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Third-Order Elastic Constants of NaC1 and KC1 Single Crystals*f
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Measurements have been made to determine the third-order elastic constants of NaCl and KC1 single
crystals. The relations between the velocities of ultrasonic waves propagating along the $110$ and )f12/
directions under a uniaxial compression applied in the $111j direction and the elastic constants were derived.
Six velocities of these ultrasonic waves were then measured at room temperature as functions of the strain
using the pulsed-ultrasonic-interference technique. From the present measurements under the (111)com-
pression and those under the hydrostatic pressure by Lazarus, eleven equations were obtained for both
NaCl and KCl crystals. From these equations, the following five constants (Brugger's definition for the
third-order elastic constants) in units of 10"dyn/cms were solved by the method of least squares:

NaC1
KC1

C111+2C112 C111 C123
—9.91~0.04 —9.10~0.08
—7.44~0.01 —7.15~0.02

C456 C144

0.271~0.014 0.257~0.016
0.118~0.004 0.127~0.005

C166
—0.611~0.007
—0.245 ~0.002

The Cauchy relation C456 ——C144 is seen to be satisned to within the probable error in both NaC1 and KCl
crystals at room temperature. By assuming the validity of the other two Cauchy relations, one can estimate
the constants C1», C112, and C123 as follows:

Nacl
KCl

C111
—8.80
—7.01

C112
—0.571
—0.224

C123

0.284
0.133.

So far the variation of sound velocity with stress has
mostly been measured under hydrostatic pressure. In
order to obtain the complete set of the third-order
elastic constants of a material, other conditions of
stress, such as uniaxial compression, have to be applied.
The difFiculty lies in that even a low uniaxial stress can
initiate slip and plastic deformation, and the disloca-
tions generated by such Row will cause large effects
that mask the true third-order constants of the bulk
material. Up to the present, very few measurements
have been made to determine the whole set of the
third-order elastic constants. The first measurement
was made by Hughes and Kelly' (1953) who determined
the three independent third-order elastic constants of
the isotropic materials polystyrene, Pyrex, and Armco
iron. In 1961, Bateman, Mason, and McSkimin' deter-
mined the six independent third-order elastic constants
of germanium, a first experiment of this kind on a cubic
material.

Alkali halides are substances of interest from the
theoretical point of view because a simple model of
their structure has been quite successful. No complete
determination of their six independent third-order elas-
tic constants has yet been made. The variation of
elastic constants with pressure has, however, been
measured by Lazarus' (1949) and Bartelsr (1964).

Although there are many easy-slip systems in NaCl-
type alkali halides, the resolved shear stresses in the
primary easy-slip directions, (110) in the slip planes

I. INTRODUCTION

HE third-order elastic constants are quantities of
interest because they relate to the anharmonic

properties of the crystal lattices. Their values determine
in the long-wavelength limit the phonon-phonon cou-
pling which limits the thermal relaxation time. They
also contribute to the thermal expansion and to the
lattice specific heat at temperatures higher than the
Debye characteristic temperature. They are manifest
in the nonlinear properties of sound waves in a solid,
e.g. , the second harmonic generation, ' the intersection
of two sound beams to generate a third beam, ' and the
asymmetry in the diffraction pattern formed by passing
monochromatic light through a cubic crystal per-
pendicular to the direction of a sound wave. '

In determining the third-order elastic constants, we
have chosen the direct method of observing the change
of sound velocity in a solid under compression. Accurate
velocity measurement is necessary since the velocity
change is usually small in the available stress range.
The use of an interference method enables the detec-
tion of quite small changes in the velocity and opens
the way for the measurement of the third-order elastic
constants.

~ This work is based on a portion of a thesis submitted in partial
fulfillment of the requirements for the Ph.D. degree at Rensselaer
Polytechnic Institute, 1964.

t Supported by the National Aeronautics and Space Administra-
tion, and by the National Science Foundation.
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sylvania State University, University Park, Pennsylvania.
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THIRD-ORDER F LASTIC CONSTANTS

{110}are zero for uniaxial stress applied in a [1117
direction. For this orientation of stress, the elastic
range in which one can make measurements without
yielding is considerably extended.

L~7= l [~f &7— (2)

Here, J is the Jacobian relating the final position of a
particle in the lattice after deformation and its initial
position, and E is a unit matrix of rank. 3.

For the convenience of comparison with the expres-
sions in other literatures, the relations between the C;;~
defined by Brugger (C;,5 ') and by Birch' (C;ssn') are
listed below

C111 6C111 p C112 2C112 ) C123 C123

C456 '=4C456 ', C144 = 2C144 1 C166 =2C],66

For the stress applied in the [1117crystallographic
direction, it is easier to transform the calculation in a
new coordinate system with the 1', 2', and 3' axes in
the [1117, [1107, and [1127 directions, respectively.
Hereafter, a single prime will be used to denote the
quantities referred to the new coordinate system. The
transform Inatrix [R7 relating these two coordinate
systems by the matrix equation

II. THEORY

In the present paper, Brugger's definition of the
third-order elastic constants' is used. Kith his definition,
the strain energy p in a cubic lattice can be expressed.
in terms of the strain components as

2C11(rtll +'622 +3)38 )+C12 (rtll'f22+'g223138+31833tll)

+C44('912 +'921 +'928 +3)82 +'981 +rt18 )
+6CIII('gll +3)22 +'988 )
+ SC112{'gll (3i22+rt33)+'rt22 ('$33+3111)+'QSS (3111+3)22)}

+C123'g 11'g22rt 88+C456 ('g 12+rt 21) (3)28+ 'g 82) ('f 31+'918)

+C144{3)11('f28+3)32 )+3)22(rt18 +rt 81 )+3i33(3)12 +r)21 )}
+C166{(st11+rt22) ('912 +3)21 )+ (3)22+ 988) ('928 +rt82 )

+(n +n )(n P+n ')} (1)

where g;, are the components of the Lagrangian strain
which are defined in the following matrix equation':

The relation between the strains in the two coordinate
system is

[~7=[&7[~'7[&7 «[~'7=[K[n7[K (4)

As in Birch's analysis, "let us consider a deformation
in which the fLnal position (xl',xs', xS') of a particle
initially at (431',452', 433') is given by

L*'7=[~'7[~'7+[U'(a', &)7 (5)

where [x'7, [45'7, and [U'(a', t)7 are column vectors
standing, respectively for the Anal, the initial position,
and an infinitesimal displacement which is a general
function of the initial position a' and the time t, and
[A'7 is a 3&(3 matrix describing a finite-homogeneous
deformation due to an initial stress. From (5), the
Jacobian

4) (gl', XS',XS')/8 (al', a2', aS' )
and hence the Lagrangian strain q can be calculated.

If one takes into account the fact that the three
cubic axes are equivalent with respect to the [1117
direction, then for a uniaxial stress in the [1117direc-
tion, the sufBxes 1, 2, and 3 in g;; are interchangeable,
i.e., 3)II rt22 3)83 and 2)»=3)28=rt», and from (4) one
CaII SIIOW 2)ll =2)11+2rtlsp 3)22 ='933 'gll 3)12 aIld 3)12

$23 $3$ —0. Hence, the 1', 2', and 3' axes form a set
of principal axes with the strain being isotropic in the
plane normal to j.' axis, and thus the matrix 2' is
diagonal with 322'=333'. The Lagrangian strain q; (')

resulting from this initial uniaxial stress are

2)II'Is'= 2 (~II"—1)—=~I,
3122 rt38 2 (~ 22

—1)—=422 I (6)
p; &'&=0 for i/j.

In the finite-deformation theory, the stress and the
strain are related by~

[&'7= (p*/po) [~'7[6)4'(3) (3)'))/4)3)'7[~'7 (&)

where [T'7 is the stress tensor, ps and p, are the initial
and the 6nal density, respectively.

For an initial stress t (t positive fo—r compression)
in the [1117direction, the stress tensor [P7 is

0 0'
0 0 0
0 0 0.

~' =[&7 x

is found to be

1/W3 1/v3 1/K3
[Z7= —1/v2 1/v2 0

.—1/Q6- 1/g6 2/g6.
(3)

— t = —', (Cii+ 2C12) t)+-8'C443
(1+2& )I/2

+[(1/1g)C111+SC112+2C128y

+ (8/9) C45682+ 28C1448 (Qi+422)

+8C1663(421+ct 2) 1

' K. Brugger, Phys. Rev. 133, A1611 (1964).
T. D. Murnaghan, E3333te Deformat3o33 of o33 Elastic Solid

(John Wiley tk Sons, Inc. , New York, 1951).' F. Birch, Phys. Rev. 71, 809 (1947).
"The relation between Birch's C456 and Brugger's C456 should

be C456 '= ~C456 ', not 8 as obtained from Eq. (13) in Brugger's
paper (Ref. 8); if the C458 term in the expression of the strain
energy is C433(3133'f333/33+31333/333133) as it is in Birch s paper (Ref. 10).

0=, (Cii+ 2Cis) 8—-', C44h

+[(1/18)clil+ Sc112+sc1237tl

(4/9)C4563 8 C144342 2 8 C1663422 3

The values n1 and e2 of the Lagrangian strain q11'&"

and p»'~0& can be found from the two linearly inde-
pendent equations in (7):

1+2n2
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For a wave propagating along [110]direction (i.e.,
2' axis) under a uniaxial compression applied in [111)
direction (1' axis), the compressional wave is still a pure
mode, since such a wave was originally a pure mode,
and under this compression the stress does not alter the
direction of the particle displacement. Hence, one may
consider the following wave motion

(8)8=—nl+2n2, 8=nl —n2 ~

U2 —82 exp[&(4a&—k2 x2 )],
Ug'= U3'-—0.

The Poisson ratio 0- for the strain perpendicular to
[111]direction with the stress in [111]direction is
—(n2/nl) which for the present approximation can be
obtained from (8) by neglecting the second- and higher-
order terms of n;, since 0. will appear in the first-order
terms of n; in the expressions of poU' to be shown later.
The result is then

o.= (Cll +2C12'—2C44')/2(C11'+2C12'+C44') . (9)

In the last expression, a superscript g is added to
emphasize that isothermal elastic constants should be
used for the initial strain, since the process for the
initial compression is an isothermal one.

For the infinitesimal part of the deformation [U']
in (5), consider a travelling plane wave with a wave
vector k' in the initially deformed medium, the i'th
component can be expressed as

U =8 exp[i(4at —k' X')) (10)

where B is the i'th component of the amplitude and

[*']=[A'][43'].

For a plane wave propagating along a general direc-
tion, the displacement vector B' may be neither
parallel nor normal to the wave vector. From the
matrix [A'] and the displacement U', one can calculate
the Jacobian, the Lagrangian strain p, [Eq. (2)], and
the stress tensor [T'] [Eq. (7)].

Substituing this [T'] into the equations of motion
in an elastic medium

Substituting this into (11), one obtains one of the
eigenvalues of paV2 [shown below in Eq. (14)].

The remaining operator which is now a 2 )& 2 matrix
can easily be diagonalized to the zeroth order of n, by
applying a unitary transformation with the unitary
transform matrix constructed from the normalized
eigenvectors of the unperturbed operator. For small
strains such that the second-order terms of e; can be
neglected in the expression for p~U, the eigenvalues are
readily found from the diagonal terms [see Eqs. (15)
and (16)].

For waves propagating along [112] direction the
shear wave polarized in [110]direction is still a pure
mode under a compression in [111]direction. The
calculation resembles that for waves propagating along
[110]direction but is much more complicated. The ex-
pressions for paV2 are listed below [Eqs. (17)—(19)].
For convenience, the expressions of poU' under hydro-
static pressure and under [110]compression are also
listed [Eqs. (20)—(26)].

(A) Uniaxial Comyression in [111) Direction

For compressional wave in [110]:
Q;4lT; /Bx =p, U

and neglecting the second- and the higher order terms
of U', one obtains a set of three equations for B~', B2',
and B3 which can be written in the following matrix
form For shear wa,ve in [110]polarized in [110]:

(11)
poV22= 2 (Cll+C12+2C44)+( —2(C11+C12+2C44)o

+—', (Clll+ 2C112) (1—2o.)——', (Clll —C128) (1—2a.)

+-,'C144 (1—2o )—-', C166(1+4a ))nl ~ (14)

~B '
l ~B1
j ~

1

LH] .B3'. B3'.
(12) paV2ll 2(Cll C12)+(-'8(C11—C12)(1—2o)

+6(Clll C128)(1 2&))421 ~ (15)

where U is the phase velocity of a sound wave, and

V'=46'/
I

k' I'

[H] is a 3&(3 matrix whose elements contain the
second- and third-order elastic constants and the strains
ny and n2.

For small strains one can consider the terms in [H]
containing 424 (3=1, 2) to be the perturbing terms. The
problem is then to diagonalize [H] to the zeroth order
of n;. The calculation is in general quite tedious but
much simpli6ed if pure modes exist.

For shear wave in [110]polarized in [001]:

paV2, 22= C44+-,'(2C44(1 —5o.)—2C466(1+o)

+ C144(1—2a')+ 2C166 (1—2o.))nl. (16)

For shear wave in [112]polarized in [110]:

POV32 6 (Cll C12+4C44)+ ( 8 (Cll C12+4C44)&

+ (1/18) (Clll Cl28) (1—2o.)—(4/9) C466 (1+a)
+8C144 8C166a)421 (17)
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For quasicompressional wave in [112j:
po Vss'= 1'2 (&Cll+C12+8C44+&)

v2
+ ssll (Cll Cls+C44) (1 0) $»$12(C11 C12 2C44) (1—3o)—2$12 (C»+C»+2C44)o.

3

+6$12'(Clll+2C112) (1—2o)+
~

0$11'——slls12 —6$12'
~
(Cll] C126) (1—2o)+ —(2/9)sll'—

9 9v2

XC466(1+o)+ —ssll (1+2o)— $11$12(r+2$12'(1—2o) C144
3

For quasishear wave in [112$polarized in [111$:
pOV31 12 (3C11+C12+8C44 +)

+ 0$112+ $11$12(1—~)—0$12'(1+4 ) C166 ~1. (18)
3v2

v2
+ OS12 (Cll C12+C44) (1—o )+—s11$12 (Cll —C12—2C44) (1—30 )—2$11 (Cll+C12+ 2C44)o'

3

K2
+-',s„'(C„,+2C„O (1—2 ) j(-',s„'+—s„s„—',s„'

~
(C„s—C„,) (1—2 )

9

8
+ —(2/9)s12'+ sllsls C466(1+0)+ —-', s12'(1+2o)+ $11$12o+sslp(1—2o) C144

9 3

+ 6$12 S11$12(1 o) 0$11 (1+40) C166 Gl ~ (19)
3v2

Throughout, n~ is the strain in the direction of the
stress, [111j,o is the Poisson ratio —as/421 whereas is
the strain in any direction perpendicular to the [111$
direction. En addition,

1 1
$11 (Cll C12 2C44) (19a)

X 3&2

1
sls —— ,'2 (C»+SC1—2+—4—C44+E), (19b)

where

E={(1/144) (Cll+SC12+4C44+ 8)2

+ (1/18) (Cll —C12—2C44)'j' ' (19c)
~={(Cll+5C12+4C44) +6 (Cll C12 2C44)'j'". (19d)

(B) Hydrostatic Pressure

For compressional wave in [100)12—'4:

POV1 =Cll+ {Cll+2C12 +4C11+Clll+ 2C112jrr . (20)
"Bhagavantam and Chelam (B-C) (Ref. 13) obtained expres-

sions for the effective-elastic constants which were different from
those obtained by Birch (Ref. 10).Two points in (B-C) derivation
are subject to question. After corrections were made on them
(Ref. 14) the (B-C) expressions agreed with those of Birch.

"S.Bhagavatam and E. V. Chelam, Proc. Indian Acad. Sci.
2SA, 1 (1960).

"Z. P. Chang, Ph.D. thesis, Rensselaer Polytechnic Institute,
Troy, New York, 1964 (unpublished).

For compressional wave in [110j:
POV2 2 (Cll+C12+ 2C44)

+{Cl1 +2C12 +2 (Cl1+C12+2C44)

+ (C ill+ 2C112) 2 (C ill C126)

+C144+2C166j41. (21)

For shear wave in [100$ polarized in direction
J [100]:
pOVO'=C44+{Cll'+2C12'+4C44+C144+2C166jn. (22)

For shear wave in [110j polarized in [110j:
POV4 2 (Cll C12)+{Cll +2C12

+2 (Cll —C12)+-', (Clll —C126) j41 . (23)

For shear wave in [110$polarized, in [0017:

POVO =C44+ {C»+2C12 +4C44+C144+ 2C166jrr ~ (24)

(C} Uniaxiai Compression in L110j Direction

For compressionais "wave in [001j:
pOV'= Cll+ {—4o 001C11—4r001Clll

+ (1 o 110)C112jrrl ~ (25}
"A. Seeger and O. Buck, Z. Naturforsch. 15a, 1056 (1960)ss
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For shear wave in t 110)polarized in L110):
0 110

pe V'=, (C»—C12)+ (1—~»o) (Cll —C12)+

TABLE I. Temperature dependence of velocity of sound waves
in NaCl and KCl together with the values of velocity. (All values
are at 25'C).

1—&lip+2&per &ooi
C112+ C123 err, (26)

2

where n1 is the strain in the d.irection of the stress,
t j10) 4rppl and o lip are the Poisson ratios for strains in
$001) and L110) directions, respectively, under a stress
in (110)direction. Explicit expressions for these quan-
tities follow:

Direction of
propagation

XaCl
iii
110
110
110
112
ii2
112

po= 2.162 g/cm'
iii
110
110
001
112
iii
110

—586—827—1477—177—903—988—659

Slope of vel.
Direction of versus temp.
polarization (10 ' cm/44sec 'C)

Velocity
(cm/psec)

0.44163
0.45058
0.29043
0.24298
0.45171
0.27355
0.25970

&001

(7110

4C12'C44'
(27a)

Cll (Cll +C12'+ 2C44') —2 (C12 )'

Cll Cll +C12 2C44 ) 2 C12( ( )
(27b)

Cll'(Cll'+C12'+2C44') —2 (C12')'

By measuring the velocities of sound wave under
stress, one can evaluate the coefficients of 0. or e1 in
Eqs. (14)—(26) and solve for the third-order elastic
constants.

IH. MATEMALS AND APPARATUS

XaCl and KCl single crystals in the form of 1-in.
cubes and with faces oriented approximately in the
$111), L110), and $112) crystallographic directions
were supplied by the Harshaw Chemical Company.
The orientation of the crystals was checked by the
Laue back-reQection technique and the faces of the
crystals were then ground to within &~' of the exact
orientation. After one face was oriented, the opposite
face was then ground parallel to the 6rst one to within
0.00003 in. The dimensions of the specimen were
measured with a supermicrometer (Pratt and Whitney)
with a precision of 10@in.

Ten-Mc/sec compressional and shear waves were
generated, respectively, by 8-in. I-cut and F-cut quartz
transducers with an active circular area of ~ in. in
diameter. The transducers were bonded to the specimen
by phenyl salicylate ("salol").

Velocity measurements were made with a pulsed
ultrasonic interferometer" constructed by Colvin. "A
brief description of this apparatus is given below.

Two pulses with a Rat top of duration of 1 @sec are
gated out from a 10 Mc/sec continuous sinusoidal wave.
The time separation between the two pulses is variable
from 3 to 10@sec on one range and 4 to 40 on another
range. The pulse height of the second pulse can be
adjusted from 0.5 to 1.0 as large as the first one. The
echoes of the pulses are picked up with the same
transducer and displayed on an oscilloscope. For the
appropriate time separation and ratio of pulse height,

'" J. Williams and J. Lamb, J. Acoust. Soc. Am. 30, 308 (1958).' A. D. Colvin, Master's thesis, Rensselaer Polytechnic Insti-
tute, Troy, New. York, 1959 (unpublished).

KCl
111
iii
iii
110
110
110
ij2
112
112

pp ——1.986 g/cm'
111
110
112
110
110
001
112
111
110

—517—1116—1122—834—1453—100—1045—805—701

0.36679
0.25977
0.25941
0.39014
0.29106
0.17828
0.39809
0.24656
0.22408

cancellation between the second echo of the first pulse
and the first echo of the second pulse occurs at discrete
frequencies. From the values of these frequencies nearest
to the resonant frequency of the quartz transducer one
can obtain the acoustic velocities. '~ According to the
procedure of Williams and Lamb" "one includes by an
iterative procedure a correction for the phase change
arising at the quartz-specimen interface. Additional
corrections for changes in transit path because of stress
and temperature are also included.

The velocities measured in the room-temperature
range were normalized to 25'C by the following
equation:

V= Vr —42,1(T—25), (2g)

TABLE IX. Adiabatic second-order elastic constants of NaCI and
KCI crystals at 25'C (in units of 10" dyn/cm').

Cj1

NaCl 0.4934
KCl 0.4076

C12

0.1293
0.0705

C44

0.1278
0.0632

where 0. ,& was the slope of the velocity versus tempera-
ture graph determined in the preliminary measurements
for various modes in the room-temperature range under
atmospheric pressure.

A uniaxial compression was applied to the sample
through a cylindrical movable piston in a cylinder
made of hard steel. The surfaces of the piston and the
bottom of cylinder between which the samples were
compressed were carefully surfaced and kept parallel.
The stress was applied to the piston through a hand-
operated mechanical press. The cage of the press was
surrounded by foam insulators to reduce the tempera-
ture Quctuation, and a Cu-constantan thermocouple
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TAnLE III. Slopes of poV'-versus-( —n&) graphs under uniaxial compression (( L111).

Mode
Direction Direction
of propa- of polari-

gation zation
Measured

values
Weighted
average

Measured
values

Slope of poV' versus (—u&) (10"dyn/cm')
Xacl KCl

Weighted
average

V22

V2tl

V2$2

U33

V31

110

110

110

112

112

112

110

110

001

110

112

0.4965a

0.6839
0.6505

0.3741
0.3698

0.1792
0.1641
0.1538

0.3137~
0.3420

0.9482
0.8537

0.4965
&0.0091

0.6558
%0.0087

0.3724
&0.0029

0.1736
&0.0049

0.3234
&0.0067

0.8706
%0.0303

0.4926
0.3938
0.48748

0.3143
(R11)
0.3645
(R12 Up)
0.3281
(R12 down)
0.3442
(R13 Up)
0.3025
(ff13 down)

0.1830

0.1231

0.4367

0.3354

0.4485
&0.0231

0.3247
%0.0076

0.1830
&0.0010

0.1231
&0.0023

0.4367
%0.0048

0.3354
%0.0032

a Velocity measurements were made with cancellation between the third echo of the first pulse against the filrst echo of the second pulse In, order toobtain sharper cancellation.

together with a Reeds and Northrup K-3 potentiometer
were used to measure the temperature to 0.01'C.

The strain in the direction of the applied stress was
measured with SR-4 strain gauges of type A-7 (Baldwin-
Lima-Hamilton Corporation). Two pairs of strain gauges
were bonded on the opposite (110}faces of the speci-
mens. The two gauges on the same side were connected
in series to give an average strain of that side. The
readings of the strain on both sides were averaged to
give the average strain of the specimen. In a typical run,
the difference between the strains on both sides was
less than 10% for a maximum strain of 70X10 '. Each
pair of the strain gauges on the opposite faces of the
sample forms an arm of the two ac bridges in the two-
channel recorder.

A dummy sample with the same type of strain gauges
and the same connections was used as a control. Each
pair of strain gauges on this dummy forms the other
arm in an ac bridge, and balances the corresponding
pair of gauges on the test specimen. The dummy sample
was k.ept a,t the same temperature as the specimen to
eliminate the effect of temperature change on the read-
ing of the strain.

IV. MEASUREMENTS

The temperature dependence of the velocities for
various modes in Nacl and KCl obtained in preliminary
measurements together with the values of velocity at
X=25'C are listed in Table I. In the correction for
the thermal expansion, the following coefficients of

TABLE IV. Slopes of poV-versus-( —a&) graphs for NaCI
under uniaxial compression ~j $110). T&sLE V. Slopes of poV -versus-( —n) graphs under hydrostatic

pressure (calculated from Lazarus' data).

Mode
Direction Direction
of propa- of polari-

gation zation

Slope of p0V2 versus
(—oi) graph

(10'2 dyn/cm')
Measured Weighted

values average

Mode
Direction Direction
of propa- of polari-

gation zation

Slope of poV' versus (—u) graph
(10"dyn/cm')

NaCl KCI
U33'

V2&1'

001

110 110

—1.627—1.467

+1.338
1.068
1.371
1.199

—1.564
~0.053

+1.218
~0.052

V1
U2
V3
V4
U5

100 100
110 110
100 J 100
110 110
110 001

+7.2838+0.0730
+3.7832&0.0813—0.1597~0.0011
+2.8361~0.0093—0.1956'

& From the first two measurements.

+5.1973&0.0514
+2.5786a0.0417—0 4195WO 0020
+2.4683~0.0134—0.4325a0.0025
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TABLE VI. Values of s11', 2s11s12, s12' and the Poisson ratios 0, 0001, and 0110.

Expressions
Calculated value

NaCl KCl

S11
2S11$12

$12

Direction Direction
of stress of strain

(19a) to (19d)

C11'+2C12'—2C44'

2 (C11'+2C12'+C44')

0.00843—0.18287
0.99157

0.271

0.06895—0.50674
0.93105

0.337

0 110

0 001

110

110

110

001

C»'(C»'+ C&s' 2C—44') 2(—C&s')'

C»'(C»'+ Ca'+2C44') —2(Cn')'

4C12'C44'

CiP (C»'+ C&s'+2C44') —2 (Cvg') '

0.155

0.357

0.068

0.554

TABLE VII. Linear combinations of C;;z for NaCl. The equations are to be read horizontally,
e.g. , for V2|,2, 0.8474C456 —0.1526C144—0.3053C166=0.3421.

V251:
V2~2:
V32 .'
U33:
V31'.

Under L111$compression:
C111+2C112
—0.1526

0
0
0—0.1513—0.0013

C111 C123

+0.0763—0.0763
0—0.0254

+0.0687—0.0432

C466

0
0

+0.8474
+0.5649—0.0707
+0.3531

C144
—0.1526

0—0.1526—0.6667—0.1704
+0.5318

C166

+1.3895
0—0.3053

+0.3614
+1.4350—0.7122

Slope —2nd-order terms
+0.0204~0.0110 (29)
+0.7670~0.0091 (30)
+0.3421~0.0033 (31)
+0.0154~0.0056 (32)—0.1458~0.0112 (33)
+1.1027~0.0321 (34)

Under L110$ compression:
C111

+0.1551—0.1607

I ~V33:I.
V2$1 ~

U1.
V2'.
V3.'

V4,
U6.

Under hydrostatic pressure
C111+2C112

—1—1
0
0
0

C112
—0.6427
+0.2382

(calculated from

C111 C123

0

0

C123

0—0.0775

Lazarus' data):
C144

0—1—1
0—1

C466

0
0

C144

0
0

C166

0—2—2
0—2

C166 = Slope —2nd-order terms
0 —1.869~0.053 (35)
0 +1.452~0.052 (36)

Slope —2nd-order terms
+9.9668+0.0730 (37)
+6.2460~0.0813 (38)
+1.0608~0.0011 {39)
+4.2738~0.0093 (40)
+1.025 (41)

TABLE VIII. Linear combinations of C;;& for KC1.

V22:
V2$1:
V2&2'.

V32:
V33.'

V31'

Under L1111compression:
C111+2C112 Cll1 C123
—0.1084 +0.0542

0 —0.0542
0 0
0 —0.0181—0.1009 +0.0350—0.0075 —0.0170

C456

0
0

+0.8916
+0.5944—0.1925
+0.4897

C144
—0.1084

0—0.1084—0.6667—0.1430
+0.5929

C166

+1.5664
0—0.2168

+0.4499
+1.5707—0.6710

Slope —2nd-order terms
+0.0405&0.0231 (29')
+0.3978&0.0076 (30')
+0.1540~0.0010 {31')—0.0096~0.0023 (32')
+0.0688~0.0048 (33')
+0.4722~0.0032 (34')

V1'.
V2.'
V3'.
V4 '.

V6'.

Under hydrostatic pressure

C111+2C112
—1—1

0
0
0

(calculated from

C111 C123

0

0
1

0

Lazarus's data):
C144

0—1—1
0

C166

0—2—2
0—2

Slope —2nd-order terms
+7.3477~0.0514 (37')
+4.3079~0.0417 (38')
+0.3535&0.0020 (39')
+3.6625~0.0134 (40')
+0.3405&0.0025 (41')
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linea, r thermal expansion obtained from Henglein's
mea, surements' were used:

NaC1 KCl
(115/3) X10 '/'C (110/3)X10 '/'C

The adiabatic second-order elastic constants at 25'C
are determined from the ppV' of the pure modes using
the method of least squa, res. Their values are shown in
Table II. Except C~2 of NaCl, these values a,gree with
Lazarus' values to within ha, lf a percent. For C~2 the
difference is about 6%.

The velocities of ultrasonic waves propagating along
the L110) and [112]directions under a uniaxial com-
pression in L'111) were measured as functions of strain.
After corrections had been made for the deformation
and the thermal expansion, and the velocities were
normalized to 25'C using Eq. (28), the values of psV'
were plotted against the strain (—u~) in the direction
of the stress. Several typical graphs of such plots are
shown in Figs. 1—3 for NaCl and KC1. In these meas-
urements, data were taken during the process of in-
creasing and decreasing stress, as indicated, respectively,
by circles and crosses in the graphs. The curves of ppV'

versus strain are quite linear. One of the runs shows the
effect of plastic deformation (Fig. 3).

The KC1 sample was compressed to a strain of
75&(10 ' during the velocity measurement, the load
was next reduced to the weight of the piston and then
increased again. After a strain of about 90&(10 '
drastic deformation occurred, and the calculated ve-
locity drops as no account was taken of the change of
the path 'length with pla, stic deformation. After the
specimen"'. ,was unloaded, the residual plastic strain was

45&&10 '. The strain wa, s then recalculated excluding
the permanent set, and the thickness remeasured after
the transducers were removed. The ppV' as function of
the recalculated strain is shown on the same graph
/curve (C)]. The weighted average of the slope before
the plastic deformation is 0.3384 with a standard devia-
tion 0- of 0.0105.The slope after the plastic deformation
is 0.3025. Since this value is beyond the lower 30- limit,
0.3069, the difference in the slope before and after the
plastic deformation appears to be significant. The effect
is probably caused by the dislocations generated in
plastic deformation. The effect of dislocations on the
third-order elastic constants has also been observed by
Hikata et ul. ,

"in the harmonic generation of ultrasonic
waves in aluminum.

It is temping to conclude that the lower of ppV'

curve by plastic deformation is also a dislocation effect
but some systematic error could also have been intro-
duced in the length measurement after removing the
transducer and bonding material.

A summary of the slopes of ps V'-versus-( —u~) graphs
for various modes of propagation in NaCl and KC1

"F.A. Henglein, Z. Phys. Chem. 115, 91 (1925).
» A. Hikata, 3.B. Chick, and C. Elbaum, Appl. Phys. Letters

3, 195 (1M3).

under uniaxial compression in L111)direction is shown
in Table III. For the uniaxis. l compression in L110], the
results for NaCl are shown in Table IV; no rneasure-
ments were made on KCl under such a compression.

Lazarus has measured the velocities of sound waves
in NaC1 and KC1 under hydrostatic pressure. From his
data, ' the quantity ppV' can be calculated and plotted
against the strain (—u) The slopes of ps V' versus (—u)
thus obtained are listed in Table V.

V. RESULTS AND DISCUSSION

A. The Linear Combinations of the Third-Order
Elastic Constants

From the adiabatic (Table I) and isothermal (Ap-
pendix) second-order elastic constants, the values of s]$,
$jg, 0, 0 gyp, 0 ppy ca,n be calculated. They a,re listed in
Table VI to be substituted in Eqs. (14)—(26). By
equating the coefficients of (—u&) in these equations to
the slopes of psV'-versus-( —uq) graphs, one obtains sets
of linea, r simultaneous equations for the determination
of the third-order elastic constants. These coefFicients
for these equations are shown in Table VII for NaCl
LEqs. (29)—(41)] and Table VIII for KC1 LEqs. (29')—
(41'))

Before solving these equations, we shall check their
internal consistency.

B. Internal Check among the Measurements
under $111]Compression

From the coefficients of (—u&) in the Eqs. (14)-(19),
one can show that (33) and (34) can be expressed in
terms of Eqs. (29) to (32) jTable VII) a.s

( $11$12

l
Eq. (33)= (29)Xsos'+ (30)X i

sgP—

( 2$y1$l s

+ (31)X
~
sip+ + (32)

K2

1
$11 $11$12 y

4'2

( s1ls lsd
Eq. (34)= (29)XsiP+(30) Xi »s'+

vz j
2$qqsq2

+(31)X(s s'— +(32)

( 1

l
X

~
sls + Susie ~ (43)

Hence there are two internal checks. Same relation-
ships also hold for Eqs. (29') to (34') LTable VIII)
for KCl.
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For the measurements on NaC1, the right side of
(42) is 0.0341+0.0103 while the left side is —0.1458
&0.0067; the right side of (43) is 1.076&0.0166 while
the left side is 1.103&0.0303. For the measurements on
KCl, the right side of (42) is 0.0908&0.0309 while the
left side is 0.0688&0.0048; the right side of (43) is
0.5111+0.0100 while the left side is 0.4722+0.0032.

It can be seen from these internal checks that the
measurements on KC1 under [111j compression a,re
reasonably consistent. The difference is within the
limit of three times the standard deviation. For NaC1
one of the internal checks (42) is poorly satisfied and
it is thought that the blame lies with the V22 measure-
ment. In this Ineasurement the output impedance of
the gate circuit and the cable were improperly matched
and hence the input signal to the transducer was very
small. This mismatching was remedied for the other
subsequent measurements and a considerably larger S/iV
ratio was obtained which enabled more accurate
measurements.

C. Internal Check ~mong the Measurements
under Hydrostatic Pressure

Among the five equations (37) to (41), only three are
linearly independent. Hence there are two internal
checks. It can be shown that

Eq. (38)=Eq. (37)—Eq. (40)

+[Eq. (39) or (41)g. (44)

Same relationship also holds for Eqs. (37') to (41')
for KC1.

From Lazarus' data for NaC1 (Table VII), the right
side of (44) using (39) is 6.754&0.083, or using (41)
is 6.719, while the left side is 6.246&0.081; for KC1
(Table VIII), the right side using (39) is 4.039&0.066,
or using (41) is 4.026+0.067, while the left side is
4.308&0.042. The discrepancies are all within the limit
of three times the standard deviation.

D. Determination of the Five Third-Order
Elastic Constants

From the measurements under [111j compression
and those under hydrostatic pressure by Lazarus, five
third-order elastic constants can be determined. A pre-
liminary question is how to weight these two sets of
equations.

For NaCl the averaged probable error in the data
for the [111jcomPression (Table III) is about sr of
that in the data for the hydrostatic compression (Table
IV). For KC1 it is about s. Hence, in solving for the
elastic constants, we shall weight the set of equations
for NaC1 under [111jcompression by 4 against the set
under the hydrostatic pressure. For KCl, the corre-
sponding set will be weighted by 3.

The values of the five third-order elastic constants

Tzsz.E IX. Values of the 6ve third-order elastic constants for
NaCI and KCI at 25'C (10"dyn/crn').

C111++112 ~111 ~123 C456 C144 C166

NaCl —9.91 —9.10 0.271 0.257 —0.611
&0.04 &0.08 &0.014 &0.016 a0.007

KCl —7.44 —7.15 0.118 0.127 —0.245
~0.01 &0.02 &0.004 &0.005 &0.002

determine from these weighted equations using the
method of least squares are shown in Table IX.

For the purpose of comparison, calculations in which
the set of equa, tions under [111j compression was
weighted by 1 and 10 were also made. The largest shifts
were about 8% in Ciii —Crss for NaC1 and 18% in Ct~4
for KCl. For the other constants, the shifts were less
than 6'%%uo.

From the values of C456 and C~44, it can be seen that
one of the Cauchy relations for third-order constants,
C456 ——C~44, is satis6ed to within the probable error for
both NaCl and KCl crystals at room temperature.

E. Evaluation of the Six Third-Order
Elastic Constants

Since from the measurements under the [111jand
hydrostatic compressions only Ave third-order elastic
constants can be determined, an effort was made to
obtain other independent equations by making measure-
ments under a uniaxial compression applied in the [110j
direction.

Unfortunately, when such a compression is applied,
the resolved shear stress in the easy-slip direction of
dislocations in the slip planes does not vanish, and
plastic deformation sets in easily and affects the meas-
urernents. Moreover, it can be seen from Eqs. (35) and
(36) for the [110jcompression that the numbers on the
right side are much larger than the coefficients on the
left side. A slight fluctuation in the measurement affects
the anal result of the six third-order elastic constants
very much. For example, on the right side of Eq. (36)
a change from 1.45 to 1.30 (which is within the limit
of three times the standard deviation for measurements
under this compression) causes the resulting Crrs to
change from 0.29 to —0.50 and the resulting C~23 from—0.413 to +0.014. Hence the data obtained from the
[110]compression were not used in the evaluation of
the third-order elastic constants. However, they can
serve as a check. to the evaluation by another method
as will be described below.

Since the Cauchy relation C456=C&44 is satisled to
within the probable error we shall assume the validity
of the other two Cauchy relations C~23——C456 and C~~2

=C~66, although this assumption is open to some ques-
tion because, as Nran'yan" has shown, only the relation

~A. A. Nran'yan, Fix. Tverd. Tela 5, 1B(1963) /English'
transl. :Soviet Phys. —Solid State 5, 129 (1964).g
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TABLE X. Comparison between experimental and theoretical
values of 6';;2 and their combinations at 25'C (in Brugger'2
definition of C;;2 and in units of 10" dyn/cm2). Parenthetical
values are the ones estimated by assuming the Cauchy relations.

NaCI-type alkali halide crystals. He used the Born-
Mayer model in which the potential energy between two
particles was represented by the following expression:

C111
C112
C1~3
C111+2C112
Clll C123
|-"456

C144
Ci66

(—8.80)
(—0.571)

(0.284)—9.91—9.10
0.271
0.257—0.611

—5.45—0.688
0.269—6.83—5.72
0.325
0.325—0.63

NaCl
Kxpt. Theoret.

(—7.01)
(—0.224)

(0.133)—7.44—7.15
0.118
0.127—0,245

—5.07—0.458
0.148—5.99—5.22
0.207
0.207—0.40

KCl
Kxpt. Theoret.

ttt0 —(+) e2/g ttt0+ g ezp ( g ttt0/b )

where 8„„ is the distance between the equilibrium
positions of the pth particle in the mth cell and the vth
particle in the 0th cell in the deformed lattice, e is
the electronic charge, b„„and B„„are two constants
describing the repulsion and

t+lpp=+ Wlle11 f4= it

= —when @WE.

C456=C144 can be expected to hold at all temperatures
even for a central force model. The other two equalities
hold only at O'K. However, we shall use these relations
to estimate the values of Clll, C112, and C123 at room
temperature. From. the results in Table IX,

Cl11+2C112

Cll I C123

If we assume

(For NaCl) (For KCl)
—9.91 —7.44 (45)

—7.15 . (46)

+122 2 (C466+C144)

C112 C166

0.264

—0.611

0.123 (47)

—0.245, (48)

then we can check the consistency of these equations.
The relation relating these four equations is

Eq (45)—2X (48) =Eq. (46)+Eq (47). (49)

For NaCl, the left side of (49) is —8.69 while the right
side is —8.84; for KCl, the left side is —6.95 while the
right side is —7.03. Hence the introduction of the other
two Cauchy relations does not cause appreciable incon-
sistency among these equations. Using the method of
least squares, one can obtain the estimated values of
C111, C112, and C122 from the four equations (45) to
(48). The results are shown parenthetically in Table X.

Using these estimated values, one can check the re-
sults obtained from the L110j compression in NaCl.
For V22' one obtains —1.00 for the left side of Eq. (35)
while the value on the right side obtained through the
experiment is —1.87. For t/'2t, l', one obtains 1.25 for the
left side of Eq. (36) while the value on the right side is
1.45. Although the value for V2&l' are rather close, the
discrepancy in V33' is quite large. This indicates that the
internal consistency in the measurements under the
L110j compression is poor. This may be caused by the
dislocation contribution to the third-order elastic con-
stants and also the small range of strain which reduced
the accuracy of the measurements.

G. Comyarison arith Theory

While this experiment was underway, Nran'yan"
published values of the third-order elastic constants of

The first term represents the contribution from the
Coulomb interaction and the second represents the re-
pulsion of their electron shells.

The theoretical values of the third-order elastic con-
stants and their linear combinations at room tempera-
ture are listed in Table X together with the present
experimentally determined values. It is seen that the
sign and the order of magnitude of the theoretically
predicted values agree with experiment although quan-
titative agreement is lacking.

VI. CONCLUSIONS

The relations between the velocities of sound waves
propagating along the L110j and $112j directions in a
cubic lattice of high symmetry under a uniaxial com-
pression applied in L111j direction were derived The.
velocities of ultrasonic waves were measured at room
temperature as functions of the strain using the pulsed-
ultrasonic interference technique. From the measure-
ments under the I 111) compression and those under
hydrostatic pressure, the values of five combinations of
third-order elastic constants of NaCl and KCl at room
temperature were obtained. It is seen that the Cauchy
relation C456=C144 is satisfied to within the probable
error for both NaCI and KCl single crystals at room
temperature. By assuming the validity of the other two
Cauchy relations, one can estimate the values of C»1,
C»2, and C»3. The theoretical values predicted by
Xran'yan were compared with the experiment. Al-
though the sign and order of magnitude agree quite
well, some discrepancies exist between the values.
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APPENDIX: ADIABATIC AND ISOTHERMAL
SECOND-ORDER ELASTIC CONSTANTS

For in6nitesimal strains, it has been shown" that the
differences between the adiabatic and isothermal elastic
constants are

Cr t —Ct t'= Cts' —Cts'= &'(Crt+ 2Cts)'T/pC„,
C44 —C44~= 0,

where 0, is the linear thermal expansion coefficient, T is
"W. P. Mason, Piezoelectric Crystals and Their Application to

Ultrasoascsl(Van Nostrand Publishing Company, Princeton, New
Jersey, 1948).

the absolute temperature and C, is the specihc heat at
constant volume. For NaCl at T=300'K, +=38.3
X 10 / C, Ctt+2Cts=0. 752X10 dyn/cms and p
=2.162 g/cm'. With C„=0.811 J/g 'C, one obtains
Crt'=Crt'=0. 0142X10rs dyn/cm' From the values of
C,,' in Table II, one obtains C~~~= 0.4792, C~2~= 0.115k
(10" dyn/cm'). For KCl at T=300'K, n=36.7X10 '/
'C, Ctt+2Crs ——0.549X10" dyn/cm' and p= 1.986
g/cm'. With C,=0.644 J/g 'C, one obtains Crt —Crt
=0.0095X10" dyn/cm'. From the values of C,; in
Table II, one obtains Ctts ——0.3981, Ctss=0. 0610 (10"
dyn/cm').
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Anisotropic Dispersive Continuum Model for Lattice Dynamics of Solids.
III. Electrical and Thermal Resistivities of Sodium
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A calculation of the electrical and thermal resistivities of sodium is carried out within the free-electron
approximation and using the anisotropic-dispersive-continuum model for the lattice dynamics of the metal.
The temperature dependence of these resistivities is calculated and results are compared with experiments.
The calculated values of the resistivities exceed the experimental values at low temperatures, and at higher
temperature there are again discrepancies.

I. INTRODUCTION

~ 'HE problem of transport properties of metals,
which is very basic to the solid-state theory, is

by no means a straightforward one, and has attracted
regular attention since 1928, when Bloch' 6rst gave a
theory explaining the qualitative features of the elec-
trical resistivity of solids. Since alkali metals have the
simplest electronic structure they are the favorites of
the theorists. The most satisfactory approach to date
is that of Bardeen' and his results for the electrical
resistivity of monovalent metals are in reasonable
agreement with experiment. Bardeen assumes the elec-
tronic behavior to be free-electron-like and adopts the
Debye approximation for the phonon spectrum. In
recent years attempts have been made to improve
upon these approximations. Bailyn' was the first to
rid the theory of the Debye model and use a Born—von
Karman model for the dynamics of ions. He evaluated
the force constants from the elastic constants and
found the lattice waves to exhibit highly anisotropic
behavior. Darby and March4 have directly used the

*Present address: Physics Department, University of Califor-
nia, Riverside, California.' F. Bloch, Z. Physik. 52, 555 (1928).' J. Bardeen, Phys. Rev. 52, 688 (1937).' M. 3ailyn, Phys. Rev. 120, 381 (1960).

4 J. K. Darby and N. H. March, Proc. Phys. Soc. (London)
84, 591 (1964).

experimentally measured dispersion curves for phonons
in sodium to calculate the electrical resistivity and
Darby' has used the same approach to compute the
thermal resistivity of sodium. They have also accounted
for exchange and correlation. Collins and Ziman' have
shown a way to calculate the electron-phonon matrix
element for a distorted Fermi surface by using their
"12-cone approximation. " They, however, use the
Debye approximation for the phonons. Hasegawa~ has
amalgamated the procedures of Bailyn, and Collins and
Zirn. an. He takes account of both the phonon spectrum
and the electronic band structure. Bross and Holz'
have also reported a calculation of the electrical re-
sistivity of alkali metals taking into account both the
electronic structure and the phonon spectrum. Very
recently, Greene and Kohn' have made a theoretical
study of the electrical resistivity of solid and liquid
sodium which seems to be quite rigorous and convinc-
ing. Although the calculation is believed to incorporate
accurately many-body effects, umklapp processes,
time-dependent eGects, etc. , and they utilize the
inelastic-neutron-scattering data to obtain information
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