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less sensitive on the lower limit and the "classical"
method of calculating AF. as the difference between the
isa-, and the 2po. .„potential curves is a much better
approximation. It was the one used in the computation.
Numerical checks showed the error to be less than 1%%uo

at V0=0.6 and then to increase slowly as 1'(1 was made
smaller. The method of summing simultaneous excita-
tions made use of the approximate formula given in
Eq. (21). The appropriate correction term for the con-
tinuum was evaluated according to Eq. (22) and then
added to the results from the approximate summation
formula.

Comparison of the results that include simultaneous
excitation with Fig. 3, which shows the cross section
when these events are ignored, demonstrates their im-

portance. It is apparent that the first Born approxima-
tion must include these processes when it is possible for
them to occur. This is especially significant since their
inHuence is the strongest at the high energies where the
Born approximation is most likely to be used. As yet

there is no experimental evidence to compare with these
results, but the inHuence of simultaneous excitations on
the dependence of the cross section is suggestive when

one looks at the results obtained for the H2+, H2

scattering system. "
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The recently developed improved minimum principle for single-channel scattering is applied to a study
of the s-wave elastic-scattering phase shift pp of positrons by atomic hydrogen. The method requires the
exact solution of the static one-body equation and of the corresponding static Green s function, and also the
orthogonalization of the trial function to the hydrogenic ground-state wave function. The radial part of
the trial function Q+f is chosen to be of the exponential-polynomial form, with linear and nonlinear varia-
tional parameters; to simplify the orthogonalization, Q+& is expanded in Legendre polynomials whose
argument is the cosine of the angle between the coordinate vectors of the electron and the positron. Rigorous
lower bounds are obtained on pp at various energies. The calculation includes the contributions from hydro-
genic states with angular momentum l up to l =5. For each energy, an estimate is made by extrapolation of
the true contribution to rip from 0&i&5, and this estimate is used in turn to estimate the contribution from
l &5 to gp. The rigorous lower bounds obtained and the estimates are compared with previous estimates of gp.

I. INTRODUCTION

A LARGE number of calculations have recently
been performed of the scattering of electrons by

atomic hydrogen, at low' ' and at high energies. This
is on the one hand a reHection of the increased interest
in atomic scattering processes in the atmosphere of the
earth and of the sun, for example, and on the other hand
of the presence of high-speed computers which make

~The research reported on in this article was sponsored by
the U. S. Ofhce of Naval Research, and the Advanced Research
Projects Agency under Contract Nonr-205 (49), NR 012-109, and
NASA under Contract No. NSG 699.' L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev. 119,
164 (1960).' C. Schwartz, Phys. Rev. 124, 1468 (1961).' A. Temkin, Phys. Rev. 126, 130 (1962).

4 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).

possible large-scale calculations aiming at high accuracy.
In view of the concurrent recent interest of the experi-
mentalists and of the consequent improvements in
technique, there is little doubt that relatively precise
contact will be made shortly between the experimental
results and theoretical calculations based on first princi-
ples, even for energies at which the distortion of the
hydrogen atom is great enough to more or less com-
pletely invalidate the Born approximation. tA'e might
remark parenthetically that, roughly speaking, such
contact has just about been made for scattering by an
atom. It would obviously be extremely useful to the
experimentalist to be able to normalize cross-section
data by the use of reliable theoretical results.

Because of the great similarity of the problems, in the
course of studying e H scattering the theorists have
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naturally tended simultaneously to consider e+H scat-
tering. " The formal setting up of the e+H scattering
problem is simpler because the Pauli principle does not
enter, but at least at very low energies this simplicity
is largely o6set from a calculational point of view
because of the tremendous distortion that the positron
produces, presumably through the virtual formation of
positronium' in its ground state and in excited states.
At zero energy, for example, it was rigorously proven'
that contrary to simple expectations and to previous
calculations, the scattering length is negative, rejecting
an effective attraction between the positron and the
hydrogen atom.

The rigorous result just referred to was one of a num-
ber of zero-energy calculations in atomic' ' and nuclear
scattering problems' '0 based on a minimum principle
which provides a bound on the scattering length. ' "
The extension of the minimum principle to nonzero
energies was only recently derived in a really usable
form, "" and the present positron-atomic-hydrogen
calculation, restricted to the case of zero total angular
momentum, represents the first serious application" "
of the method.

II. THE MINIMUM PRINCIPLE

We here consider only the single-channel scat-
tering of positrons by hydrogen atoms, and we are

therefore restricted to incident energies E&' less than
6.8 eV, the energy at which pickup becomes possible.
Neglecting the possibility of annihilation we choose as
our Hamiltonian

H = —(k'/2m) (Vi'+ 7'z') —e'/r&+ e'/r2 e'/&f—Q (2.1)

where r~ and r~ represent the electron and positron co-
ordinates, respectively. The present paper will be con-
cerned only with zero orbital angular momentum scat-
tering and the wave function 4' will therefore be inde-

pendent of the Eulerian angles. Two standard choices
of the three remaining coordinates include r~, r~, r~2

and r~, r~, 8j2, where 8~2 is the angle between r~ and r~.

Each choice has its advantages, but we chose the second
set for two reasons. Firstly, we require the trial func-
tion Q+& to be orthogonal to the hvdrogenic ground-
state wave function Pro(r~), and it is somewhat simpler,
although rtol essential, to choose such a trial function if
one uses r~, r~, 8~2 coordinates. Secondly, with this
choice it is somewhat simpler to generalize to higher
partial waves. "

Our problem is to determine the zero angular
momentum phase shift, go, defined by the solution of
the equation,

A' — t9' 8' 1 1 1 8 8 e' e' e'—+— —sin 8y2— +
2m ary' ar2' ry' r2' sin8$2 8/2 8/2 ry r2 ry2

(&1&2+(&1&2 |t12)} (2.2)

where 4 is regular at the origin and has the asymptotic
behavior

4~ pro(&1) sin(kÃ2+'g0)/Lr2 sin('g0 —8)j
r, -+oo . (2.3)

~ L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1960).' M. Rotenberg, Ann. Phys. (N. Y.) 19, 262 (1962).
'R. S. RufFine, New York University Research Report No.

CX-48 (unpublished).
A. Temkin, Proc. Phys. Soc. (London) ASO, 1277 (1962);

also private communication.' L. Spruch and L. Rosenberg, Phys. Rev. 117, 1095 (1960).' L. Spruch and L. Rosenberg, Nucl. Phys. 17, 30 (1960);
Kalikstein, Rosenberg, and Spruch, ibid. 49, 257 (1963); L. M.
Delves, J. N. Lyness, and J.M. Blatt, Phys. Rev. Letters 12, 542
(1964). See also L. Spruch, in ninth Yugoslav S~vnmer School in
nuclear Physics IIercegnovi, 1964, edited by M. Cerineo (Yugoslav-
ian Atomic Energy Commission, Belgrade, to be published)."L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev. 118,
184 (1960)."Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 130, 381
(1963)."L. Rosenberg and L. Spruch, Phys. Rev. 121, 1720 (1961),
derived a variational bound for nonzero energies, but the require-
ment that certain potentials be truncated complicates the method.

"Preliminary results for L=O e+H were reported on by Y.
Hahn, T. F. O' Malley, and L. Spruch, in Proceedings of the Third
International Conference on the Physics of Electronic and Atomic
Collisions, London, 1963, edited by M. R. C. McDowell (North-
Holland Publishing Company, Amsterdam, 1964), p. 312. The
trial function used was somewhat crude and the contributions

The constant 8, which satisfies 0&8&m but is otherwise
arbitrary, will be chosen later. The total energy of the
system E is given by

F-=Ero+E'= —13.6 eV+k'k2/2m,

while the ground-state wave function Pro(rq) is nor-
malized by

The projection operator P that appears in the non-
zero energy minimum-principle formulation" is here
taken to be that which projects on to the ground state
of the hydrogen target. Without loss of generality, we
can include in I' the projection on to the Po(cos8&z)
state as well, since then the components of QW& which
are proportional to I'& for /&0 are already orthogonal to

for /& 5 were underestimated; this had the further eRect of
causing the estimates of the contribution from l&5, obtained by
extrapolation, to be greatly underestimated.» The p-wave and d-wave phase shifts for e+H scattering have
been calculated by the techniques of the present paper by C.
Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. (to be published) .
and adiabatic and variational calculation have been performed by
R. J. Drachrnan, Phys. Rev. 138, A1582 (1965), and by R. L.
Armstead and C. Schwartz (unpublished), respectively.
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X pro(ri')f(ri', r2, 8i2')ri"dri'd cos8i 2, (2.4)

where the -', arises because of the integration over
d cos8i 2, and the equation in the static approxima-
tion by

with
P(H E)P+~—=0 (2.5)

P%'~ = i/T 0(r,)upp(r 2)/r2. (2 fi)

(8i 2 is a dummy variable and need not therefore be
given a physical interpretation, but it can be inter-
preted in the six-dimensional space defined by r&' and
r2 as the angle between these vectors. In the present
case where we are dealing with L=O, Pf is actually
independent of 8i 2.) Explicitly, we have

1/'xp(ri)Pp without adjusting the radial parts of the func-
tion. In fact, the choice of the coordinates made above
readily allows the construction of Q=1 P. —We thus
define, for an arbitrary function f(ri, r2, 8»),

Pf(ri, r2, 8i2) = 24 ro(ri)

P(H L)PGP = —P—(2.15)

orthogonality to |/xo(ri) is automatically accomplished
by the presence of the Pi(cos8i2), while for /=0 one
must choose the radial function Xp'(ri) to be orthogonal
to i/ Tp(ri).

The validity of the inequality (2.10) presupposes that
Q%'& contains all sta, tes which give a negative expecta-
tion value of the operator Q)H+HG~H E]Q,—that is,
that no more subtraction terms are necessary. There
could be very few such states, if any, and our QV& will
contain enough terms so that the validity of the in-
equality is electively guaranteed. The monotonic de-
crease of the estimate of kap cot(gp —8) serves as a
partial check on the validity of the bound. Thus, while
we cannot formally prove the rigor of the bound without
an elaborate calculation, and while a certain degree of
caution is always necessary, there can be very little
question that we do in fact have a bound and that the
calculational procedure has all of the advantages
associated with a formal rigorous bound.

The Green's function G~ satisfies the equation

where

d"-/dr, '+—Vpp(r, ) k']up (r—2) =0, (2.7) and thus is factorizable, that is, we have

(/22/2rri«) Ao ——2(Q4'i, QHPC i')

+ (Q%'i,Q/H+HG~H L]Q+,) . (2.11)—
With « the Bohr radius, we choose Q%'i to be of the

form

Q%= P ci;xi,(ri/«)

with
Xooi,(ro/«)Pi(cos8i2)/(rir2«'~') (2.12)

XE~(xl) xi + exp( biixi)
—xi(2/(1+boi))pt exp( —xi)]bpz (2.13)

Voo(r2) = (2/«)c ' '"L(1/«)+(1/r2)] (2 g)

is 2222/k2 times the potential in the static approximation,
and where upp(r2) satisfies the boundary conditions

up~(0) =0

up (r2) ~ sin(kr2+i10 )/sin(2/0 —8), r2 —+00 (2 9)

The determination of the static phase shift qo" is there-
fore a completely trivial matter with the use of a
computer.

Our basic inequality" is

kao cot(r/0 8) (k«—cot(gp —8)+ho
—=k«cot[2/p(MP) —8] (2.10)

where

(ri r2 rl r2 ) |/'Tp(rl)t/'ro(rl')g (ro, r2') (2.16)

with g~ satisfying the equation

( k'/2m) I -(d"d—r,"-)+Vpp(rp) —k']
X{g (rp, r2')rpr2') = —b(r2 —r,').

Since Vpp(ro) is local, g (ro,r2') can be given in the form

(k2/2m) g~(ro, r2') = —(1/kror 2') Lup~(r() opi'(r&)
—

2 sin(22/0 —28)up(r()up~(r&)], (2.17)

where the irregular function 0P(r) satisfies the same
equation as does up~(r), that is, Eq. (2.7), and satisfies
the boundary condition

opp(r2) -+ sin(qpp —8) cos(kr2+210~), (2.18)

where r( and r& are the smaller and the larger, respec-
tively, of r2 and r2'. g~ as given by (2.17) assumes the
correct asymptotic form required for the difference be-
tween P%' and P%~ with the asymptotic boundary
conditions given by (2.3) and (2.9), respectively.

For a set of suitably chosen nonlinear parameters b~;
and di; in the trial function Q%'i of Eq. (2.12), minimiza-
tion of Lko of (2.11) can be carried out trivially with re-
spect to variations of the linear parameters c~;. Denoting
the doub1e sum in / and i by a single sum in p, we have

and
ooh(x2) = x2'+' exp( —di;x2), (2.14)

60= 2 Q c~A'~++ c„K'oocp

=—2C S+C KCwhere x;= r,/ap and bpi is the Kronecker delta function. (2.19)The distinction between /=0 and /+0 in the form for
X„(ri) is a consequence of the fact that for //0 the where 1VoandItopare the elements

defined

i Appendix
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C. Ay assumes its minimum value

for
(2.20)

(2.21)

and is independent of normalization since Q%'~ appears
quadratically in E and only linearly in E.

We now consider the choice of the normalization con-
stant 8. If 8 is chosen such that the inequality go~&8& &0

holds, then we have a subtraction term on the right
hand side of (2.11), but a sufliciently accurate wave
function could easily take into account this subtraction
term. However, for 8 chosen outside the range given
above, this spurious subtraction is not necessary. There-
fore, we have made the particular choice in all of our
subsequent calculations

States Method kao =0.2 kao=04 kap ——0.6

1s
is+2p

1$+M

1s+2p+3d

Numer.
Numer.
MP
Numer.
MP
Numer.
MP

—0.1145—0.0458—0.0458

—0.0433—0.0434

—0.2181—0.1531—0.1532—0.2175—0.2175—0.1512—0.1513

—03042—0.2547—0.2550

—0.2537—0.2540

a See Ref. 18.
b See Ref. 17.

Tmx.E I. Phase shifts obtained for the close coupling approxi-
mation (c.c.a.) in which the target can only be in its ground state
or in certain speci6ed excited states. The numerical (numer. )
results were obtained by "exact" numerical solution of the coupled
diBerential equations that arise in the c.c.a. The numerical results
quoted are those of P. A. I raser and R. P. McEachran& and are
lower in each case than the values obtained by P. G.Burke and K.
Smithb by two units in the last digit. The minimum principle
(MP) results for the given c.c.a. are those of the present paper.

~= g~+go~, (2.22)

for which in the present problem it is almost certain
that p«8. Thic choice of 8 reduces the inequality
(2.10) to the simple form

kao tan(go —go~)& —&g +„o~&0 (2 23)

A~ +„,~ will be written from now on simply as h.

III. RESULTS OF THE CALCULATION

A. Close Coupling Appro»~ation

If a few eigenstates of the hydrogen atom are chosen
for X~;(rq) in (2.12), the exact phase shifts are sometimes
available from the close coupling approximation (c.c.a.)
calculations. These c.c.a. results have previously been
shown to provide bounds on the true phase shift. "
In order to check our program and also to obtain indica-
tions as to how easily the minimum principle can re-
produce the known results, we have calculated the phase
shifts for a few cases for which Q%', contains one or more
excited states of the hydrogen atom with principal quan-
tum number n and orbital angular momentum l= n —1,
that is 2p, 3d, 4f, etc. These states can be put in trivially
by simply setting bh= n ' in the trial function (2.12);
the form (2.13) cannot, as it stands, handle the eigen-
states with nfl+1 since they contain polynomials in
r~ which are not of that form.

We compare our result with those obtained from the
exact numerical solution of the coupled equations de-
rived in the close coupling approximations. '7 "As shown
in Table I, the agreement is satisfactory, although no
attempt was made to optimize the choice of the non-
linear parameters dh, we simply chose d&;= d&~q+ (0.1)i
for i = I, 2, 9 and d~0=0.2. Note that the phase shifts
obtained by the minimum principle (MP) are in each

"Y.Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 12S,
932 {1962)."P. G. Burke and K. Smith, Ref. 4 and private communication."P. A. Fraser and R. P. McEachran (private communication).
The calculations were based on the same code that was used in
their artide in Proc. Phys. Soc. (to be published).

case either equal to or /macr than the correct values, as
they must be. It is also of interest to remark that the
apparently rapid convergence of the phase shift as a
function of / is completely misleading insofar as the final
phase shift is concerned since the convergence in the
principal quantum number n for a 6xed / is extremely
slow. This strongly suggests that the usual close coupling
approximation, although it provides bounds, " often
converges very slowly as a function of the number of
target eigenstates included. We might note that a Mp
calculation of a phase shift for a given c.c.a. provides a
lower bound on the exact c.c.a. phase shift, and therefore
on g itself, since the exact c.c.a. phase shift provides a
lower bound on q.

TABLE II.The phase shifts po (/, MP) obtained by the minimum
principle, in which virtual excitations to the target states with
angular momenta up to and including l are allowed. These values
are rigorous lower bounds. N~ gives the number of linear varia-
tional parameters used for the given / while Z~ gives the total
number used for states up to and including l.

kao =0.2
—0.1058

0.0612
0.1128
0.1340
0.1443
0.1494

kap ——0.4
—0.2001—0.0160

0.0416
0.0652
0.0763
0.0818

kao =0.6
—0.2760—0.1114—0.0607—0.0406—0.0316—0.0272

N)

7
12
10
9

7

7
19
29
38
46
53

B. A Rigorous Lower Bound on go and an
Estimate of go

For the (rather limited) form of the trial function
that we have chosen, there occur two nonlinear param-
eters b~; and d~; for each linear parameter c~;. Searching
procedures for nonlinear parameters as well as a varia-
tion in the form of trial function to test the long-range
efFect are described in Appendix A. Using the set of
nonlinear parameters obtained by analyzing the effects
of each / state separately, the linear parameters were re-
determined by minimizing the full 6, which includes



A 22 Y. HAHX AN D L. SPRUCH

TABLE III. The phase shifts qo(l) obtained by including the
estimated correction due to the inaccuracy in the trial function,
and the estimate qo(~) obtained by including the extrapolation
contributions from t&5. Neither the qo(l) nor gp(c) }a1e rigorous
lower bounds. The number in parentheses represents our estimate,
based on our own calculations, of the error in the last figure.

kali ——0.2
—0.105 (0)

0.064(1)
0.118(2)
0.142 (3)
0.154(3)
0.161(5)
0.182 (11)

kao ——0.4
—0.200(O)
—0.012 (1)

0.049(2)
0.076(4)
0.090(4)
0.098{7)
0.119(13)

kao =0.6
—0.275 (0)
—0.107(1)
—0.053 (3)—0.029(4)
—0.018(5)
—0.011(5)

0.009 (12)

TABLE IV. Various estimates of the s-wave phase shift at kao ——0.2.
The values obtained by the MP give rigorous lower bounds.

Authors all s 1s+all p all s+all p all states

Spruch-Rosenberg~
Rufhne"
Schwartz'
Temkind
Bransden'
MP-rigorous
MP-estimated

—0.105

—0.106
—0.105

0.052
0.054

0.056

0.061
0.064

0.156

0.188

0.057
0.149f
0.182

"See Ref. 5. An "almost MP calculation. "
» See Ref. 7. A self-consistent calculation.
e See Ref. 2. An interesting variational calculation.
d See Ref. 8. A nonadiabatic calculation.
e See Ref. 19. A perturbation calculation.
&This value is obtained by allowing virtual excitations only to states

with 0(l&5.

coupling between states of different l. The resulting
phase shifts go(/, MP), which include contributions from
states of angular momenta up to and including l, with

coupling effects accounted for, are given in Table II.
They are the main results of this paper and represent
rigorous lower bounds on the s-wave phase shifts for
the fictitious problem in which the hydrogen atom is
allowed to be virtually excited to states with arbitrary
principal quantum numbers but with angular momenta
only up to and including l. They also provide rigorous
bounds on the true phase shifts gp.

As noted previously the present choice of the co-
ordinate system makes it trivial to satisfy the or-

thogonality requirement, but it has the well-known
drawback that go(/) as a function of / does not converge
very rapidly. Furthermore, the component of the wave
function with angular momentum l becomes increasingly
difFicult to obtain as l becomes large, presumably due to
the singular interaction component of the form r&'/r&'+'.
We have made first a crude estimate of the error in

go(/, MP) due to the inaccurate trial function QV&. The
corrected estimate of the total contribution for states of
angular momenta up to / is denoted by go(/). We then
extrapolated to /&5 using the corrected values go(/).
Details of the correction and extrapolation procedures
are given in Appendix 8, while Table III contains the
nonrigorous estimated phase shifts. Table IV compares

the various estimates-" ' ' ' " of the s-wave shift at
hap= 0.2.

IV. DISCUSSION

Ke have obtained rigorous lower bounds on the phase
shift, and have obtained estimates of the phase shift.
The estimates were crude because of the difFiculty in
simulating the wave function for large l and also be-
cause of the slow convergence in l. Our calculation
shows however several interesting features of the e+H
scattering problem. As expected the effect of the target
distortion during the collision is very important, pre-
sumably due to the virtual formation of positronium.
Thus the contribution from large l states seems to be
dominated by the behavior of the wave function in the
region ri=r2. However, the wave function near this
region is very difFicult to calculate due to the singular
behavior of the potential —e'/rr2. This is in contrast
to the e H scattering problem where the Pauli principle
plays a major role and imposes stringent boundary
conditions at r1——r2, and where the repulsive potential
minimizes the importance of the region ri=r~. Ke are
currently repeating the calculation using r1, r2, and r12
coordinates in the hope of obtaining better lower bounds
as well as reliable upper bounds on the phase shift.

We have also seen from the values of go(/, MP) that
the usual close-coupling approximation is hopeless in
the e+H problem because of the slow convergence in l
and also in n. For problems for which a large number of
target states contributes collectively the close-coupling
approximation is not reliable and the analytical-
variational type method used here mill generally be
much more convenient.

The present study further clarifies some aspects of
the applicability of the minimum principle. Once the
operator QPH+HG'H]Q and the wave function P+'
are constructed, the variational problem involved in a
MP calculation is completely identical to that of the
Rayleigh-Ritz method for bound-state problems. Con-
trary to variational principles of the Kohn and Hulthen
type, one obtains a rigorous lower bound on the phase
shift which improves monotonically as the trial func-
tion is refined. Therefore one can trivially decide which
of two trial functions is the better one, and, in particular,
one has an unambiguous criterion for choosing between
different sets of nonlinear variational parameters.

The construction of G~ is not difFicult for the present
problem, but it is expected to be more involved for
multichannel problems with or without exchange e6'ects.
The integrals involving G also require a large portion
of the computer machine time although they usually
contribute only a small fraction to the final phase shift.
Therefore, except for a very simple problem such as
e+H scattering, it is desirable to set up the calculation
in such a way that, if possible, an explicit evaluation of
G~ can be avoided.

"B.H. Bransden, Proc. Roy. Soc. (I.ondon) A79, 190 (1962).
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In the present approach, one first calculates pop and
then uses the minimum-principle formulation to cal-
culate the quantity Ag which e6ectively takes us from

to g. The worst possible situation is that for which

$0 is large and negative and F0=0. In that case a small
fractional error in Ag introduces a large fractional error
in the estimate of po. This situation is precisely that
with which we are faced in the present problem, and one
would generally hope to do rather better than we have
done here. In particular, for e+H scattering with L & 1,
the accuracy of gl, shouM be comparable with that of
Ag. If go

—go « ~qP~, the accuracy of go should be
much greater than the accuracy of Aq, this favorable
situation occurs in t. H scattering.

Considering the various difFiculties discussed above,
the values of the phase shift given in Table III compare
reasonably well with the result of Schwartz' —we cer-
tainly had not expected to improve upon his results-
and we may now proceed to study the higher partial
waves" where little is known, to e H scattering for
various partial waves, and to other scattering systems of
interest.

A very interesting article has recently been published
by Sugar and Blankenbecler. "It can however readily
be shown that their expression for the upper bound on
cot(g —8) is identical to the bound expression given
earlier" and used here. [See Eqs. (2.10) and (2.11).j
The word identical is used in the sense that the same
trial function gives the same result. (Some inter-
mediate calculations could be performed differently. ) A
similar remark holds for their bound on elements of the
E matrix.
.Vote added in proof As noted. above, there will be

occasions, particularly for more complicated problems,
when there will be some advantages associated with
methods that do not demand the explicit evaluation of
G". (This can be true even for variational bounds that
are formally equivalent to that used in this paper. ) One
possibility is rather obvious. In the present (relatively
simple) context, for example, the problem of the de-
termination of t" reduces to the problem of the de-
termination of {g (r2, r2')rqr2'). Now in fact we do not
need this latter quantity, but only integrals involving
this quantity. Consider then the determination of

I(r2)—= {g (r2, r')r2r&')f(r&')dr2',

where f(r2') is some known function. With L(r2) the
differential operator appearing in the differential equa-
tion /following (2.16)] that defines {g (r2, r2')r~r2'), it
follows that

I(rz) can therefore be obtained directly as the solution
of an inhomogeneous differential equation without g

'0 R. Sugar and R. Blankenbecler, Phys. Rev. 136, 8472 (1964).
)Also, L. Rosenberg, Phys. Rev. 13S, B1343 (1965).j

(or equivalently GP) having been obtained. The situa-
tion will be more complicated when identical particles
are involved in a process. A number of possible ways of
avoiding the explicit use of G" have been explored'-' '-';
this should remain a fruitful avenue of research.
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APPENDIX A: SOME DETAILS OF THE
CALCULATION

We summarize in this Appendix the procedure used
in the choice of nonlinear parameters, the random func-
tion generator routine used as a partial test of the cor-
rectness of the minimum obtained, and the use of an
alternate form of trial function to examine the long-

range effect.
The nonlinear parameters b~; and dl; in the expression

for Q%'& are chosen on the basis of a very primitive
searching procedure in which each pair of bE; and d~;

is varied systematically while the rest of the parameters
are held fixed. Meaningful results can be expected even
with such a rudimentary form of searching precisely
because the minimum principle asserts that the larger
the phase shift the better it is. As each additional term
is introduced into the trial function, its nonlinear param-
eters are varied while the rest of the parameters are
held fixed. The old parameters are then revaried, again
one pair at a time, for further improvement. Two im-
portant simplifications are found possible in the course
of the search. Firstly, the coupling between states of
diAerent / is not very sensitive to the values of the non-
linear parameters, and thus they are determined for
each l separately; only the linear parameters are rede-
termined in the final calculation which includes coupling
between all states with /&5. The coupling significantly
a6'ects the values of the phase shift; the reason that the
results are nevertheless relatively insensitive to the
values of the nonlinear parameters may be that the
off-diagonal elements of K which couple different l
states do not involve the kinetic energy (derivative)
term but only the relatively smooth potentials to be
integrated over. The second simplification is to neglect
during the search that part of K which involves the
Green's function G~, denoted by G. 6 has to be evalu-
ated numerically and thus requires over 90% of the

~a Y. Hahn, Phys. Rev. 139, 8212 (1965), Appendix A; and M.
Gailitis (unpublished), and P. G. Burke (unpublished).
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total machine time, although its contribution to 6 is
only a few percent. The rest of the integrals in K can be
calculated analytically for the simple form of the trial
function we have chosen.

The choice of the trial function Q%'& as given by (2.12)
is a reasonable one since it is then possible to include
two nonlinear parameters for each linear parameter.
On the other hand, the nonlinear parameters are very
dificult to search for, and there is ever present the
danger that one may fall into one of the local minima
that can be present in the multidimensional parameter
space of the b» s and d~ s. To check on the possibility
that at a given stage in the calculation we have not
fallen into a local minimum from which it is dificult to
emerge by studying small variations of the nonlinear
parameters, we used the random function generator
routine which generates widely varying sets of values of
the b~ s and d~ s. None of the sets however gave values
of A lower than the one obtained by the search pro-
cedure, which indicates that the search procedure had
led to the region which contained the absolute minimum.

We have also examined the effect on 6 of the varia-
tion in the form of the trial function. Since the im-
portance of the long-range interaction of the form r 4

is well understood" at low energy, we included in Q%'g

the inverse-power behavior asymptotically for co&;.

Such forms were essential in obtaining convergence at
the zero energy variational calculation. ' The results
difI'er very little for two forms of trial function at
ka0=0.2.

APPENDIX 8' ERROR ESTIMATION AND
EXTRAPOLATION

We now discuss the method used in estimating the
correction to &/0(/, MP) due to the poor trial function
Q%'&, and the extrapolation procedure used to obtain
no(/= ~).

Due to the strong coupling between difkrent l
states, discussed in Appendix A, and due to the com-
plexity of the error function Qf/—=Q%'&—Q+, it was found
to be very dificult to make precise corrections. For the
purpose of learning how to estimate the correction, we
have constructed several set of test cases such that suc-
cessive sets are an improvement over the previous sets
in that more terms are added to the previous sets. Our
problem is then to see how well we can predict the
(known) 6(/) for the better sets using the values from
the poorer sets.

Some readily available values to be used in the pre-
dictions are 6&&", 6&'&(/), and Z&"'. The superscript
zero denotes the deletion of the 6 term in K, and the
bar denotes the value obtained by using the trial func-
tion of the set to be predicted. (For the true problem,
we still can obtain 5&&'~ by including a large number of

~'L. S~rueh, T. F. O' Malley, and L. Rosenberg, Phys. Rev.
Letters 5, 375 (1960);T. F. O'Malley, L. Sprueh, and L. Rosen-
berg, J. Math. Phys. 2, 491 (1961).

linear parameters, and the value h~") obtained can
thus be regarded as "exact.") 6"&(/', MP) is obtained
by including states up to /', while 6&.&'&(MP) is for the
l' state only.

For a diverse choice of test sets, a correction formula
which gave reasonably accurate predictions was found
to be

Z(/)=6(/, MP)$1+(5&0&(/, MP)) ' Q F& D& W& j,
0

where

F& Lh&'&(/'—,—MP) —6&0&(/' —1, MP) j,
D$ =LE& &0& —A$ &"(MP)j(5$ I'(MP)1

W& = slowly varying function of /', D&, and 6& &0&(MP) .

Various choices are again possible for the functional form
of Wr, andwehavefoundthat W& ——L1—(/" InD& )/41'"
seems to give a good 6t with an approximate accuracy of
30%%uq of the corrections in each test case.

Obviously the procedure described above is far from
conclusive. However, the use of &&0(/) obtained by in-
cluding the correction is found essential in extrapolation
to /)5; the rigorous values &lo(/, MP) consistently un-
derestimate the contribution from states with l&5.

The convergence of qo in l is very slow for the e+H
problem. This difBculty is not new, and Schwartz, "
for example, obtained the l dependence of the forms
I ' and /

—' for the singlet and triplet states, respec-
tively, of the two-electron bound-state system. His
argument on the singularities near r&=r2 may be taken
over readily for the present case but with an important
modification due to the strong coupling that exists be-
tween states of diferent /. By explicit numerical cal-
culation, we have found that the function Ii~, which
takes into account the coupling e6'ect, behaves for large
values of l' very roughly as

F& /'6& "'(MP) .

Therefore it may be reasonable to expect that rlo(/)
will converge as l '. Although an l 4 dependence is not
entirely ruled out, we made a two-parameter fit of
&/0(/) using the form

The value B=1.30 is adequate for the various energies
considered, but we had to use A =0.42, 0.93, and 1.24
for ka0=0.2, 0.4, and 0.6, respectively. Because of the
large error contained in &&p(4) and &&0(5), the 6nal phase
shift p& cannot be determined very accurately.

We believe that, although our result is in fair agree-
ment with that of Schwartz which is presumably the
most reliable so far, more accurate lower as well as
upper bounds should help further clarify the situation
since there are some uncertainties yet to be investigated
in the methods employed by various authors.

~ C. Sehwartz, Phys. Rev. 126, 1015 (1962).
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APPENDIX C: MATRIX ELEMENTS

The vectors N and the matrix K appearing" in (2.19) are defined as

dr pip, &(xp) U;&(rp)pip (ro) (2misp/6 ),

with G;~,j~ defined by
+pq= +il,jl' ~il,jl' 'Oil,jl' )

rp'rodrodro'id;i(xo) Ua(ro) g (rp,ro') U; i (ro') po, i (xo') (2mao/& )

The quantities M;~, j~ and U;~ can be conveniently defined in terms of the following expressions:

Z(m, n, b; r) = dr' — —e b"',

00

I(m;n, b; n, d) =-
~o o

(n m —1)!— e—~& (2n —1—s)! e—m—& (2n —1—s)!
drZ(mn b r)r"e b 1— ge+d —1 h

(n —m —1—s)! e-o (n —m —] —s)!

with g=1+d/b and h=1+b/d We giv. e explicitly the expressions for U;& and M;&,,& for f, F=O, 1, and 2. The
matrix elements for l, l & 2 will be supplied on request. It is simply a matter of performing some integrals involving
Legendre polynomials. We set (2m/Ii') =1 arnd ap

——1 in the following.

l=0: Uip(rp) = —4[Z(0 2 Aep' rp) 8'Z(0 2 2' rp) j,
4 — 1

IrI o, o= [b —D'o. 'o d'od'o A oA 'o /[(A'oA o) +4(8'o, o)'+28'o, ioA'o f ojj
(D'o, ,o)' (8'o, ;o)' (A'oAio)'-

—2I(0,2,8;p, ip, 2eD;p, ,p)+2a, I(0e2,A, p, 2,D;o,;p)+2a,I(0,2,A, p, 2,D,o, ,o)
—2a,a,I(0,2,2; 2,D;p, ,p),

f=1: U;g(rp)= 4(/v3) Z(1, 3, A;g, rp),

ilIo, ii= [(4!)'/(8a,eiD*i,a) 'j[&'—1—blab, i—d'idii+k(8o, ,i—D,i.;i)3
2I(0,4,8il,—ile 4eDil jl) pI(2e4e8ilile 4eDil, jl) r,

i''o, is= (2/v3)I(1, 3,8'o, ii,' 3,D'o, i)—(2/v3)a, I(1,3,A, i; 3,D o,ii) .

l=2: U;p(rp) = —(4/+5)Z(2, 4,A;p, rp),

3I'p, is=[(6l)'/(8'p, ip 'p, ip)'j[&' —1—b'p»p —d'pdip+p(8'p. ip
—D'p. io)3

2I(0e6e8io, ipe 6eDiojp) (4/f)I(2 6 8ei eioep6eDio, i2) (4/7)I(4e6e8io, ioe 6eDi2, j2) e

I!I'i is= (4/v. '13)I(1,3,8*rip; 3,D*i,,.ip)+(6/7)(p)'"I(3e3, 8o, is~ 3eD'~, ip) e

I!dioip= (2/V 5)I(2e4»io. ipe 4eD'oip)+(2/V 5)isiI(2e4eAipe 4eD*p, ip).

We have used the following notation:
3;)=1+b;), a,=83;o ',
&'I, ,ji =b'~+b~I;, D i,ji =4i+~~I;

~ Throughout this Appendix, we have {inadvertentIy) interchanged the order of the indices i and l as compared to the notation
of the remainder of the paper.


