PHYSICAL REVIEW

VOLUME 140,

NUMBER S5A 29 NOVEMBER 1965

Magnetic and Thermal Properties of [Cr;(CH;CO0):(OH).]C1-8H,0,
a System of Clusters of Three Cr’** Ions*

Norikrvo UryOf AND S. A. FRIEDBERG
Carnegie Institute of Technology, Pittsburgh, Pennsylvania
(Received 2 July 1965)

The paramagnetic susceptibility and magnetic specific heat of the complex salt [Cr;(CH;COO)s(0OH):]-
C1-8H,0 are examined theoretically in the light of recently obtained knowledge of its crystal structure.
Each unit cell contains four isolated triangular clusters of three Cr3* ions. The crystal properties may be cal-
culated from the Hamiltonian of a single cluster. The structural evidence neither confirms nor excludes
clearly the long-conjectured possibility that a cluster has less than trigonal symmetry. In an attempt to
construct possible alternatives to Kambe’s theory which requires cluster distortion, the energy levels of a
cluster have been calculated assuming equal isotropic exchange interaction, Jo[ (S1+S2)+ (Sz2+Ss)+(Ss-S1) ],
among the Cr3* ions (S=42), each of which experiences an axial crystalline field. In order to split the two
Kramers doublets comprising the ground state as required by experiment and retain the cluster symmetry,
a higher order spin interaction is required of the form J’[(S1-Sz) (Sz+Ss) =4 (S2-Ss) (S3-S1) 4 (Ss-S1) (S1-S2) ].
Fitting the low-temperature specific heat and susceptibility one finds Jo=30% and J'=0.9%, with a slightly
smaller value of J’ required to fit the susceptibility at higher temperatures. The plausibility of such a novel
interaction is considered, as is the ordered spin arrangement within a cluster at low temperatures.

1. INTRODUCTION

HE magnetism of various kinds of hydrated salts
of iron group ions has been extensively studied.
In spite of the fact that compounds of this kind usually
have complicated crystal structures, the macroscopic
magnetic properties of some of them can be described
quite adequately by one-ion Hamiltonians in which the
influence of the crystalline field due to surrounding
anions is taken into account. The exchange or dipolar
interactions among magnetic ions in such materials play
important roles only at very low temperatures. Typical
examples are the alums and the Tutton salts. However,
there are other kinds of hydrated salts of iron group
ions in which two or three magnetic ions form isolated
clusters and the macroscopic properties must be de-
scribed by means of a pair or cluster Hamiltonian.
The classic example of a salt containing isolated pairs
of magnetic ions is copper acetate monohydrate,
Cu(CH;COO),-H,0O. Bleaney and Bowers' gave an
explanation of its anomalous paramagnetism by con-
sidering an isolated pair model which was later con-
firmed as a realistic one from the crystallographic point
of view.?

We shall be concerned in this paper with the prop-
erties of a system composed of clusters of three para-
magnetic ions. Numerous examples of such systems are
thought to exist? but only a few have been studied in
any detail. Kambe! first proposed a model of exchange-
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coupled clusters of three ions to explain the unusually
large Weiss constants in complex acetates of trivalent
iron and chromium which had been measured by Welo®
in the temperature range 200~300°K. Similar theo-
retical work was later done by Abragam ef al.¢ and
Yvon et al.” after Foéx, Tsai, and Wucher?®?® extended
the magnetic measurements to the helium-temperature
region. Wucher and co-workers!®!* have investigated
extensively the thermal and magnetic properties of
[Crs(CH3;CO0)¢(0OH)2]C1-8H;0 and have reasonably
explained their observations by using the intracluster
exchange integrals as adjustable parameters. Recently,
magnetic measurements on this material have been
extended down to 0.5°K.

The success of Kambe’s cluster model in describing
the properties of [Cr3(CH3;COQO)s(OH)2]Cl-8H:0 is
particularly striking in view of the fact that the struc-
tures of this compound and of all other related salts
were then unknown. Several assumptions were found
necessary in the theory: (1) The orbital angular momen-
tum of the Cr®t ion is quenched by a crystalline field of
sufficiently low symmetry, i.e., instead of the free-ion
ground state, *F3/s, one has effectively a 4532 ground
state for Cr*. (2) Intercluster interaction may be
ignored. (3) Of the three isotropic intracluster exchange
integrals, Jiz, Jes, Ja1, one is different from the other
two, i.e., J12=J237%J 31 but all are antiferromagnetic.
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Fic. 1. Structure of [Cr;(CH3C00)s(OH).]Cl-8H:0. A chro-
mium ion is located at the center of each one of the three octa-
hedra. An octahedron consists of four oxygen atoms (of acetate
groups), a water molecule, and an oxygen ion situated at the
center of the molecule. Circles denote carbon atoms.

Very recently, Chang and Jeffrey'? have determined
by x-ray methods the structure of [Crs(CH3COO)s-
(OH),]C1-8H,0. Macroscopically, the crystal is ortho-
rhombic. Its unit cell contains four formula units, i.e.,
four three-ion clusters, and has the dimensions ¢=13.7
A, 5=24.2 A, and ¢=9.2 A. The space group is found
to be P2;2;2. As is shown in Fig. 1, the three Cr3* ions
comprising a cluster lie, to a first approximation, at the
vertices of an equilateral triangle. Each Cr*t ion is
at the center of an octahedron formed by four oxygen
atoms belonging to acetate groups and lying in the
same plane, an H,O molecule, and an O~ ion. The G=
ion is common to the octahedra surrounding each of the
three Cr** ions in a cluster. The metallic ions of each
cluster are well-separated from those of neighboring
clusters.

In view of this structural evidence, assumptions (1)
and (2) of the original theory appear quite reasonable.
Assumption (3), namely the inequality of the intra-
cluster exchange integrals, would seem, however, to be
by no means an obvious consequence of the structure.
In order to appreciate the implications of this assump-
tion it is helpful to summarize the results of the earlier
calculations.

Kambe took the Hamiltonian of a cluster of three
ions of spin S;, Ss, and S; coupled by isotropic exchange
to be

JC—_—‘Jo(Sl'Sz'i—Ss'Sl)—*—(J0+]1)S2‘Ss, (1)

where for Cr*t ions, S1=Ss=S3=%. The energy eigen-
values for this Hamiltonian can be obtained by means

25, C. Chang and G. A. Jeffrey (private communication).
Professor Jeffrey has proposed that a more suitable formula for
this molecule should be [O-Cr3(CH3;COO)s-3H,0]+Cl~-6H,0.
An oxygen having trigonal planar [sp?] bonds and an occupied
nonbonding 2p orbita% is located at the center of the molecule.
During the preparation of this report we learned that similar
conclusions about the structure of this compound had been
reached independently by B. N. Figgis and G. B. Robertson,
Nature 205, 694 (1965). The observed structure is essentially as
predicted by L. E. Orgel, 7bid. 187, 504 (1960).

N. URYO AND S.

FRIEDBERG

of arguments based on a vector model and are found
to be

E=3JoS(S+1)+3718"(S'+1)+const, 2)

where S is the total spin and §' is the resultant of S,
and S;. The complete energy level diagram is shown in
Fig. 2(a) for Jo>0, i.e., antiferromagnetic, and for
J1=0 and J:#0. The effect of making J:0 is to
remove some of the degeneracies appearing in this
problem when all interactions are assumed equal. In
particular, the lowest state of total spin S=3% consists
of two Kramers doublets which are degenerate unless
J1#0.

Using the cluster eigenvalues, Eq. (2), one can com-
pute the magnetic susceptibility and the magnetic
contribution to the specific heat as functions of the
temperature. It is found that the best fit of the powder
susceptibility data below 300°K is obtained for Jo= 30k
and J1=17.5k, although the experimental uncertainty
appears rather large at high temperatures. It should be
noted that the theoretical powder susceptibility is
insensitive to the choice of Jo or J; below ~5°K. On
the other hand, the theoretical specific heat curve is
quite sensitive to these parameters in this region, the
closest fit being obtained for Jo,=30%k and Ji=4k%.
Agreement between theory and experiment in this case
is destroyed if J is allowed to be as large as 7.5%. This
suggests perhaps that J; is a function of temperature.
From attempts to fit the helium-temperature heat-
capacity data by adjusting Jo and Jy, it is clear that J;
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F16. 2. Energy-level splittings for three spins of S=%;with: (a)
one of the interactions among three spins different from the other
two (Wucher and Gijsman), (b) crystalline field, (c) higher order
exchange interaction.



PROPERTIES OF [Cr3(CH;COO)s(OH),]JC1-8H:0

must be different from zero, i.e., that the two Kramers
doublets comprising the cluster ground state must be
split. This splitting amounts evidently to about 8%
at low temperatures.

If the structure of [Crs(CH3CO0)s(OH)2]Cl-8H,0
at low temperatures approximates that determined at
room temperature, it becomes rather difficult to imagine
that one of the intracluster exchange integrals should
differ by as much as 259, from the other two. De-
partures of a cluster from trigonal symmetry are
certainly suggested by the x-ray work, but these are
quite small. If further distortion were to occur with
falling temperature it is quite possible that distortions
of the required size might appear and with them
degeneracy removal such as has been noted above for
the lowest pair of Kramers doublets. Distortion
accompanied by removal of all but Kramers degeneracy
is, of course, expected on the basis of the Jahn-Teller
theorem. Typically, however, this mechanism is ex-
pected to separate spin components of an orbitally non-
degenerate state'® by amounts of the order of 0.1%.

We have felt it to be of some interest, in view of the
approximate nature of the Kambe model, to consider
alternative possibilities. With the structural evidence
at hand, it becomes reasonable now to include explicitly
the effect of the crystalline field at the site of each Cr’+
in a cluster. Furthermore, it becomes desirable to
consider, at least as a first approximation, the possi-
bility that the usual isotropic exchange integrals within
one cluster are all equal. As we shall see, this program
will lead us inevitably to consider the addition to the
cluster Hamiltonian of terms capable of removing the
degeneracy of the two Kramers doublets constituting
the ground state, just as in Kambe’s problem. We shall,
however, pursue in some detail the possibility of re-
moving this degeneracy while retaining the equivalence
of the three Cr®* ions in a cluster.

In the following sections we develop, first of all, the
quantum mechanical theory of a symmetrical cluster of
three Cr®t ions each of which is located at the center of
an octahedron of ligands, as described above, and
experiences, in addition to a cubic crystal field, a field
of axial symmetry. We shall assume the Hamiltonian
for a cluster to have the following form:

Je=3c0+5¢’, ©)
where
3Co=Jo(S1°S2+S2-S;4S;-S,) (4a)
and
3
3'=3" DL (S£)2—3S:(S:+1)]. (4b)

=1

The axial field is assumed to act along the tetragonal
axis of each octahedron as indicated in Fig. 3. The
crystalline field coefficient D;, taken to be the same for
each Cr®t ion, is defined in the orbital singlet ground

BH. A. Jahn, Proc. Roy. Soc. (London) 164, 117 (1937).
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state assuming that the separation between the ground
and first excited orbital states is much larger than T
as well as any spin splitting of the orbital ground state.

We shall obtain first the eigenfunctions of the un-
perturbed Hamiltonian 3Co. For purposes of comparison
with Kambe’s results for the vector model, the energy
eigenvalues are calculated for both the unperturbed
problem and the case in which one of the exchange
integrals differs from the other two. This is done treating
the term J1S:+S; as a perturbation and yields results
identical with those already cited. Then we shall
calculate the energy eigenvalues and eigenfunctions for
a cluster treating the axial field, i.e., 3¢, as a perturba-
tion. These results will be used to calculate the suscepti-
bility and specific heat of a salt composed of clusters
and an attempt made to fit thedatafor [ Crs(CH3;COO)s-
(OH);]C1-8H,0. It will be shown that this is not
possible for reasonable values of the crystalline field
parameter. As with the Kambe model, the difficulty here
is again the absence of splitting of the two Kramers
doublets comprising the ground state. We then proceed
to consider a higher order spin coupling which removes
this degeneracy while preserving the symmetry of the
cluster. Treating the additional terms introduced into
the cluster Hamiltonian as essentially phenomeno-
logical, it will be shown that quite good agreement with
the experimental data may be achieved. Finally, we
shall discuss briefly the problem of the ordered spin
arrangement within a cluster at very low temperatures.

2. EIGENFUNCTIONS OF THE UNPERTURBED
SYSTEM

We shall denote as Wg,u,; the eigenfunction of the
spin angular momentum S;(S;=4%) and its z component
M ;. The eigenfunction has been chosen so as to satisfy
the following relations:

Sl2\I/SiMi=Si(Sz+1)\I,S.'M,' ) (Sa')
Siz\I,S;M;=M1'\I’S¢M¢ y (Sb)
SV g, =[Si(Si+1)— M, (M~+1) ¥ g,3,01.  (5¢)

In order to obtain the eigenfunction for the unperturbed
Hamiltonian 3Cy, we shall define the total angular
momentum S=S;+S,+S; and take the following linear
combination of the products of ¥g,u;:

esu= 2, (S,M:Mi,Mo,Ms)¥ s, 8301, 55015 (6)

Mi1MaM3

If the coefficients ¢(S,M : M1,M 2,M3) could be so chosen
that each ¢g,a satisfies the relations

Sos,u=S(S+1)es,u, (7a)
S:o8,u=M o3,um, (7b)
S*es,u=[S(S+1)—MM=E1)1"2ps 141, (7c)

it is evident that such ¢g,x’s form a set of eigen-
functions for the present system.
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We can find in standard references* the method for
obtaining a complete set of eigenfunctions Xgr v for
the vector resultant 8’=S;+S; of our two spin angular
momenta S; and S,. Eigenfunctions of this set are the
following :

X343, Xsx2, Xzx1, Xs30,
Xox2, Xou1, Xao, )
X141, X10, Xo,.

Each one of them is the following linear combination :

XS’,M’= Z C(S’;M,:M11M2)\I/81,M1\I’S2,M2 (9)

Mi1M2

and the coefficients ¢ are uniquely determined.

In a similar way, the eigenfunctions ¢g,4r for the
resultant S=S"4S; can be obtained as linear combina-
tions of the products of Xg/ 4+ and ¥g, sr,. The coeffi-
cients ¢(S,M: M1,Ms,M3) are determined in the usual
way. There are sixty-four eigenfunctions!® in all. These
fall into five groups characterized by the same value
of S which are denoted in a distinguishable way as
os,.m, ¢ s, *--, etc. The eigenvalues of 3¢y depend
only on the value of .S, and so we have #X (25+1)-fold
degeneracy for a specified value of S (cf. Fig. 2).

In order to check the correctness of our eigenfunc-
tions, we may calculate the eigenvalues of the Hamil-
tonian (1) and compare them with those listed in Fig. 2.
For example, the nonvanishing matrix elements of the

perturbation J18,+S; in the subspace S=3% spanned
by ¢33, ¢"'3,.23 are given by
(¢"3.43182+85] ¢'3,04)=—5/4,
(¢'3.43]82:8s| ¢'3.43)=—9/4, (10)

(¢'3.43]82-85| ©"'3,41)=3V3.

Therefore, the fourfold degenerate state splits into the
following two Kramers doublets:

¢t (3)=3L¢"1,03 320", 147,
25 (3) =332, 03— ¢ 3.43 ],

If J1>0, these two Kramers doublets coincide with the
lowest pair in column (a) of Fig. 2 when shifted by an
amount 1571/4(=S;(S;+1)J1). Thus we see that for
states of total spin S=% the quantum mechanical
perturbation procedure yields the same results as are
obtained with the vector model. One can extend this
calculation to states of total spin S=$%, %, Z, 2 obtaining
in each case similar agreement. The splittings are as
shown in Fig. 2(a).

(€= '—3.]1/4)

(e=—1171/4). (1)

 See, for instance, E. U. Condon and G. H. Shortley, The
z‘glgegg'y of Atomic Spectra (Cambridge University Press, New York,

. 15 These are given in an expanded version of the present paper
issued as Tech. Rept. No. 1, for contract Nonr-760(26)NR018-301,
1 July 1965.
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3. SPLITTING DUE TO CRYSTALLINE FIELD

We shall now outline the calculation of the effect of
an axial crystalline field on each Cr®** in a cluster. The
Hamiltonian (4b) is treated as a perturbation on the
unperturbed Hamiltonian (4a). Equation (4b) is
written using spin components with respect to micro-
scopic principal axes. Transformation of (4b) to the
common coordinate axes shown in Fig. 3 gives the
following :

3
=12 DL(SHSi+SSiH)+C:SH4-CSi %], (12)
=1

where C;=C,"=3[1—3Y%], C3=—1. In the following,
we shall proceed by taking D;=D as explained in Sec. 1.

In the calculation of the matrix elements of 3¢/, the
following relations are useful in addition to the fact
that 3¢’ is Hermitian with respect to the unperturbed
eigenfunctions:

(os,u|S*Si7| os,0)=(0s,—u|STS*| os—n), (13a)
or
(o5.m|3¢' | o5,30)=(ps,~u || 053,—m1), (13b)
etc.

and
(os,u|5"| &' 3,00)={08,—n |5 | ¢ 5,21, (13¢)
(05,3 | 05,00 )=(08,~u || @5,—~arr)*,  (13d)
(8.3 | &' s, 00 )={ 05, —m |7 | &' s.—20r)*,  (13€)

etc.
M=M%2.

It will be evident that we have nonvanishing matrix
elements only within the subspace of the same S value.
Therefore, we can set up separately the secular equa-
tions according to the values of .S.

In the case of S=1%, the perturbation Hamiltonian
has only diagonal elements and these all equal 15D/4.
The fourfold degeneracy still remains, and ¢’;, 43 and
¢"'3.43 are also eigenfunctions in the perturbed system.

The calculations for higher total spin .S, are straight-
forward but tedious. One finds for S=%, §, £, 3, respec-
tively, eight, nine, eight, and five separate Kramers
doublets. These eigenvalues have been calculated® and

y (L)

F16. 3. Coordinate
axes of a cluster
(x,9,2) and micro-
scopic  coordinate
axes (&imi,¢:). The
fo) £ axis is taken in
the direction of the
2 axis.

| 2

e

g g2
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are shown in column b of Fig. 2. The eigenvalue of the
ith Kramers doublet belonging to S=$, shifted down-
ward by 15D/4, is labeled E; The symbols E/, E/,
and E/” designate, similarly, doublets belonging to
S=3%, I, and %, respectively.

4. COMPARISON WITH EXPERIMENT

The paramagnetic susceptibility X, has been com-
puted for the Hamiltonian

30="5Co+3¢'+ gunS.H , (14)

Nguz?
6kT

=

o 1.540+7.54; exp(—1.5To/kT)+17.545 exp(— 4Tk T)+31.54 4 exp(—7.57o/kT)+-49.54 4 exp(— 12T o/kT)

8H,0 A 1807
where the magnetic field H is applied along the z axis.
This is most easily done using Van Vleck’s formula'é
which is simplified in this case since the matrix elements
of S, between states of different S vanish, e.g., S.(SM:
S41M)=0. The calculations of X, and X, have also
been performed and like that of X, are straightforward!®
but lengthy.

Measurements of the susceptibility®'” have been
made only on powdered samples and so comparison will
be made with the following expression for X,, the
average of X, X,, and X,:

AotA1exp(—1.5To/kT)+ Az exp(—4To/kT)+A 3 exp(—T7.5To/kT)+ A4 exp(—127To/kT)

where
8 _Ei
A0=2, A1=Z exP(?;F) , Az—z exp(

=1

kT

In view of the fact that the value of D in most hydrated
chromic salts is of the order of 10~ cm™,'® we have
looked for the most reasonable values of J o and D by
means of the computer for D values ranging from 0.05%
to 0.14% (in steps of 0.01%) and J, values from 24% to
34k (in steps of 2k). The values of D in this range,
however, have scarcely any influence upon the value
of X,. Closest agreement can be obtained with Jo=30%
below hydrogen temperatures as suggested by Wucher
and Gijsman, and with Jo=32% at higher temperatures.
If we assume a much larger value of D, i.e., D~1k, the
crystalline field begins to affect the calculated values
of X, and much better agreement can be achieved. At
present, however, there appears to be no reason to
assume the value of D in this compound to be larger by
an order of magnitude than that found in other Cr®t+
salts.

The most significant discrepancy with experiment is
found, however, when one attempts to fit specific heat
data for [Cr3;(CH3;COO)¢(OH);]Cl-8H,O with this
model. In order to discuss the helium-temperature data
of Wucher and Wasscher,!? it is sufficient to consider
only the lowest states (S=%) and the next group of
excited states (S=2). As was shown in Sec. 3, the
lowest state remains fourfold degenerate even when the
effect of an axial crystalline field is included. The
calculated specific heat then shows a gradual rise with
increasing temperature in the helium range with no

16 J. H. Van Vleck, The Theory of Electric and Magnetic Suscepti-
bilities (Clarendon Press, Oxford, England, 1932), Chap. VII.
(1961)’1‘ Schriempf and S. A. Frledberg, J. Chem. Phys. 40, 296

18 K. D. Bowers and J. Owen, Rept. Progr. Phys. 18, 304 (1955);
C. F. Davis and M. W. P. Strandberg, Phys. Rev. 105 447 (1957).

—Eil 8 —'Ei” 5 —'qu'”
, Az=) ex ( ), A4=3 ex ( ) 16)
) =z e\ R i v (

b

(15)

indication of the plateau near 2°K found experimentally
(Fig. 4).

A very large value of D shifts the lowest Kramers
doublet belonging to the S=$% group close to the ground
state, causing the calculated specific heat to exhibit a
Schottky anomaly. The height of this anomaly, how-
ever, is too small to fit the data. It appears quite likely

T T T T T T
1.0 J=l.2k  —
o9+ —
J=1k
0.8 —
J'=0.9k
o7 1EXP. -
y/ ¥ =0.8k
7 .

o 08 /

> 7

[}

E o5 2 —

o 7,

- //

S o4~ -~ —
03— —
0.2 1207

/4/7"[‘7—]
0.l . —
-
| [ ] ! ] I
o | 2 3 4 5 6 7 8

TEMPERATURE, °K

F1c. 4. Specific heat curves calculated for Jo=230% and values
of J’ shown in the figure. Dashed line shows the measurements.
The calculation includes the lattice specific heat which is given by
the Debye functions D shown by a dashed dotted line (after
Wucher and Wasscher).
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that only by invoking a mechanism which lifts at least
partially the fourfold degeneracy of the ground state
(S=3) can we explain the low-temperature specific
heat of [ Cr3(CH3COO)(0OH),]Cl-8H,0. In the follow-
ing section we examine mechanisms which do this while
preserving the assumed symmetry of the cluster of
three Cr3* ions.

5. HIGHER ORDER SPIN COUPLING

Let us consider first the effect of intercluster inter-
action of dipolar or exchange character. Extending the
results of Van Vleck," for interacting ions, one expects
this effect to produce extra terms in the specific heat in
addition to the Schottky anomaly which reflects the
energy-level scheme of a cluster. Such interaction
would also affect the magnetic susceptibilities producing
departures from Curie’s law at temperatures such that
kT is of the order of the interaction energy. Measure-
ments'? down to 0.5°K, however, yield a Weiss constant
of ~0.1°K indicating that intercluster interaction is
too small to account for the specific heat observations.
This conclusion is consistent with structural evidence
mentioned above.

Tentative calculation shows that we may get a
reasonable temperature dependence of the calculated
specific heat if the lowest quartet splits into two
Kramers doublets with a separation of several degrees.
Dipolar interaction among the three spins in a cluster
can remove this degeneracy, but it is too small (order of
less than 0.1%). An anisotropic exchange interaction
can also split the lowest state. This is roughly of the
order of ~Jo(g—2)% and is also expected to be negli-
gibly small in the present case because the estimated g
factor is very close to 2.

Another possible exchange interaction which can
give rise to a splitting of the lowest levels will be a
higher order spin coupling among the three spins. An
interaction of this kind may be derived in a way
analogous to that giving the familiar pseudodipolar
interaction. In a crystalline field of cubic or axial
symmetry, the Cr®* ion is in a singlet 4, ground state
which is expressed by yo~xyz. This ground state as
well as the excited T, states Y1~x(y?—322), Yo~y (82— x?),
Y3~z (a®—9?) are able to overlap appreciably with =
orbitals of the acetate bridges, two of which link each
Cr*t ion to its two neighbors in a cluster. The result will
be 7 conjugation throughout the cluster of three Cri+
ions. This situation resembles in some ways the o conju-
gation found in trivalent transition metal complexes of
acetylacetone.”® When three interacting ions are con-
sidered, the number of orbital states becomes 73, each
with a degeneracy in the spin of 64. In a satisfactory
approximation, it will be enough to consider the lowest
and the first excited orbital states. The lowest state
we denote by 42(1)42(2)42(3), showing that the wave

18 7. H. Van Vleck, J. Chem. Phys. 5, 320 (1937).
2 H. S. Jarrett, J. Chem. Phys. 27, 1298 (1957).
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function is the product of the individual wave func-
tions A for the ions 1, 2, and 3. The next higher states,
lying at AE, have wave functions T2(1)A42(2)A42(3),
Az(l)Tz(Z)A 2(3), and Ag(l)Ag(Z)Tg(S), where Tg(t)
denotes one of the wave functions belonging to the 7
state of sth ion.

In the present system, the Hamiltonian should be
symmetric with respect to permutation of the three
spins Sy, S;, and S;. The third-order term, for instance,
of the form

RYRAYEAYSS SRPTAPLATE SRS APA S )

might be expected to appear when the spin-orbit
coupling in the individual ions is treated as a perturba-
tion. It has the required symmetry. However, this type
of Hamiltonian is not invariant under time reversal and
would give rise to a spontaneous magnetization. It may,
therefore, be excluded. One of the terms of the third-
order perturbation energy which includes exchange
interaction as well as spin-orbit coupling is given by

(\AE)XA45(1)A5(2)A2(3) | L1-81| T2(1)42(2)42(3))
X{(T2(1)A2(2)42(3) | TS+85| T2(1)A42(2)42(3))
X{(T2(1)A42(2)42(3) | L1-S1|42(1)42(2)42(3)).  (18)

The spin Hamiltonian obtained from this kind of
procedure may be written in the following form, as can
be seen from a symmetry argument

3" =J'[(S1°82) (S2-S3)+ (S1S3) (S5-S5)
4+ (S3:S1)(S:-S2)].  (19)

The so-called biquadratic exchange interaction™ be-
tween two spins may be obtained by a similar procedure
in which we consider terms of the following form:

(AE)XA45(1)42(2)A2(3) | L1+8:1] T2 (1)42(2)42(3))
X{(T2(1)A42(2)A2(3) | JS1°S:| 42(1)T2(2)42(3))
X(A2(1)T2(2)A42(3) | L2+Ss]| 42(1)42(2)45(3)).

The diagonal matrix elements of the exchange energy
in (18) can be expected to have an appreciably larger
value than the off-diagonal elements such as the above
term. Thus, we may expect the interaction given in
Eq. (19) to be more important than the biquadratic
exchange interactions. In the following, we shall
consider the Hamiltonian 3C”, neglecting crystalline
field effects.

6. SPLITTING DUE TO HIGHER ORDER
SPIN COUPLING

The Hamiltonian 3¢” has no matrix elements between
states having different values of S. We can, therefore,
solve the perturbation problem in the subspace of
given S as was done in Sec. 3. The eigenfunctions and
eigenvalues of the perturbed system have been calcu-
lated!® taking as unperturbed eigenfunctions those of
3Cy (4a). The energies of the perturbed levels relative

2 P, W. Anderson, Solid State Phys. 14, 99 (1963).
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to the eigenvalues of 3¢y may be summarized as follows:
S=

[N

: splits into two Kramers doublets,
&= (123—24V3)J’/16 and
= (123424v3)J'/16;

: splits into four fourfold degenerate states,
e =—11.61947", ea=—35.3576J",
es=—0.9014J", €,=5.1284J";

: splits into three sixfold degenerate states,
&'=—14.6678J, e’ =—4.33257",

e’ =1.5627)";

% splits into two eightfold degenerate states,
&'’ =(—27/16+427V3/8)J’,
&''=(—27/16—273/8)J’;

: tenfold degeneracy remains but level shifted
€"'=(9/4)23J".

These splittings are shown in column ¢ of Fig. 2.
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7. ESTIMATION OF NUMERICAL VALUES
OF PARAMETERS

Having obtained the eigenvalues and the eigen-
functions, the expression for the powder susceptibility
can be again obtained in the same form as Eq. (15)
provided the following substitutions are made.

2 —61;0
Ao=2 eXp( ) ,
’ kT

=1

Ei=FEy=¢, E;j=Es=¢, Es=Es=¢3,
Eqi=Ez=¢4,

E{=E/=E{=¢/,
E/=Ed=E¢/=¢],

El=e"(i=1234), E{'=e(j=56,1,8),

Ey"=(9/4)23]" .

(20)
E11=E2,=E3,= 61, ,

We have looked for the most reasonable values of Jo
and J’ for J/ in the range 0.2% to 1.3k (in steps of 0.1%)
and Jo assuming the values 28%, 30%, and 32%k. Some
results of the calculations are shown in Fig. 5. Good
agreement is obtained with Jo=32%k, J'=0.40 or
Jo=230k, J'=0.20k.

The formula for the magnetic specific heat in the
helium temperature region is conveniently written as
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a=1-+4exp(—d:/kT)+exp(—d)//kT)
+exp(—85/kT), (23a)
B=25/ exp(—38,/kT)+0y" exp(—38.'/kT)
+53, exp(—ag’/leT) , (23b)
= 51l2 exp(—al’/kT)+62’2 exp(—ég'/kT)
+085"%2 exp(—85'/kT), (23c)
and
o= 620— 610 )
55,2 €41 €, (24)

A= 15]0+ €1— 610.

The results of the calculation are shown in Fig. 4. For
the lattice part of the specific heat, we took the values
estimated by Wucher and Wasscher. A reasonably good
fit of the data can be obtained with J,=30% and
J'=0.9%. It is interesting to note that the fit obtained
with this theory is significantly better than that got
with the simple Kambe model. Comparing the values
of J’ required to fit the susceptibility and low-tempera-
ture specific heat, there is perhaps reason to suppose
that J’ is temperature dependent in the opposite sense
to J1 of the simple theory. Regarded as a purely phe-
nomenological procedure, the introduction of the higher
order spin coupling [Eq. (19)7] appears somewhat more
successful than the assumption of an unsymmetrical
cluster made in the Kambe theory. Whether a coefhi-
cient J’ of the required magnitude is physically reason-
able is a question we shall consider in the concluding
discussion.

8. ORDERED SPIN ARRANGEMENT
IN A CLUSTER

We shall consider in this section the ordered spin
arrangement in the present three spin system. The
measurement of susceptibility or specific heat does not
show any evidence of cooperative phenomena at least
down to 0.4°K. Thus we do not expect long-range order

30 T T T T T T T 80

c
4
. % 70

20— —60

xl_ -
°

50 s
Xp

—40

30

N[F' (FN\?
L]
ETALF F
where
F=14exp(—8/kT)+2a exp(—A/EkT), (22a)
F'=§exp(—8/kT)+2[A-a+B] exp(—A/kT), (22b)
F’'=8 exp(—8/kT)
+2[A% a+2A-B+y] exp(—A/kT), (22¢)

o | T | | | | Ly
[ 10 20 30 50 100 150 200 250 300

TEMPERATURE, °K

Fic. 5. Several examples of the calculation of reciprocal suscepti-
bility. The chosen parameters are: (a) Jo=30k, J'=0.2k, (b)
Jo=32k, J'=0.4k, (c) Jo=32k, J'=1.2k, (d) Jo=32k, J'=0.2k,
(e) Jo=30%, J'=0.6k. The small circles are the experimental
points (after Wucher and Gijsman).
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F1c. 6. Spin arrange-
ment in a cluster. Solid
(dashed) arrows show
the arrangement in the
case D is negative (posi-
tive).

in the crystal due to intercluster interaction to appear
above that temperature. However, the cluster itself
should exhibit some definite spin arrangement because
of the rather large intracluster exchange interaction.

First, we shall only treat the exchange Hamiltonian
for two-spin interactions

JCD= ]o (Sl‘ S2+S2’ Ss+sa' Sl) .

As an approximation, we shall consider the spins S; as
classical vectors and define the nine-dimensional vector
e whose components are

(61782,63) = (Slxysly,Slz) 3
(64765;66) = (S2I;S2y,52z) )
(37,68,69) = (Ssz,Ssy,Saz) .

Then, the cluster Hamiltonian can be written in a
quadratic form with respect to e’s, where we have a
condition of constraint > e?=const. If we write the
energy as 3 > Aiee;, the problem of finding the lowest
energy state can be reduced to the eigenvalue problem?
of a matrix [44]. The 9X9 matrix [ 4 ;;] can be reduced
to three 3)X3 submatrices

0

(25)

11
01 (26)
10

with the appropriate transformation matrix. The lowest
eigenvalue, e=—1, is doubly degenerate and the

eigenvectors, which are orthogonal to each other, are
the ones which satisfy the condition,

Si+8:+8;=0.

This implies a coplanar arrangement of three spins.
One possibility is shown in Fig. 6. Another spin arrange-
ment which corresponds to a higher eigenvalue e=2 is
the one in which all three spins are parallel. The effect
of the crystalline field considered in Sec. 3 may stabilize
either arrangement in Fig. 6 depending on the sign of D.

Next, we shall discuss the effect of a three-spin

@7

2 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946);
N. Uryd, zbid. 136, A527 (1964).

N. URYDO AND S.
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interaction

30" = J'[ (S1-S2) (S2+S5)
+ (S2+S35) (S5+S1)+ (S5:S1) (S1:S2) J.

We shall denote by 6; and 6, the angles between spin
vectors S; and S;, and S; and S;, respectively. For the
fixed angles 6; and 6, the spin vectors S; and S; lie on
the conical surfaces which make angles 6; and 6,
respectively, with the vertical axis in the direction of
S,, and the first term is constant. We shall take the
vertical axis as the polar axis, and denote the azimuthal
angle of the spin vector S; by ¢ which is measured from
the plane of S; and S,. Then our problem is to minimize
the following with respect to 6, 62, and ¢':

F(01,05,0) = J o[ cosf1+cosfz+-sind; sinfy cosy
+cosf; cosfy |+J’{cosb cosfz+ (coshi~-coshs)

X [sing; sinf, cosy+-cosfy cosfe |}. (28)

If we use the numerical values of Jo and J’ to exclude
impossible solutions, the values of 61, 62, and ¢ which
minimize F (01,0.,¢) can be obtained as the roots of the
following set of simultaneous equations:
sinf, sinf, sing =0,

sing (01462) - f1(61,0:%) =0,

sing (01—02) * f2(01,0:9) =0,

(29)

where

f1(81,05,8) = cos} (01+02){ (cosy—1)
X[Jo+J (coshi+cosfs) ]— J'} — cosd (61— 6s)
X[ Jo+J' (sinf; sind, cosyrtcosb; coshy) ],

f2(01,02,¢) = cos} (61— 02){ (cosy+1)
X[Jo+J' (cosfi+cosfs) +JT'} +cosd (1462)
X [Jo+J' (sindy sind, cosy~+cosf; cosfs) .

(30a)

(30b)
From the simultaneous equations
sinf;=0 (or sinf,=0), sin} (612=02)=0:
the following solution can be obtained easily
@ 6,=0,=0,

or h=6b,=m.

The other sets of simultaneous equations give the
following solutions:

(i) sing=0, sini(@:1+0:)=0, f2(61,8:9)=0;
¥=0, 60;=—0,=cos1(—1),
(iii) sing=0, sink(@—02)=0, f1(61,0%)=0;
Yy=m, O1=0=cos(—13),
(iv) sinfi=0(sin6,=0), f1(61,00,%) = f2(01,00,9)=0;
0:=0, 6G=7 (1=, 0,=0),
or
v=n/2, Oi=m, O=u/2 (91=n/2,0:=m),
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(V) sin¢=0, f1(01,02,\//)=f2(01,02,¢)=0;
¥=0 or =
and
01=0, 92=:l:7r or 01=:|:7r, 02=0

The last set of equations can be solved by seeking the
points of intersection of two curves fi(#,0)=0 and
f2(u,9)=0 in the #-v plane, where we have made a
transformation %=cos[$(6:1+02)] v=cos[3(6:—6:)].
The only possible solution is #=v=0 for the present
values of Jo and J’ and thus we get the above solution.
The solutions (i) and (iii) are identical, and this
solution turns out to correspond to the lowest energy
state. Therefore, the spin arrangement of the lowest
energy is again the one shown in Fig. 6.

9. CONCLUSION

In the preceding sections of this paper we have
explored the possibility of explaining the observed
magnetic and thermal properties of [Cr;(CH3;COO)¢-
(OH).]Cl-8H,0 without requiring that the clusters of
three Cr3* ions have less than trigonal symmetry. If the
ions in a cluster are coupled only by isotropic anti-
ferromagnetic exchange interaction, the assumption of
symmetry leads to a ground state of total spin S=3
which consists of two degenerate Kramers doublets.
Removal of this degeneracy is essential if the theory is
to reproduce the data, especially the low-temperature
heat-capacity observations. This is illustrated in the
calculation of the effect of adding an axial component
to the cubic crystalline field at each Cr** ion. The
presence of such a perturbation is readily inferred from
the structure of the solid. Allowing the coefficient D to
assume unusually large values, it proves possible to fit
the susceptibility data. The specific heat, however,
cannot be described adequately simply because the
axial fields leave unaffected the fourfold ground-state
degeneracy of a cluster.

Within the requirement of a symmetric cluster, the
most reasonable explanation of the necessary splitting
of the ground state into two Kramers doublets has been
found in a novel type of higher order spin coupling. As
a phenomenological expedient, the introduction of this
three-body interaction actually appears somewhat
more successful in fitting the observations than does
relaxation of the requirement of a symmetrical cluster.
Its physical plausibility, however, is difficult to assess.

In deriving an interaction of suitable form we have
been guided primarily by symmetry arguments and the
assumption of the existence of = orbitals which enable
electrons to circulate among the three ions. At first
sight this coupling might be estimated to be of the same
order of magnitude as the anisotropic exchange inter-
action between pairs of ions and thus to be negligibly
small. However, it should be noted that the establish-
ment of strong = conjugation in the present three-spin
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system will give rise to a rather different situation from
that usually found for exchange interactions modified
by spin-orbit coupling. A crude argument suggesting
that J’ may have the required magnitude can be given
as follows: The superexchange integral J, between
neighboring magnetic ions can be considered to corre-
spond to 427/ U? with J the exchange constant appearing
in (43), b a transfer integral, and U an average excita-
tion energy.? Taking J, to be ~30k and (5/U)? to have
a reasonable value of ~10~% we find J~10%. Since
AE, the separation of orbital ground and excited states,
is ~10% and A, the spin-orbit coupling constant, is
~10%, then J'~ (\/AE)%J is estimated to be ~1£ as
required. Without detailed knowledge of the behavior
of the = electrons in a cluster or of the role of the
common O~ ion in its center, further attempts to refine
this estimate would probably not be fruitful. It suggests,
however, that higher order spin coupling of this type
may be large enough to separate the two Kramers
doublets comprising the cluster ground state by the
required amount.

As was emphasized in the introduction, in spite of
the absence of pronounced cluster distortion in the
room-temperature x-ray structural evidence, departure
from trigonal symmetry may still account at low tem-
peratures for the major part of the ground state split-
ting. Even in that event, however, if our estimate of
magnitude is meaningful, the contribution of higher
order spin coupling to the doublet separation may not
be completely negligible.

In the temperature range covered by the experiments
performed to date on compounds containing clusters of
three paramagnetic ions, no direct evidence of the
onset of cooperative long range spin order has been
seen. These clusters have magnetic ground states, how-
ever, and at sufficiently low temperatures intercluster
interaction must eventually cause such cooperative
effects to occur. Thus for [Cr;(CH3;COO)s(OH),]-
Cl-8H,0, experiments below ~0.1°K should yield
useful information about intercluster coupling and
perhaps further hints as to the nature of intracluster
interaction as well. It may also be possible to study at
higher temperatures the ordered spin arrangement
within a cluster. This would provide perhaps more direct
evidence about the intracluster couplings.
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