigation, GaAs
contains the heaviest elements. Therefore, this crystal
would have the largest spin-orbit splittings and rela-
tivistic shifts in comparison with the other three
crystals. Conversely, the spin-orbit splittings and the
relativistic shifts in the crystals having very light ele-
ments such as BN would be small and dificult to be de-
tected experimentally.

TABLE II. Crystal spin-orbit splittings (in eV) at I', X, I for
BN, SiC, AlP, and GaAs. "Atom A" designates the contribution
to the calculated splitting from the atom belonging to the third
column in the periodic table or the first appearing atom in the
chemical formula of a IV-IV compound; "Atom 8" designates
the contribution from the atom belonging to the 6fth column or
the second atom in a IV-IV compound.

TAnzx III. Crystal relativistic shifts (in eV) at P, X, I,
for BN, SiC, A1P, and GaAs.

Z l

p cond

p val

15cond

g val

1
cond

X val

g cond

g val
cond

cond

I val

L cond

—0.0062—0.010

—0.0055
0.0000—0.0041—0.0028

—0.0019—0.0075

SiC

—0.077—0.090—0.052—0.0012—0.011—0.0017—0.066—0.055—0.038—0.029—0.020—0.036—0.063—0.0025

AlP

—0.066—0.69—0.030—0.010—0.082—0.010—0.028—0.016—0.027—0.023—0.023—0.030—0.040—0.014

GaAs

—0.235—0.403—0.192—0.105—0.306—0.080—0.185—0.105—0.153—0.202—0.283—0.146—0.223—0.130

TanLz IV. Energy Gaps (in eV) for BN, SiC, AIP, and GaAs.

In Table II, we see that the discrepancy between the
experimental and the calculated values of the spin-
orbit splittings of the valence F» state in GaAs is only
11'Po. The calculated result is 0.29 eV and the corre-
sponding experimental value is 0.33 eV. In view of the
uncertainties involved in the crystal wave functions
used, which were, above all, not obtained self-consist-
ently, this agreement is rather striking.

We further remark that at the F and I points of the
Brillouin zone, the contributions to a total spin-orbit
splitting from two diferent atoms do not exhibit any
simple relation to their atomic number as we might
have expected at first thought. We notice in Table II,
that the dominant contribution in a spin-orbit splitting
shifts from one atom to the other as we move from a
lower p-like state to a higher p-like state. This shift
can be understood qualitatively by considering the
zinc-blende structure as the result of applying a pertur-
bation of an antisymmetric potential V to the diamond
structure.

BN SiC AlP GaAs
SiC AlP GaAs

&&va1
Atom A
Atom B
Calculated
Experimental

0.0037
0.0027
0.0064a

0.119
0.001
0.120

0.0550
0.0015
0.0565b

0.263
0.031
0 294b
0 33a

Exptl. 8f 2 4c
Indirect gap N.R.' Calc. 2.949 2.74 5.080 2.393

(F1pal ~ X1cond) R.b Calc. 2.947 2.77 5.061 2.313

Atom A
I $$«na Atom B

Calculated

0.00284
0.00003
0.00287

0.0017
0.0233
0,0250b

0.026
0.136
0.162b

Direct gap
At I'

Exptl.
N.R. Calc.
R. Calc.

1.5d
7.663 6.773 6.995 4.300
7.660 6.695 6.937 4.182

X~val
Atom A
Atom B
Calculated

L,sval
Atom A
Atom B
Calculated
Experimental

Atom A
Xgeona Atom B

Calculated

0.007
0.0049
0.0119a

0.044

0.044

0.097
0.0031
0.100

0.0154—0.0170
0 0016b

0.049
0.001
0.050b

0.000084 0.058 0.0301—0.000051 —0.00006 -0.0045
0 000033a 0 058 0 0256

0.123-0.042
0.081b

0.118-0.102
0.016b

0.211
0.024
0 235b
0.260

Direct gap
At X

Direct gap
At L

Exptl.
N.R. Calc.
R. Calc.

5 Oe

9.088 5.789 6.482 4.891
9.087 5.795 6.486 4.924

Exptl. 3.1'
N.R. Calc. 11.905 9.955 9.095 5.517
R. Calc. 11.900 9.934 9.080 5.409

a R. Braunstein, J. Phys. Chem. Solids 8, 280 (1959).
b Experimental spin-orbit splittings from x-ray data (Ref. 12) and calcu-

lated atomic spin-orbit overlap integrals have been used.
& J.Tauc and A. Abraham, Proceedings of the International Conference on

Semiconductor Physics, Prague, 1960 (Publishing House of Czechoslovak
Academy of Sciences, Prague, 1961),p. 375.

a Calculated from matrix elements between two sets of plane waves.

a Nonrelativistic.
b Relativistic.
& G. H. Grimmeiss, W. Kischio, and A. Rabenau, J. Phys. Chem. Solids

16, 302 (1960).
a M. D. Sturge, Phys. Rev. 127, 768 (1962).
e H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. Letters

8, 59 (1962).
& J.A. Lely and F.A. Kroger, Proceedings of the International Coll. 1956,

Garmisch-Partenkirchen (Friedrich Vieweg and Sohn, Berlin, 1958), p. 514
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As an example, let us consider the lower and the
higher F» states. The valence F15 state in the zinc-
blende structure evolves from the bonding (anti-
symmetric with respect to the interchanging of the two
atoms) valence state I'25 in the diamond structure as
V~ is gradually turned on, while the lowest conduction
F15 state in the zincblende structure evolves from the
antibonding (symmetric) conduction state I' ll; in the
diamond structure. These two levels in the diamond
structure can be written as follows:

r„.-"'
I 25,cond, dia oc $1+$2 ~

(V.ia)

(V.ib)

where

cond, zb~F cond, dia &F,val, dia
15 ' —15

1 2 6 1 2 (V.2b)

z(r„,)—z(r„)
It can be shown from the time-reversal symmetry of
the crystal wave functions that e is a real quantity. We
notice, then, that if the first order term in & is additive
to the contribution of an atom at energy level, say
F15 "' it must be subtractive to the contribution of
the same atom at the other level, say F15"n ' . In other
words, if at one level the contribution from one atom
plays the dominant role, then at the other level, the
other atom must take over this role.

This effect is particularly evident in silicon carbide
with a spin-orbit splitting of 0.12 eV for the valence

In the above expressions we have used the notations it l

and p,, to represent the two core parts in (II.3) sepa-
rately centered around the two sublattices. If we take
into account only the matrix element between the con-
cerned state and its nearest-neighboring state, and
assume that atomic cores do not overlap, in the first-
order perturbation theory the two F» states in the zinc-
blende structure become:

p val, ab~p, val, dia+ &p val, dia
15 ' —25'

=(~ ~.)+ (~—+~ ), (V.2 )

F15 state, which is even larger than the corresponding
value of 0.042 eV in crystalline silicon. This enhance-
ment may be attributed to the strong antisymmetric
potential V . At valence F15, the antisymmetric po-
tential pulls the electron very close to the silicon atom
causing the contribution from that atom to the spin-
orbit splitting to be very large. At conduction F», the
electron is pushed away from the silicon atom, and
therefore, the contribution from that atom decreases.

It is interesting to compare the spin-orbit splittings
of the crystal states with an average of the correspond-
ing values in the two isolated atoms. As seen in Tables I
and II the former is usually enhanced from the latter.
Physically, the enhancement means that the wave
function in the crystal is contracted in the core region
of each atomic site. Thus one cannot just use the atomic
values for a quantitative evaluation of the crystal split-
ting. Therefore, it is particularly significant to learn that
our presently available crystal wave functions give
meaningful results in the spin-orbit calculations.

In summary, the results from our relativistic band
calculations of BN, SiC, AlP, and GaAs show that
apart from spin-orbit splittings the relativistic correc-
tions are only of secondary importance to the energy
states. In crystals of heavier elements where the rela-
tivistic shifts are comparable to the energy gaps thern-
selves, however, the band structures calculated rela-
tivistically would look quite different from those calcu-
lated nonrelativistically, and our present formalism can
be applied to these substances once the OPW wave
functions are available.
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