Cl NUCLEAR MAGNETIC RESONANCE

degree of 3p electron unpairing is roughly,
f3p=Aa/A3p- (27)

The atomic hyperfine constant 43, in Eq. (26) has the
expectation value,

A sp=4tmupynh{1/7*)3,=0.00488 cm™, (28)
where the factor (1/7%)s, is determined from the paper
of Barnes and Smith.*” The resultant fractional un-

37 R. G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).

A1

pairing is, f3,=0.10 which is approximately twice the
value estimated by Shulman and Wyluda for fz, in
CuF:-2H,0. However, the estimate of f3, for CuCly
-2H,0 may be sharply reduced by the contributions
to 4, of the Cl 2p electrons.
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Influence of the Peierls Potentials on the Reversible Stress-Strain
Relation for Dislocations

G. Arererp, R. H. CHAMBERS, AND T. E. FIRLE
General Atomic Division of General Dynamics Corporation, John Jay Hopkins Laboratory
for Pure and Applied Science, San Diego, California

The mechanical equation of state of kinked dislocations is considered. Contrary to dislocation strings,
which follow under the assumption of constant line tension a linear stress-strain relation for stresses
¢/G<b/3L (L=line length, b=Burgers vector, G=shear modulus, ¢=stress), one finds significant non-
linearities in the reversible stress-strain relation of kinked dislocations. The physical reason for the non-
linearities can be ascribed to the fact that, owing to the Peierls potentials, the energy of a dislocation increases
in multiples of the double-kink energy 2 (Wr=Lkink energy). A linear range, which is confined to stresses
¢/G< (107b/L) (sine+5kT/Gb®) (o=angle against close-packed direction, T =temperature), is followed by
a region with 9%¢/dc2<0 (e=strain). This region corresponds to the restricted motion of geometrical kinks.
After passing through an inflection point, which is roughly determined by ¢/G=a(b/L) (2W /Gb®) (a=nu-
merical factor between 1 and 2), a region with 9%/ds2>0 follows. It is caused by double-kink generation.
If the measuring time is too short for thermally activated double kink generation, the inflection point is
determined by the stress which is required for stress-assisted thermally activated double kink generation.
At T=0°K, the stress of the inflection point provides a measure for the Peierls stress. It is suggested that
evidence for the Peierls potentials can be established through a verification of the nonlinear-stress-strain
relation by the following experiments: (a) The restricted motion of geometric kinks should be detectable
beyond the stress for activating Frank-Read sources as a decrease of the modulus defect with increasing
stress amplitude. (b) The double-kink-generation peaks should, in undeformed material, rise out of the back-
ground in high-amplitude measurements. (c) The double-kink-generation peaks should be found in unde-
formed pure material by applying a static-bias stress. (d) In deformed material, high-amplitude oscillations

29 NOVEMBER 1965

should cause an increase of the peak height before the peak starts to shift to lower temperatures.

I. INTRODUCTION

HIS paper seeks to point out that the reversible
stress-strain relation of bowing dislocation seg-
ments, as a direct consequence of the Peierls potentials,
differs in a very characteristic manner from that of
dislocation segments in a material with vanishing
Peierls potentials. The Peierls potentials cause the
stress-strain relation to become intrinsically nonlinear
at relatively small stresses.! Consequently, the Peierls
stress will be the source of amplitude-dependent internal
friction and modulus defect.! A verification of the
experimental consequences predicted by the particular
stress-strain relation can be considered evidence for a
finite Peierls stress and will also allow the Peierls stress
to be measured directly.

1 G. Alefeld, J. Appl. Phys. 36, 2642 (1965).

Depending on the geometric kink density, one can
divide the problem of deriving the equation of state of
a kinked dislocation as follows: For low kink density
(=low geometric kink density and not too high tem-
peratures) the interaction of kinks can be ignored and
the strain as a function of stress is determined by
entropy changes of the kinks. The thermodynamic
treatment follows closely the analogy to a one-dimen-
sional gas. For high geometric kink density the change
of the interaction of the kinks with stress dominates
over entropy changes. Consequently, the stress-strain
relation is determined by the interaction law of kinks.
Between these two extremes extends a range in density
for which the thermodynamic problem is very similar
to that of real gases. A rigorous derivation of the
stress-strain relation, including double-kink generation,
is only possible for noninteracting kinks (Sec. II).
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Fre. 1. A kinked
dislocation line.

In Sec. III, we will derive the stress-strain relation
for dislocations with high geometric kink density.
We will first consider such low temperatures for which
double-kink generation for the experimentally given
time constant is possible only at high stresses. Subse-
quently we will include semiquantitatively double-kink
generation. The discussion summarizes experimental
consequences of the predicted nonlinear stress-strain
relation.

II. NONINTERACTING KINKS

For low kink density, the restoring force of a disloca-
tion is determined by the entropy of the kinks. In the
following we will first determine the kink density in an
external stress field ¢ by applying equilibrium thermo-
dynamics. We will then calculate the strain resulting
from sideward shifting of geometric and thermally
created kinks. The resulting equation e= e(c,7) (e=an-
elastic strain, 7'=temperature) is the stress-strain
relation.

A. The Kink Density

Eshelby? and Seeger® suggested that the thermo-
dynamics of double-kink generation can be treated
similar to the pair production of electrons and positrons
at high temperature.* We will apply the corresponding
formalism to double-kink generation in an external
stress field.

The condition for equilibrium between
kinks,” “negative kinks,” ‘‘phonons,”
tions,” is given by

urtpm=patppn, €9)

where ut=chemical potential of positive kinks, u~
=chemical potential of negative kinks, ug=chemical
potential of dislocation, and p,n= chemical potential of
phonons. The chemical potential of the phonons is
zero.t ut and u— are functions of the kink density »*
and #~. (nt=density of positive kinks, »~=density of
negative kinks.) For a positive kink, the potential
energy in an external stress field ¢ is Epot= abox~+const;
and for negative kinks, Epo= — abox-+const (e=1lattice
constant, x=position of kinks, &=Burgers vector).
Consequently, the condition for equilibrium is now
given by*:

“positive
and “disloca-

wttabox=Ch, 2)
@)

2 J, D. Eshelby, Proc. Roy. Soc. (London) A226, 222 (1962).

3 A. Seeger (private communication).

4L.D.Landau and E. M. Lifshitz, Statistical Physics (Pergamon
Press, Ltd., London, 1958).

w— abox= C2 .
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Cy and C, are constants in regard to position x. Com-
bining Egs. (1), (2), and (2'), we find

Ci+Ca=pa. ®3)

A second equation between C; and C, follows from the
condition that the difference between the total number
of positive and negative kinks must be equal to the
number of geometric kinks® (see Fig. 1):

/L o [#+(x)—#n~(x) Jdx=No=Lsinp/a. (4)

Eshelby? suggested, for the chemical potential of the
kinks, the use of the chemical potential of a one-
dimensional gas and the addition of the kink formation
energy Wg.

=kT W[ (N+/L") 2a??/ Mk T A+ Wi, (5)
pm=kT W[ (N~/L") Qat?/ Mk T) ]+ W, (5)

where N+ and N~=number of positive and negative
kinks, L’'=L cosp, where L=line length, and
p=average angle against close-packed direction, My
=kink mass, and %= Planck’s constant. Equations (5)
and (5) need some comments. Kinks do differ from a
one-dimensional gas insofar as kinks cannot interchange
their relative position. A certain kink has not the total
length L available, but only the length between its
neighbor kinks. The following partition function

Z(N,T,L)
T1=22 29=x3 L cosg
z1=0 /;z=o /;N=o

(Nt4N)! pr=tw
V+lN—!h(N++N* ‘/;u=>—w
)dpl- -~dpndx;- - -dxy  (6)

NY%NT pP

—E

=1 &

takes into account, in the integration limits, that kinks
cannot move past each other. An easy integration of
Eq. (6) yields

P [ QnM kT /LT (©")

N*TIN-

which is the same result as one gets by integrating the
partition function of the free one-dimensional gas

1 pr=-+0c0 L cosy L cose
Z=
N+ IN— [y (HN-) | prco

N

><eXp<—Z

=1

pé
—>dp1- < dpydxy - -day. (7)
k

By applying standard thermodynamic relations to
Eq. (6'), one arrives at Egs. (5) and (5).

5 A. D. Brailsford, Phys. Rev. 122, 778 (1961).
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Undissociated screw dislocations can generate double
kinks into several planes of the crystal. If there are no
geometrical kinks, this multiplicity can be taken into
account by a statistical weight factor g, which would
appear in Egs. (5) and (5) in the denominator under
the logarithm.

Finally, the chemical potential of the dislocation in
which the kinks are formed has to be determined. Seeger
and Schiller® calculated how the energy states w; of a
dislocation with one kink differ from those without a
kink. A dislocation with a kink loses one oscillatory
degree of freedom of the kink. ugq is given by twice the
difference in free energy F between an unkinked dis-
location and a kinked one, so that

pa=2(F1—F3)=—2kT In(Z:/Z,). @®

Zy and Z, are the partition functions of a dislocation
without and with one kink, Z;/Z, can be deducted from
the result of Seeger and Schiller® as

21/ Zo=kTa(EL MY Wi, 9)

where Ez=line tension ~Gb#%*/2, and M =mass of dis-
location per unit length =~mpb?* (p=density). We now
use Egs. (5) and (5’) in Eqgs. (2) and (2'), respectively,
and get the following result for the kink densities
wtr=N+*/L and w—=N-/L:

) o
wt(x)=cosgp e
27h? P

Uy

Wit abox— C1)
kT

abox

nsen(~), o

MkkT 3 I/V],;"—dbo’x—C2
#w—(x)=cos <p< > exp( — ——————)
2mh? kT

(abax) (10)
=55 ex . 4
©P\%r

In regard to their  dependence, Egs. (10) and (10’)
have the well-known form of the barometric height
distribution.® The product of #¢* and n¢~ contains the
sum C31+C2, which, owing to Eq. (3), can be replaced

by ua.
Consequently,

notng = (coste) (MkT/2wh?)
Xexp(— (2W—ua)/kT).

Using Egs. (8) and (9), we get

. . M kkT/ Winh )2 ( ZWk)
Ny g = COS €X _——
o  omt2 \ET2Ey ) O\ kT

A2 ( ZWk) (11,)
=—exp| — .
P kT

4a?

8 A. Seeger and P. Schiller, Acta Met. 10, 348 (1962).

(11)
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A? is dimensionless and stands for
A?=2r3(cos?o) (M 1/ Ma) Wi2/kTELa). (12)

With M=Ma/10, W;=0.1 eV, kT=10"2 eV, Era=6
eV, cosp=1, one finds 4?=1.

We now apply the integration [Eq. (4)] to Egs. (10)
and (10”) to get a second relation between #¢t and 4.
The straightforward integration yields

nogt[1—exp(—abo L cosp/kT)]
+no[1—exp(aboL cosp/kT)]=boL sing/kT. (13)

We combine Egs. (11’) and (13) and solve for ng*t
and 7¢~:

+_1 vo tane
4 2kT [1—exp(—vo/kT)]
l A? exp(—2W/kT) sinh?(ve/2kT) 7}
% {{1 ' (tan2o) (vo/2kT)? ] +1} ’
(14)
_1 0 tane
" 4 2kT [exp(vo/kT)—1]
A? exp(—2W,/kT) sinh?(vo/2kT) 7}
X{[l : (tane) (vo/2KT) ] _1}’
(15)
where
v=abL cose. (16)

Equations (14) and (15) represent for ¢ — 0 the kink
density of the stress-free dislocation and approach the
result of Eshelby,? except that in Eshelby’s equation
ua is ignored, so that 42 has a different value. Further-
more, Brailsford,’ starting from transport equations,
has arrived at relations which show the same depend-
ence on the stress ¢. Yet Brailsford’s result contains an
unspecified function #zgpe which, as we have shown
above, can be expressed in terms of kink formation
energy Wy, temperature, and the factor 4.

B. The Stress-Strain Relation

Starting from the kink densities found in Egs. (10)
and (10'), we will now calculate the anelastic strain e,
which results from sideward motion of geometrical or
thermally created kinks.

The average shape of the kinked dislocation is given
by the integral®

T

y@)=a| Wr—un")dx. an
0
With Egs. (10) and (10”) we get
y(x)=cospaL (kT /vo){nst{1—exp(—abox/kT)]
+ng[1—exp(abox/kT)]}. (18)
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The anelastic strain, contributed by the line segment L,

follows from5
L cose

e(0)=(bA/L) Ly(,0)—yo(x)1dz,  (19)

where yo(x)=x tane represents the stress-free disloca-
tion (A=dislocation density).
Integration of Eq. (19) yields

e= (b/L)(cosokT /vo)?AL%a
X{nogt vo/kT— (1—exp{—va/kT})]
+no[vo/kT— (exp{vo/kT}—1)]}
—(Qb/2L) tane(L cosp)?. (20)

We now have to replace #¢t and #¢~ by Egs. (14) and
(15) and find the following stress-strain relation:

b
e(o,T)=—AL?sin2¢
4L

LA exp(—2W/kT) sinh?(vo/2kT) 7}
[ (tan?o) (vo/2kT)? :|

v 2kT
Xl:coth—————:l .21
2kT

Vo

The last bracket is known as Langevin’s function L(x)
and describes, in paramagnetism or paraelectricity, the
orientation of dipoles in an electric or magnetic field.
L(x) is proportional to x/3 for small x and approaches
1 for large x. In our case of mechanical relaxation of
kinks, the magnetic or electric dipole energy is replaced
by the energy vo of a kink in a stress field o. L(x) in
Eq. (21) describes the shifting of kinks, whereas the ex-
pression under the square root sign represents the
double-kink generation.
Under the condition

A exp(—W,/kT)[(sinh (vo/2kT))/ (vo/2kT) <tane,
(22)

which is fulfilled for small stresses and low temperatures,
double-kink generation can be ignored, and the stress-
strain relation has the form

b
e=—AIL?sin2¢
4L

cosh (va/2kT)— (2kT/ve) sinh(ve/2kT)
X .

23
sinh (vo/2kT) 23)

For =0, condition (22) can be interpreted as stating
that the number of thermal kinks must be small
compared with the number of geometric kinks.

If, on the other hand, temperature or stress is high
so that the following relation holds:

A exp(—Wy/kT)[sinh (vo/2kT) }/vo/2kT>tane, (24)

ALEFELD, CHAMBERS,
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the stress-strain relation can be written as:
b
€= EEALZ cos?pA exp(—Wi/kT)

cosh (va/2kT)— (2kT /va) sinh (va/2kT)
X v0/2kT ’

Both stress-strain relations [ Egs. (23) and (25) ] become
nonlinear at relatively small stresses. If we expand in
terms of vo/2kT, we get:

b v 1 /v0\?
e=—- —AL? sin2ga[1———<————) 4+ :| , (23a)
kT

(25)

24L kT 60
and
b o
e=———AL? cos’pA exp(—W/kT)
12L kT

x[1+£(:4;>2+- : J . (259)

So both stress-strain relations become nonlinear for
vo>2kT . (26)

The essential difference lies in the sign of the non-
linearity. In the first relation [Eq. (23)], the strain
increases slower than proportional to the stress, as one
expects, due to the restricted motion of geometric
kinks. In the second relation [Eq. (25)], the strain
increases faster than proportional to the stress because
double-kink generation supplies more kinks with in-
creasing stress. Consequently, the complete stress-
strain relation, Eq. (21), generally has first an exhaus-
tion region, in which 8%/902<0. At a certain stress
level, which is determined by condition (24), double-
kink generation becomes significant, the sign of 9%/dos?
becomes positive, and, as shown in Fig. 2, the strain
increases exponentially with stress, as

e= (b/2L) (kT /vo)AL?4
Xexp[ (—2Wi+|ve|)/2kT].

The exhaustion region disappears at temperatures for
which condition (24) is already fulfilled for zero stress.
We realize that the exhaustion region extends to the
larger stresses, the larger tan o, which means the higher
the geometric kink density.

We will now determine the limitation of the above
treatment. Clearly, the exponential increase of strain
with stress demonstrated in Eq. (25b) cannot continue,
and at a certain kink density the interaction of kinks
must modify the stress-strain relation.

The interaction energy between two kinks has been
determined by several authors as?%-8:

U= = (Gb®a?6/8xd) ,

(25b)

@7

7 F. Kroupa and L. M. Brown, Phil. Mag. 6, 1267 (1961).

8 A. D. Brailsford, Phys. Rev. 128, 1033 (1962).
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where d=distance between the kinks, 8=[ (14») cos’®
4 (1—2v) sin?®7]/(1—»), »=Poisson ratio, and = angle
between Burgers vector and close-packed direction.
Our treatment is not applicable for kink densities
for which the kinks have an average potential energy
which is comparable with k7', so we must require*?

(Gb*a*8n)/ (4wkT)<1 with n=ntorn~. (28)

Without external stresses, # equals sing/a, so that

(Gb?aB/4x) sinp<kT. (29)
With 2T'=10"2 eV, Gb*a=3 eV, one finds ¢<0.04.

Condition (29) thus establishes an upper limit for
the angles ¢, for which the stress-strain relation of
Eq. (21) can be applied.

Under stress, the highest kink density, consisting of
positive kinks, accumulates at x=0.

Using Eq. (14) in condition (28), we get with vo>kT
and for small angles ¢

(G¥aB/8rkT) A exp[(—2Wi+v0)/2kT]<1, (30)

or

v0 < 2W—2kT In(Gb*eBA /87kT). (30"
This relation is of interest insofar as Paré® suggests the
relation

v0;>2W) (o;=internal stress) 31)
as a necessary condition for the existence of a double-
kink generation peak in cold-worked materials. Com-
paring conditions (31) and (30), we realize that the
condition (31) for the existence of a peak necessarily
implies that the kinks interact with each other. Con-
sequently, interaction of kinks cannot be ignored in
determining the peak height, as well as the activation
energy for the double-kink generation peak.

Another quantity of interest is the total number of
kinks as a function of stress. Integrating Eqgs. (10) and
(10’) yields the result

L A2 exp(—2W/kT)
Ni=2— singa”:l | P k/
a

tan?p

sinh?(ve/2kT)
X (vo/2kT)? ] ":1}' (32)

We realize that the total number of kinks is an even
function of stress, as it must be for symmetry reasons.
So for small oscillating stresses, the total number of
kinks of each sign does not change; only their relative
positions to each other change.

® For a more refined criterion, involving the gradient of the
potential energy, see Ref. 11.

©V. K. Paré, J. Appl. Phys. 32, 332 (1961), and thesis, Cornell
University, Ithaca, New York 1958 (unpublished).
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F16. 2. Stress-strain relation for a dislocation string (4) and for
a kinked dislocation with low kink density (B, C, D) [Eq. (21)].
The parameters used are: AL?=10"1, E;=Gb*/4, Gbla=660%T,
A?=5, L=3X10%, W;,=10kT (curve B), 11.5kT (curve C),
13kT (curve D). The dashed line represents the total strain which
can be achieved without double kink generation.

IOI. INTERACTING KINKS
A. Temperature T=0°K

We will now determine the distribution of interacting
kinks under external stress, taking into account only
nearest-neighbor interaction. In a preceding paper,! it
has been shown that the results following from nearest-
neighbor interaction of the kinks represent fairly well
the results for long-range interaction, if one increases
the effective line tension Ep=Gb%3/4w of the kink
chain, as determined in nearest-neighbor interaction,
by a factor IniV, where N is the number of kinks in the
line segment.

The potential energy of the kink ¢ in the stress field
of its neighbor kinks and the external stress o is given,
according to Eq. (27), by

U= (Gb*a?8/8r)
XA/ (@i xim) 1/ (@ip1—x:))— abox;,

x;=position of the kink 7.
The force is consequently

Ki= (GBa®8/8m)[ (xi—2i1)2— (wip1—x:) 2 ]+abo. (34)

If we abbreviate d;=x;—x;1, we can write the equa-
tions K;=0 as'?

(33)

d5_2~di.,.1_2=—a4N/L2 1=1-.-N41. (35)
where « is dimensionless and is given by
a=3(4ro?/GabBN)=%(c/G)(L/b sing)Gb*/Ey. (36)

1 G, Alefeld, J. Appl. Phys. 36,2633 (1965).
2 This set of equations has already been derived by W. Lems,
Physica 30, 1617 (1964).
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F1c. 3. Stress-strain relation for a dislocation string (4) and for
a kinked dislocation with large kink density at T=0 (B, C, D)
[Egs. (49) and (50)] and for temperatures above the double-kink
generation peak (B’, C’, D’). The parameters used are: AL?=1071,
E-=Gb/4, (b/L)sing=2X10"* (curve B), 10 (curve C),
3X1075 (curve D). op=103 G. (It is assumed that the line ten-
sion Ey, of the string is the same as that of the kink chain.)

The sum of the distances d; must add up to L. This
gives the condition

@37

By adding Egs. (35) from 1 to ¢, one can express all
distances d; as a function of d;.

di?= (i—1)4Na/L*+dy

or
di=d:[ 144N (i— Da(d/LY?T . (38)
The distance d; must be determined as follows:
N+1
(dy/L) Y [14+4N —Da(d/L)?]E=1. (39)

=1

This equation gives the distance d; as a function of
stress ¢. The other distances can then be determined
by means of Eq. (38).

For small stresses, the summation of Eq. (39) can be
replaced by an integration, with the result that

[1+4N%a(di/L)*]Jt*—1=2Nad,/L.  (40)
Solving for d; yields
di=(L/N)/(1—a). (41)

Clearly this result does not hold for a=1. For large
stresses, or a>1, one can find another solution of
Eq. (39) as follows: Except for i=1, we can ignore 1
compared with 4N (i—1)a(dy/L)?, so that the summa-
tion has the form

(dl/L)[1+§ (4¢'aN)‘*L/d1:| 1. @)
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The sum over ¢% is to a good approximation, given by
N
> ii=2N—-4%,
7

Solving for d; yields
di=L[1—a#(1—-3N-¥/4)]. (43)

For a=1, the distance d; as determined by Eq. (43) is
given by di=(L/N)3N3%/4. This means that d; has
increased by a factor N* compared with the equilibrium
value. The distance di increases continuously with
stress. Half of the other distances d;(1<¢<N/2) first
increase with stress, reach a maximum, and then de-
crease to zero. The distances d; with ¢>N/2 decrease
already for small stresses.

With the solutions [Eqgs. (41) and (43)] for di, we
now determine the stress-strain curve for the stress
regions <1 and o> 1.

Lems' has shown that the strain e is given by

= (Aab/L) % [d:(N-+1—3)—ido]

dy stands for L/N. (44)
Inserting Eq. (38) into Eq. (44) yields
di( ¥ N—(—1) N
e=Aab— doX_ip. (45)

L i};l[l—i—le(i—l)a(dl/L)?]% =

For N>1, the individual sums in Eq. (45) can be
replaced as follows:

% i=N?/2

=1

(46)

N % [144N i—1)a(dy/L)*T*=NL/d,
[See Eq. (39)]. (47)

The third sum can be evaluated for a<1 or a>1 by
employing the same methods which were used above
to determine d;.

N (i—1)
=1 [14-4N (—1)a(d/L)* ]
= (1/12N%2) (L/dy)*1—[1-+4N% (d:/ L) ¢
X[1—2N%(di/LY]} for a<1,
=3(V/a*)(L/dy) (48)

Using the above sums [Eqs. (46)-(48)] in Eq. (45) and
replacing d; by Eq. (41) and Eq. (43), respectively,
yields for the strain e contributed by the dislocation
segment of the length L and with NV kinks:

e= (AabN/b)a= (AL%/12)(G¥*/EL)(¢/G) a<1,

for a>1.

(49)
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and

AabN

€=

(1—3a)

ALb 2/2bsing G Er\}
=— Sin¢[1——( ——):] a>1. (50)
2 3 L o Gb

We realize that both e and de/da fit together con-
tinuously at a=1.

In Fig. 3, we have plotted the stress-strain relation
[Egs. (49) and (50)] for different geometric kink
density. At ¢=op, double-kink generation will set in
even at zero temperature. Consequently, the stress-
strain relation has a sharp strain increase at o =o p. This
takeoff will then allow the Peierls stress to be experi-
mentally measured directly. It is interesting to note
that the measurement of the complete stress-strain
relation allows one to determine AL? as well as ALb, so
that dislocation density as well as line length can be
estimated. Yet it should be emphasized that Eq. (50)
gives only the general form of the stress-strain relation
in the region of restricted geometric kink motion. The
numerical accuracy suffers from the extension of the
interaction law, Eq. (27), to small distances d. We
furthermore have ignored the fact that the crystallo-
graphic direction against which the kinks are pressed
has an angle smaller than 90° to the dislocation line.

B. Finite Temperature

At finite temperature the sharp strain increase
(Fig. 3) will be shifted to lower stresses. One expects
that it disappears at the double-kink generation peak.
This argument is based on rate considerations. We are
assuming that the stress-strain relation is measured
within a certain time or at a certain frequency which
can be related to the relaxation time of the double-kink
generation peak. Yet we found in Sec. II that inde-
pendent of rate considerations the stress-strain relation
of noninteracting kinks is modified for reasons which
follow from purely thermodynamic equilibrium con-
siderations. We will now show that the stress-strain
relation of interacting kinks will also be different from
that of a string, even if we measure at temperatures
which are above the double-kink generation peak.
In Sec. IIT A we showed that the deviation from a linear
stress-strain relation occurred at «>1 or

0/G>2(b/L) sinp(EL/Gb?). (51)

We now have to estimate for interacting kinks the
stress at which significant double-kink generation com-
pensates for the exhaustion of geometric kink motion.
This estimate will be based on the condition that the
free energy of the dislocations with a new double kink
is smaller than that of dislocations without a new
double kink. The newly created kinks pile up behind
the existing kinks. If the double kink is stable, then the

A1777

dislocation has continued to bow by the distance a,
which is measured perpendicular to the close-packed
direction. Consequently, the area gained due to the
formation of a double kink is approximately 4 =alL/2.
The work done by the external stress is correspondingly
abaL/2. Simultaneously, the interaction energy of the
kinks increases by a certain amount AU, which depends
on the detailed configuration of the already existing
kinks.

The condition for creation of double kinks can con-
sequently be written as

2Wir—aboL/2+AU—TAS<0. (52)

AS is the entropy difference between the states with
and without a new double kink. It will be of the order
or several &, so that T'AS approaches 2I¥, only at tem-
peratures which are large compared with the tempera-
ture of the double-kink generation peak. AU can in
general be assumed to be positive. (It could be negative,
for example, when one of the newly created kinks moves
to the pinning point and decreases its potential energy
in the field of the geometric kinks of the next line seg-
ment more than the energy increases due to the piling
up of the existing kinks by the other newly created
kink.)
We now write Eq. (52) as follows:

o/G> (2b/L) @W+AU—TAS)/G¥a

and compare the stress with that of Eq. (51). We thus
find that for a certain range in angles ¢, namely,

sing< 2W,+AU—TAS)/Eze,

(52')

(53)

the stress for creation of stable double kinks is larger
than the stress [Eq. (51)] at which the exhaustion
region starts out. Consequently, for these dislocations
the linear stress-strain region is followed by a region in
which 9%/902<0 (Fig. 3). The subsequent inflection
point is roughly determined by Eq. (52"). The existence
of an exhaustion region in the stress-strain law even
above the double-kink generation peak is a consequence
of the fact that the free energy of a line segment in-
creases in multiples of 2. Only for dislocations with
many geometric kinks is the stress needed to reach the
exhaustion region large enough for creation of new
double kinks. With 2W;~1 eV (tungsten) and Era=35
eV, we find for 2W/Era=~0.2. Since AU will increase
this value and TAS is significant only at high tem-
peratures, we find that a large part of all dislocations
do have an inflection point in their stress-strain relation
(Fig. 3) which disappears only at high temperatures if
AS is positive. Equation (52’) indicates, furthermore,
that the smaller the line length L, the larger the stress
needed for significant double-kink generation.

The details of the stress-strain relation after passing
the inflection points depend on the interaction law of
the kinks and how the compressed kinks finally lose
their individuality. Since double kinks exist in sufficient
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F16. 4. Amplitude-dependent hysteresis loops caused by double
kink generation. The stress-strain curves D (for temperatures
below the double kink generation peak) and D’ (above peak)
are taken from Fig. 3. For o <o¢ only a vanishingly small loop
exists. The two concentric loops correspond to different maxi-
mum oscillation amplitudes, whereas the two different stress-
strain relations correspond to different geometric kink density.
o./G=a(b/L) 2W/Gb%).

amount, the stress-strain relation will not differ appreci-
ably from that of a string in a Peierls-stress-free
material. But it may be possible that a second inflection
point exists before the kinked dislocation follows a
string-like stress-strain relation.

IV. DISCUSSION

We have shown that the reversible stress-strain
relation of kinked dislocation segments differs signifi-
cantly from that of a dislocation in a material with
vanishing Peierls stress. The physical reason can be
found in the fact that due to the Peierls potentials the
free energy of the dislocations increases only in multiples
of the double-kink energy 2Wy. From this follow two
consequences: (a) If the measuring time is short com-
pared with the time constant for double-kink creation,
one can at high stresses (static or oscillatory) exhaust
the possible dislocation motion, which results from
shifting of geometric kinks. This argument is based on
rate considerations and is consequently limited to
temperatures below the double-kink generation peak.
(b) Independent of this rate argument, we have shown
that one can deduce from purely thermodynamic equi-
librium considerations that the stress-strain relation for
a large part of the dislocation spectrum (spectrum in
angles against close-packed direction) has after a linear
region a section in which the strain increase per unit
stress becomes smaller with increasing stress—i.e.,
8%/ 902<0. This region exists independently, regardless
of whether the entropy or the interaction determines
the linear region. It is the result of the restricted motion
of geometric kinks. When the stress is high enough for
significant double-kink generation, the stress-strain
relation passes through an inflection point. There may
be a second inflection point before the stress-strain
relation approaches that of a string.

We will now state experimental consequences result-
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ing from the particular shape of the reversible stress-
strain relation of kinked dislocations:

(1) The restricted motion of geometric kinks be-
tween 7=0°K and the double-kink generation peak
can be experimentally detected as a decrease of the
modulus defect at high amplitudes. At T~0°K, the
modulus defect increases sharply only when o=op. If
op is larger than the stress required to activate Frank-
Reed sources, such a decrease followed by a sharp
increase of the strain cannot be explained in terms of
the string model. Because of thermal activation at
higher temperatures, the increase at large amplitudes
will occur at correspondingly lower stresses. One will
have to be prepared for the observation that the de-
crease of the modulus defect is also being preceded by
an increase which is due to breakaway from pinning
points or to motion of dislocations over internal stress
ranges.

(2) It has been shown that the stress-strain relation
is also nonlinear above the double-kink generation peak
(see Fig. 3). These nonlinearities will manifest them-
selves mainly as an increase of modulus defect and of
kilo- or megacycle damping when the stress amplitude
reaches the stress of Eq. (31) or Eq. (52'). Careful
measurements may detect small decreases of both
quantities before they start to rise.

(3) If it is assumed that the sideward motion of exist-
ing kinks is a process which at low temperatures occurs
rapidly compared with kink creation, the relaxation
strength Ajyr of the double-kink generation peak is de-
termined by the difference of the strain per stress
increment which can be achieved with or without
double-kink generation. Since at small stresses bowing
is achieved by sideward shifting of existing kinks only,
the relaxation strength is thus zero. Parél suggested
that internal stresses o; [Eq. (31)] induced by cold
working increases the relaxation strength to an ob-
servable value.’® Only for a bowed dislocation segment
does the strain increase due to a small stress increment
depend on whether or not double kinksare being created.
Yet it has been observed by Chambers!* that in pure bce
metals certain peaks which appear after cold working
the material can also be observed in undeformed material
by high-amplitude oscillations. Our result about the
stress-strain relation of kinked dislocations shows that
this observation provides evidence for an interpretation
of these peaks in terms of the double-kink generation
mechanism. Using the stress-strain curves of Fig. 3,
Fig. 4 indicates how an absorption peak which had
vanishing relaxation strength at small amplitudes rises
with rising oscillation amplitude. The criterion for the
peak appearance is given by Eq. (31) or Eq. (52'), in
which ¢/G now means the maximum oscillation ampli-
tude. It should be pointed out that there is only small

13 See also A. D. Brailsford, Phys. Rev. 137, A1562 (1965).
14 R. H. Chambers, in Physical Acoustics, edited by W. P.
Mason, Vol. III-A (to be published).
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hope for measuring the hysteresis loops of Fig. 4
directly. The required stress amplitudes o, simul-
taneously make the background of internal friction,
which is probably caused by the motion of dislocations
over internal stress hills, rise to such high values that
the loops of Fig. 4 appear only as a distortion of the
total hysteresis loop. Nevertheless, an internal friction
peak will be detectable above a high but structureless
background.

There is an additional requirement which must be
fulfilled in order for a well-defined peak to grow out of
the background by high-amplitude oscillation: the
double-kink generation energy should not change
significantly at the required amplitudes of oscillation.
If we require that the activation energy for double-kink
generation change less than 2%7" at the stress given by
Eq. (31), we get the following condition for the activa-
tion volume vp for double-kink generation:

‘Up0< ZkT (54)

or

vp<(kT/Wi)abL. (54")

With 27~ 10-1Wy, we find that it must be smaller than
one-tenth of the activation volume for double-kink
recombination. This condition seems at first glance to
be trivial, but it is important for the following reason:
Paré® has shown that the contribution to internal
friction from dislocations which are not exposed to the
required internal stresses [Eq. (31)] are vanishingly
small peaks, which are located at lower temperatures
than the observed peak. If the activation volume for
kink creation were as large as that for kink annihilation
(=abL), then these little peaks would be shifted by
high-amplitude oscillation individually to even lower
temperature and would decrease even more in height.
Only if the activation volume for forward motion of the
dislocation is very small compared with that for back-
ward motion will these peaks increase in height, be
shifted to higher temperature, and accumulate at one
common temperature.!> This asymmetry in regard to
the stress dependence of the activation energy for
forward and backward motion is, in contrast to other
relaxation mechanisms, characteristic of the double-
kink generation and annihilation mechanism.!®

In deformed material one expects to see the existing
double-kink generation peaks grow with increasing
oscillation amplitude!” because at high amplitudes the

16 This statement can be proven rigorously for an asymmetric
double-well potential, which Paré (Ref. 10) used as a model for
the double-kink generation mechanism (to be published).

16 Another consequence of this asymmetry in activation volume
for forward and backward motion of a kinked dislocation is the
following: When an originally bowed dislocation has been oscil-
lated at high amplitudes, it will not stay as bowed after stopping
the oscillation if the temperature is below the double-kink genera-
tion peak. The dislocation loses some or all of its double kinks
without being able to create them at the given stress and tempera-
ture. One thus builds up internal stresses which relax with the
time constant of the double-kink creation peak.

17V. K. Paré (Ref. 10) observed for the Bordini peak in cold-
worked copper a small increase in peak height with increasing
amplitude.
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absorption of dislocations is added which did not have
the required internal stress to contribute at small
amplitudes.

If the two activation volumes are strongly different
(as is the case for bce metals, and also for fcc metals if
the line length is large), then one will find experi-
mentally first a peak rise, before the peak shifts to
lower temperatures. Whether this peak shift is experi-
mentally observable, and how large and broad the peak
is for c=0p, depends on what mechanism determines
the macroscopic flow.

(4) Another experimental possibility to verify the
nonlinear stress-strain relation of kinked dislocations
is as follows: A static external bias stress should, in
undeformed pure malerial, cause the appearance of an
absorption peak as measured at low-amplitude oscil-
lations. The high purity is required to rule out an ex-
planation of the increase of the relaxation strength by
unpinning. The methods of high-amplitude oscillations
or a static bias stress applied to undeformed material
are clearly more selective in an effort to identify the
absorption mechanism of these peaks, than the hitherto
standard method of introducing dislocation-dislocation
interaction by cold working.

(5) Figure 3 shows that for c=0p a “flow stress” is
reached. This flow stress can be the flow stress for
long-range flow (for example, bce structures at low
temperatures) or also the flow stress for short-range
flow (fcc structures in which the cutting of dislocations
is rate determining for long-range flow). This “micro”
or “macro” flow stress at 7=0°K should be observable
in both cases and is a measure for the Peierls stress o p.
The flow at o =~o p cannot be expected to be as sharp as
drawn in Fig. 3. Stress concentrations near the pile-ups
of geometric kinks add to the external stress. Thus,
locally along the same line, the Peierls stress is reached
before the external stress o, equals op. This stress
concentration can be interpreted as an increase in the
activation volume over that for double-kink creation
on a straight line. The microflow or macroflow stress
at 7=0 thus gives only a lowest value for the Peierls
stress o p. This statement is important if one calculates
a Peierls stress from the measured double-kink genera-
tion energy and compares this stress with the flow
stress at 7=0. It may be the answer to why the macro-
flow stress in fcc metals at 7=0 is smaller than the
calculated Peierls stress. The microflow stress has not
yet been measured in these materials. It should be
pointed out that even in fcc metals which have very
high perfection'’® and purity the velocity with which
dislocations move at low temperatures is determined
by the double-kink generation mechanism. In Al, for
example, a double-kink generation energy of 0.26 eV
has been found.’® On the other hand, Nunes et ¢/.? have

18 F. Young, J. Appl. Phys. 32, 1815 (1961).

1 J. L. Routbort, thesis, Cornell University, Ithaca, New York
1965 (unpublished).

2 A. C. Nunes, Jr., A. Rosen, and J. E. Dorn, Trans. ASM 58,
38 (1965).
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determined the activation energy for flow as 0.22 eV
and interpreted the mechanism as cutting of disloca-
tions. Already Lothe and Hirth? have suggested that
the rate for low-temperature creep in Al may be
determined by the double-kink generation mechanism.

(6) Throughout this paper we have considered the
consequence of the existence of only one Peierls stress.
Experiments on bce metals!4 suggest that these materials
have more than one Peierls stress, either due to different
dislocation types? (screws, edges) or due to different
crystallographic directions. If more than one Peierls
stress exists, then, for example, the stress-strain relation
at liquid-He temperature in Fig. 3 should show steps
at the different Peierls stresses. Also, the stress-strain
relation at higher temperature will have more fine
structure owing to the different components.

(7) The width of the double-kink generation peak
has been the subject of extensive discussion.®%3® The
multiplicity of Peierls potentials? is one reason. We
will now consider the question of whether one can
expect a unique activation energy at all, even if there is
only one Peierls potential. It appears as if the require-
ment of dislocation-dislocation interaction for the
existence of a peak necessarily implies a certain spec-
trum in activation energies. For dislocations with
high kink density the double kinks are created in an
environment in which they interact with already
existing kinks. Let us assume that a line of length L is
bowed by internal stresses to half the Frank-Read
radius. If one approximates the kinked dislocation line
by a circle, one easily shows that the new kinks are
created at distance d from the next existing kinks which
is smaller than A/(La). From Eq. (27) one finds, with
Gba=35 eV, B=2, L=10%, an interaction energy of
0.025 eV, which is 259, of the average double-kink

2 J, Lothe and J. P. Hirth, Phys. Rev. 115, 543 (1959).

« 225D‘ O. Thompson and D. K. Holmes, J. Appl. Phys. 30, 525
959).
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generation in copper. With Gd*e=25 eV (tungsten),
AU is 0.13 eV. The stress required to bow a line of the
length of 10% to half its Frank-Read radius is of the
order of 3X10~* G, which can easily be expected in
deformed metals.

For dislocations with low kink density, the activation
energy for double-kink creation can be lowered by the
required internal stress,’® as the following calculation
shows: A rough estimate for the activation volume for
double-kink creation vp follows from the condition that
the activation energy U is zero for c=0p. So

(55)

UVpop~ U

An internal stress o; of the size given by Eq. (31) lowers
the activation energy U by AU=vps;. The relative
change in energy can thus be written as

(AU/U)= (/L) (2W+/Gab?*) (G/op). (56)

With 2W;/Gab*=1/50 and op/G=10"* (ficc metals)
and L=10%, one finds a 209, lower activation energy.
Thus one can hardly expect that a double-kink creation
peak has the width of a single relaxation peak. Its shape
depends on the type of deformation which determines
the arrangement and length of the contributing dis-
locations as well as the size of the internal stresses.

(8) Finally, it should be mentioned that the stress-
strain relation of bowing dislocation segments deter-
mines the stress dependence of the activation energy
for other dislocation rate processes, as, for example,
cutting of dislocations or breakaway from pinning
points.?® In general, one can predict that the activation
volume which is determined by kinked dislocation seg-
ments is smaller than that of string segments. We thus
find that the Peierls potentials also determine details
of rate processes other than double-kink generation.

2 R. H. Chambers, Appl. Phys. Letters 2, 165 (1963).



