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Scattering of Long-Wavelength Phonons by Point Imperfections in Crystals*
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At very low temperatures the thermal conductivity of insulating crystals containing point defects is
limited by boundary relaxation processes and by Rayleigh scattering of long-wavelength phonons: at higher
temperatures resonant modifications of Rayleigh scattering and phonon-phonon scattering dominate. Ex-
periments by Baumann and Pohl on the thermal conductivity of alkali-halide crystals containing mono-
valent impurities indicate that the inverse relaxation time computed from experiment for Rayleigh scatter-
ing is in some situations very much less than that calculated on the assumption that the defects are isotopic
impurities, a result contrary to an analysis by Klemens. Since the scattering of phonons in a one-dimensional
chain may be discussed without approximation, we have solved that problem and Qnd that mass and spring
changes round the imperfection may give compensating contributions to the scattering amplitude; the
scattering power of the center may thereby be reduced to below the value calculated on the basis of pure
isotope scattering. A generalization of these ideas not dependent on Born approximation is presented using
formal scattering theory adapted to handle this case.

I. INTRODUCTION
'
+OINT defects in insulating crystals scatter phonons

and decrease the thermal conductivity. Pomer-
anchuk' and Klemens' discuss the scattering of low-
frequency phonons, predicting a Rayleigh scattering
law for phonons of frequency co with cross section pro-
portional to cv'. Experimental verification of such a,

mechanism has been obtained by studying isotopic
scattering in G-e' and LiF.'' Studies of the thermal
conductivity as a function of temperature of alkali
halides containing monatomic impurities by Walker and
Pohl' and Baumann~ reveal pronounced "dips" in the
curves inexplicable in terms of the Klemens theory.

Takeno, ' Elliot and Taylor, ' Krumhansl, ' McCombie
and Slater, "Klein, "and Thoma and Ludwig "explain
the "dips" in terms of resonance-scattering processes,
but at low temperatures when only long-wavelength
phonons are present all these theories reduce to the
Rayleigh law.

The experiments of Pohl' and Baumann' indicate
that for some impurities the Rayleigh-scattering cross
section is very much less than that calculated on the
assumption that the foreign ion is an isotopic impurity.
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The system KCl containing AgCl is particularly re-
markable because it shows virtually no Rayleigh scat-
tering at low temperatures, though distinct resonant-
scattering "dips" appear at high temperatures as is
shown in Fig. 1. Such results are contrary to the
discussion of K.lemens' who in computing the scattering
adds the squares of matrix elements for mass-defect
scattering and scattering through modified force con-
stants; thus the cross section for isotope scattering alone
is, in that approximation, a lower limit for the scattering
cross section.

It is therefore of interest to examine the scattering of
long-wavelength phonons for a model which may be
solved exactly, but which contains the basic ingredients
of the experimental situation. In this paper we discuss
the scattering of phonons in a one-dimensional chain by
a defect characterized by both mass and spring changes.
The problem is solved both by a one-dimensional phase-
shift analysis and by formal scattering theory; the
results give some insight into the experimentally ob-
served Rayleigh-scattering cross sections and clarify the
range of validity of common approximations in phonon-
scattering theory. This special application of the scat-
tering properties of the one-dimensional chain extends
the previous results of Ludwig. "

II. PHASE-SHIFT ANALYSIS

Consider an in6nite array of equidistant mass points
having the same distance a between their equilibrium
positions; let the particles be numbered

~ ~, l, —(l—1),— ,
—1, 0, 1, ~, (/ —1), l,

Let each particle have mass M with the exception of the
particle 0 which has mass M+AM. The displacements
of the particles from their equilibrium positions will be
denoted by

"W. Ludwig, Ergebnisse Exakt. Naturw. 35, 1 (1964).
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(b) For particle 0,
—(M+AM)iq'EC+D j

= —()+L&)$C+D Ce"——De "]
()—+~) )PC+D Zs—'"-I's—'"g; (7)

(c) For particle 1,

Mio2Ge iq—e gLGe
—sqa Gs—2iqaj

(),+—a) )[Ge '" -C —Dj.—(g)

The six equations (3)—(8) contain seven unknowns and
may be solved to find the amplitude-reQection coeKcient
B/A, and hence the energy-reflection coeKcient
R=

~
B/A

~

'. In the limit of long-wavelength modes, i.e.,
q small, we And

P= (AM/M) and y= (L&/X),

and therefore

Fn. 1. Graph of log of the thermal conductivity against the log
of T. A. Pure KC1. B.KCl+2.1&&10"Ag+ cm '. In curve B note
there is no depression of the thermal conductivity below 2'K, where
while the depression above 2'K is not characterized by a Rayleigh-
scattering law. Experimental data by Baumann and Pohl (un-
published).

Let the harmonic force constant of the springs between
the particles in the unperturbed portions of the chain be
X and the force constant in the two links adjacent to
particle 0 be X+hX. The model is illustrated in Fig. 2.

A wave of wave vector q is incident from the left; the
solutions in various regions of the chain are:

Ae—iq la+ Beiq la

x =Ce qq"+Deiq"
)

—QS iq ia+ps iq la—
7

x&= Ge—'&'

1&—1
—1&i&0

0&3&1

where

cq,„'=4X/M .
(2)

The required continuity of solutions (1) imply the
conditions:

Aeiqa+Be iqe Ceiqa+De iqa--
C+D=8+Ii,

QS—iqa+Peiqa —Ge iqa—
(3)

(4)

(~)

Further, the solutions (1) must satisfy the equations of
motion:

(a) For particle —1,

Here the wave Ae '&' represents the incident wave,
while Be'&' and „Ge '&' constitute the reQected and
transmitted waves, respectively.

The asymptotic waves satisfy the dispersion condition

cq' =M,„'sin'(qa/2),

qev) —=lp+= )( ). (10)

For the case of pure isotope scattering, i.e., p =0, this
result agrees with that obtained by Maradudin'5 using
Green's function techniques and Ludwig, '4 if their
solutions are also examined in the long-wavel. ength
limit.

-2 -I 0 I

M M M+5M M

I

~VTVT ~

FxG. 2. One-dimensional model.

III. APPLICATION OF FORMAL
SCATTERING THEORY

We now discuss the same problem within the frame-
work of formal scattering theory and attempt to gener-
alize the ideas inherent in this model. The purpose of
carrying out this alternative method of solution is to
exhibit features which may be generalized to three
dimensions, in principle. We follow the methods due
originally to Lifshitz' and applied by Krumhansl' and
others, which describe the phonon scattering in terms
familiar in quantum-mechanical scattering problems.
Use the convention:

~ y) =vector displacement field on lattice sites (a column
or row matrix),

A =—matrix operator, e.g. , potential-energy matrix.

—Miq'LAe" +Be "'$
) $Aeiqa+Bs iqe Aeqiqa —Bs—2iqa)

—()+AX)[Ae" +Be " C Dj;——(6)

"A. A. Maradudin, in Phonons and Phonon Interactions, edited
by T. A. Bak (W.&A. Benjamin and Company, Inc. , New York,
1964), p. 462."I.M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956).
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For a perfect lattice unperturbed by a defect we have which defines the scattered solution
I
pp+azr):

the free-field solution
I happ) given by

el ala

(I—~')
I p p)=o I

V+REF) = T, „(20)
&&p~max[1 (&/ppmax)~j

where T~, , is the transition-matrix element defined by

Tp, p
—(e——" ' IP(1+g+P) 'Ie "") (21)

and the energy-reflection coefficient R is
12

~= P/~'~- 'L1—(~/~-*)'i)I T..—.I'.
(I-—~')

I p ) = —P
I ~)

(22)
where p is the perturbation-energy matrix for the
defect.

The solution of Eq. (12) takes the form of a comple-
mentary function, which is just the free-field solution
given in Eq. (11), and a particular integral:

For the model considered here the operator
P(1+gp+P) ' spans only the subspace xp, xi, x i, i.e., it
is an operator in a three-dimensional subspace; here p
is given by

where L is the mass-reduced potential-energy matrix for
the unperturbed lattice.

When the lattice is perturbed by the presence of a
point defect, we obtain a perturbed field

I q) charac-
terized by

(13)

where (I.—cp') '—=Gp is the mass-reduced Green's-func-
tion operator for the perfect lattice.

In the scattering problem
I q p) is given by

where q is the wave vector of the incident wave, the
r(l/k) define the lattice points, e," gives the polarization
of the vth mode of wave vector q, and ~ satisfies a
dispersion relation oP =cv,'.

The scattered solution
I
y+) consists of outgoing

waves superposed on the incident waves, Gp+ being the
Green's function for outgoing solutions. In practice the
problem is simplified by the perturbation P being non-
zero for only a small subspace I8) of the total space.
Thus

where gp+ is the operator Gp+ defined in subspace Ie).
Hence

p—
2n —Pip' lX A

n 0
0 n-

(23)

where n= AX/M and p= hM/M while gp+ is given by

where

ei8 ei8 &

g
+—f(~) ei 8 1 eip

ei8 ei&

f(~)= 1/~~~--[1 (~/~-*)'j—"
(24)

Sai= Sp p Sap —
p (Xi+S i)1 it' and x,=-', (xi—x i).

and 0= —ga.
Ke use the symmetry property of the defect under

inversion to factorize the operators into a direct sum of
a two-dimensional matrix operator and a one-dimen-
sional operator by applying a similarity transformation
which transforms the basis displacements into sym-
metry-adapted basis displacements

Ie')=(1+g+P) 'Ie'-). 16 In the new basis system we find

From the viewpoint of the scattering problem we are
interested in the asymptotic form of the scattered field
which is given by I q+«a«)

'2n —Pip'

P= —V2n

0

—v2o. 0
0=-0 p
Q

(25)

where Gp+(pp) is the asymptotic form of the perfect-
lattice Green's function.

Specializing to the one-dimensional model discussed
in II, Gp+(~) takes the form

e
—iqI t~—t(a

Go'(")—=Gp'(V')=,(1g)
i&&max[1 (&/ppmax) ]

1 v2e'P 0
(go+)=f(~) v " (+ "')

0 0 (1—e"')-

(gp')-
0

0(.)
The transition matrix T, , is now the sum of two terms

where the I,
' are the sites of the defect perturbation and l

is a site remote from the defect. For the reQected wave
l&&l',

(27)Tp;p=Tp;p"+Tp;p'

&i q la &
—i q/'a

Gp+(cp) =
&pippmax[1 (p~/ipmax)~ J

where T, ," and T, ,g are evaluated from the two-

(]9) dimensional operator and one-dimensional matrix oper-
ators, respectively.
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Now T~, ~& is easily given by

j
8 (e i—8 e+ i8)

2

0! 1
(e 88 e+—i8)

1+nf(a)) (1—e"') 2
(28)

2v l
I
y+REI)= )(8+ I

I~e' ~ )
1+pl ~,) (31)

and the energy-reQection coefficient by

&(8,v)=l 8+ ) ( ) (32)

in agreement with the previous solution. The forward
"scattered" wave amplitude

l &p+FoRwARD) may simi-
larly be shown to be

l p FORWARD) = il p —
I I le "") (33)

1+y) (d

while the total forward amplitude is

2p M

1—i — — e '&'

1+7 a)m8x-

IV. DISCUSSION

The reQection of long-wavelength waves in a one-
dimensional chain is characterized by an energy-reQec-
tion coefIicient proportional to oP: the reQection is
therefore Rayleigh-like, the frequency dependence being
an inherent property of a one-dimensional model. The
mass and spring changes may make reinforcing or
cancelling contributions to the scattering amplitude as
may be seen from Eqs. (9) and (31).In particular, if AM
and AX have opposite signs cancellation between the
two terms in the expression (P+2y/(1+y)) tends to
occur, and the reQection coefficient may be much less
than for the case of pure isotopic substitution. In Fig. 2
a graph is drawn of

l R(P,y)/R(P, O)$ against y for the

which, in the limit of long wavelength, i.e., the limit of
small ~ and 0 yields

(29)

where as before
y= DX/X.

The quantity T,, ," is somewhat more complicated
but yields

T, , ,"=pid', (30)

i.e., in the long-wavelength limit T,, ," is independent
of spring changes.

Thus the reQected amplitude is in the long-wavelength
limit

particular case P = 2 (dark line): that is, we examine the
scattering power of the center relative to the scattering
power of the corresponding isotopic defect as a function
of the spring-change parameter. For positive values of y
the contributions to the scattering amplitude from mass
and spring changes are additive and the scattering
power of the center is enhanced over that for the pure
isotope, but for a range of negative values of y the
scattering power of the center is very much less than for
the isotopic defect with a null scattering condition at
y= —0.5. As y ~ —1 the scattering due to the spring
changes dominates over the isotopic eRect, and once
more the scattering power of the center may assume a
value greater than for the isotopic defect. It must be
emphasized that this cancellation condition holds only
in the long-wavelength limit and, other than at very low
temperatures where only long-wavelength phonons are
present, such considerations would not cause a sup-
pression of the scattering power of the center. A
particular example may be the case Ag+ in KC1 for
which p=2; further, the magnitude of the Ag+-Cl
nearest-neighbor interaction calculated, for example, by
Fukai' suggests that the nearest-neighbor dynamical
coupling is significantly less than the corresponding
K+-Cl interaction, in qualitative agreement with the
results presented here. Experiments by Sievers" on the
infrared absorption of KCl:Ag+ further suggest the
Ag+-Cl interaction is dynamically soft.

The results of the phase-shift method and the cat-
tering treatments above are identical, but it is of
interest to examine how these arise. In the former case
it is essential to superimpose the classical scattering
amplitudes from both mass and spring changes before
squaring the total scattering amplitude to give the
energy-reQection coeKcient. In the other case it is
analogously necessary to add all the matrix-element
components of the transition-matrix element T,
before squaring to give the reQection coefficient. This
has not been done in the Klemens approximation.

Even in the long-wavelength limit there are diRer-
ences between the exact solution presented here and the
first Born approximation commonly used in such
situations. The erst-order Born approximation gives for
the matrix element Ta, 8 of Eq. (21)

= —(e 8«'l pl e 8«") (35)

which may be easily shown to give

(36)

)' V. Fukai, J. Phys. Soc. Japan 18, 1413 (1963l.
"A. J. Sievers, Phys. Rev. Letters 13, 310 (1964).

a result which agrees with that derived by Ludwig. "
For the case of mass scattering the first Born approxi-
mation and true solution are in exact agreement, i.e.,
in the long-wavelength limit the operators I' and
P(1+gs+I') ' are equivalent. However, the scattering
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- l.5

R(P,y)
R(P,O) -i.o

appear in detailed thermal conductivity calculations,
but Klemens" notes their signi6cance.

The problem of scattering of long-wavelength phonons
in a three-dimensional lattice may be approached by the
same formal scattering technique as that used here. The
cross section Tq, q~" "' for scattering of a phonon of wave
vector q to q' is of the form"

rVyV p( I T pVqV [2

where

r~
-l,o —.5 0 .5

Change in Spring Constant y

t
Ion

Born
oxim ation

5

T,, , " "'= e, „"'~exp sq—„' rl
ku'i

(11
&&

I
~(1+go+~) 'I es" exp —sq rl

kui
(37)

Fio. 3. Graph of R(p,7)/R(p, 0) against 7 for the case P =2.

arising from spring changes is not given exactly from
first-order Born approximation and to have the true
solution one must "substitute" 2y(1+y) ' for 2y. The
deviation from the 6rst Born approximation is very
great for negative values of y, as may be seen from
comparing the exact solution (dark line) and the first-
Born-approximation solution (dotted line) in Fig. 3.
The exact solution corresponds to the solution obtained
by summing an in6nite number of terms in the Born
expansion.

Equations (31) and (33) show that when both mass
and spring changes are involved the forward and back. -

ward scattering amplitudes are unequal. Two aspects of
this are worthy of comment. First, the sum of the square
moduli of (31) and the total forward amplitude (34)
should be unity. If, in fact, this is computed from these
expressions, it will be found necessary to carry an
additional real term to order co' in (34) to be over-all
consistent to that order; but no fundamental physical
difficulty arises here. A second aspect of the use of (31)
and (33) refers to the computation of "relaxation
times" as frequently done for phonon scattering in the
Boltzmann equation. If a "total cross section" is calcu-
lated as the sum of the square moduli of (31) and (33)
(the one-dimensional analog of integrating over all
scattering angles in the three-dimensional case), it is
apparent that this is not the physically relevant
quantity; no destructive interference between mass
scattering and force-constant scattering can occur.
There is no inconsistency, however, for in a one-
dimensional system it is only the reQection amplitude
which determines the energy transport properties, while
in a three-dimensional system the effective cross section
appropriate for the calculation of thermal resistance
involves a weighted sum of the cross sections for scat-
tering in various directions. The weighting factors
reRect the effectiveness of the scattering process in
destroying momentum, and are important if the scat-
tering amplitudes are anisotropic. Such factors rarely

and g„' is de6ned by analogy with Ref. 10.
For the case of a point defect in an alkali halide of the

NaCl structure in which the interaction with the nearest
neighbors is modiGed, the defect matrix P is a 21&&21.
The point symmetry of the center may be exploited to
express Ts,s""' as in Eq. (27) as a sum of terms
characterizing the various irreducible representations of
the OI„, point group. In the long-wavelength limit away
from resonance no single one of these terms dominate
and destructive or constructive interference in contribu-
tions to the scattering amplitude is possible as before.

The effective integrated scattering cross section may
then be obtained from a weighted sum over polarizations
and wave vectors. If the mass and force constant change
conditions are such as to greatly reduce the cross
sections for the large-angle scattering processes which
mainly contribute to thermal resistivity the Rayleigh
scattering cross sections may be very much less than
those calculated on the assumption of pure isotope
scattering. Generally, Tq, q should also include a
contribution from the strain Geld set up around the
defect, as another possible source of interference effects
in the scattering amplitude, but no detailed discussion
will be presented here.

Because we have dealt explicitly with the classical
field (though applying the methodology of quantum
scattering theory) it may be thought that we would have
to examine the problem for particular quantum features.
Actually no new features appear; for, if one uses a
second-quantized representation of the phonon field, the
appropriate Geld operators obey just the classical equa-
tions considered. Interpretation of the intensity of the
classical phonon 6eld as the local number density in the
quantum case connects classical and quantum descrip-
tions for the phonons.

V. CONCLUSION

In summary, we repeat that it is essential to super-
impose different matrix-element contributions to the

P. G. Klemens, in Solid State Physics, edited by I'. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1958), VoL 7, p. 29.
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scattering amplitude before squaring to compute a
scattering cross section, an obvious point theoretically
but one which has not usually been considered in
detailed calculations. I'urther, we have shown how even
in the long-wavelength limit the first Born approxi-
mation may be significantly in error. These two factors
are of general importance in determining Rayleigh-
scattering cross sections.

Vote Added in Proof. A recent paper by M. Yussou6
and I. Mahanty )Proc. Phys. Soc. (London) SS, 1223
(1965)]discusses impurity scattering in the long-wave-
length limit for a three dimensional model with equal
nearest-neighbor central and noncentral forces. Their
relaxation time is obtained from an unweighted total
scattering cross section by application of the optical

theorem and therefore contains no interference terms

between scattering amplitudes corresponding to differ-

ent irreducible representations of the point group of the

impurity. We contend that a more detailed treatment
of thermal conductivity with their model, in which

the various scattering cross sections are consistently

weighted according to their eKciency in destroying

quasimomentum, will reveal results similar to those

presented here.
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Relativistic Effects on the Electronic Band Structure of Compound Semiconductors*t
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The eBects of the three relativistic interaction terms, mass-velocity, Darwin, and spin-orbit coupling,
on the electronic levels of covalent-bond compound semiconductors BN, SiC, AlP, and GaAs h.i,ve been
investigated. Quantitative relativistic shifts and spin-orbit splittings of the appropriate Bloch states at
I', X, and L points in the Brillouin zone have been obtained using orthogonalized-plane-wave crystal wave
functions. Comparisons between available experimental data and calculations of the spin-orbit splittings
of GaAs show a maximum discrepancy of 11%.The inclusion of the relativistic shifts of the energy levels did
not change very significantly the band structure obtained by the nonrelativistic calculations. These eftects
increase, however, as the atomic numbers of the constituent atoms increase.

I. INTRODUCTION

HEN correlation effects are neglected, the system
of electrons in a solid can be described by a one-

electron equation, which is the well-known Hartree-
Fock equation. However, no corresponding equation
has been derived for the relativistic electrons. Thus we
have to rely on the Dirac equation for an electron inter-
acting with a crystal potential. After applying successive
canonical transformations of the Foldy-Wouthuysen'
type to the Dirac equation, the positive and the nega-
tive energy states can be decoupled to successively
higher orders of o., where 0. is the fine-structure constant.
To the order of cP, there appear in the transformed
Hamiltonian three extra terms in addition to the usual
nonrelativistic kinetic energy and the crystal poten-

*Based on a thesis submitted by one of us (P. C. C.) to the
Department of Physics, Northwestern University, in partial ful-
fillment of the requirements for the Ph.D. degree.

$ Work supported in part by the Advanced Research Project
Agency through contract with Northwestern University Mate-
rials Research Center.

f Present address: Department of Physics, University of
Southern California, Los Angeles, California.

' L. L. Foidy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

tial V:

p2
H= +U(r)—

2m

1 p' fi'
+ -V'U(r)

2mc' 4m' Sm'c'

+ (VU(r) Xp) . (i.1)
4m'c'

' C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

The first two terms in the above Hamiltonian give the
nonrelativistic Hamiltonian and the last three terms
are the mass-velocity term, the Darwin term, and the
spin-orbit interaction term. The first of these acquired
its name because it could be obtained by simply sub-
stituting into the nonrelativistic Hamiltonian the rela-
tivistic expression for the electron mass and then
making a power-series expansion in terms of (v/c). The
second term was named after Darwin' who first intro-
duced it; it may be attributed to the interaction of the
electron, whose coordinates fluctuate over distances
comparable to a Compton wavelength with a somewhat
smeared-out Coulomb potential. The last term de-


