
P H YS I CAL R EV I E W VOLUME 140, NUMBER 5A 29 NOVEMBER 1965

Force Constants of Sodium
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Force constants for sodium are calculated on the basis of a formulation presented by White some years
ago. The force constants are taken to be the sum of the three contributions from overlap repulsive forces,
the Coulomb interaction between ions, and the ion-electron-ion interaction, The Slater-Koster formalism is
used to estimate the electronic contribution. The calculated force constants agree fairly well with the ex-
perimental values obtained by Woods and co-workers. The results are discussed.

I. INTRODUCTION

''N metals, the presence of a mobile Fermi gas has
~ - such drastic inhuence on the interaction between
ions that it becomes imperative to consider them in
any calculation of the force constants of metals. An
interesting approach for calculating these force con-
stants from fundamental principles was put forth by
White' some time back. He calculated the force con-
stants of the fcc metal copper and compared his results
with the force constants inferred by Iacobsen' from
thermal diffuse x-ray scattering. In this paper we

report a calculation of the atomic force constants of the
bcc metal sodium using the approach put forth by
White. Our motivations in taking up this calculation
were twofold. First, White's approach, though interest-
ing, has not been applied to any other metal than
copper. Experimental values of force constants of copper
are not known with as high an accuracy as those of
sodium. Secondly, sodium has a spherical Fermi surface
and a small ion core; therefore, it approximates the
assumptions embodied in White's approach better
than copper.

II. THEORY

The principle of the method. is quite simple. One
assumes that a single nucleus is displaced by an in6nites-
imal amount. The electronic wave functions of the metal
will change as a result of this distortion and there will

be a change in the charge distribution. These changes
will cause a certain force to be exerted on the other
nuclei. This allows a calculation of the atomic force
constants, which are the force components on one
nucleus resulting from a unit displacement of the other
nucleus along an axis in a crystal in equilibrium.

We now follow the established practice of dividing
the contributions to force constants into three parts:
(1) the contribution from Coulomb interaction between.
ion cores, (2) the contribution from the core-core
exchange repulsion, and (3) the contribution via
conduction electrons. We take up each of these contri-
butions separately.

~ Present address: Physics Department, University of Cali-
fornia, Riverside, California.

' H. C. White, Phys. Rev. 112, 1092 (1958).' K. H. Jacobsen, Phys. Rev. 97, 654 (1955).

2. Core-Core Exchange Reyulsion

The contributions of overlap forces to the force
constants were calculated by assuming that for sodium
the overlap potetntial is represented. bys

4t~'=1.25&&10 "e p)x(1 75 r)/0 34. 5)—. (.1)

TABLE I. Force-constant matrices for erst, second, and third
neighbors in a bcc lattice.

Atom posit&on

(1,1,1)u

(&,0,0)a

(2,2,0)a

Force-constant matrix

( -'l)
(n' 0 0)
0 p' 0F00 p)

(p" ~" 0lap" 0
0 n

r W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).

1. Coulomb Interaction between Ions

We assume the inner electrons to be tightly bound
to the core and to move rigidly with it. For a small
displacement 6 of the core, the resulting electrostatic
effects can be well approximated by a dipole of moment
e5. The exchange and correlation effects between the
conduction electrons and the core are accounted for in
a simple but crude way. The virtual displacement of
the ion core will push out a crescent of conduction
electrons in the direction of displacement, and a similar
crescent of electrons will appear at the back. . The
electrostatic effect of this change in conduction electron
distribution is exactly the same as if a sphere of the
size of the ion core and of positive charge density equal
in magnitude to that of conduction electrons is given a
displacement 5. This produces a dipole Geld which
augments the ion-core field by nearly 9%. The atomic
force constants contributed by the ion-core Coulomb
interaction plus the excluded electron gas are shown
in the second column of Table IV. The notation for the
force constants will become clear from the representa-
tive force-constant matrices given in Table I for erst,
second, and third neighbors.
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Here the interionic separation r is measured in ang-
stroms. This leads to negligible force constants beyond
the second neighbors. The resulting contribution is
shown in the first column of Table IV. Recently Vosk.o4

has pointed out that the contribution of overlap forces
in sodium is negligibly small even for the first neighbors.

(2)

where the sum is over all propagation vectors k in the
3s conduction band. The Schrodinger equation for P is

Hsg+VP=EP. (3)

Ho is the unperturbed Hamiltonian and V is the
perturbation. These two equations yield

Fg, Es+Qg Fs(k'i Vik)=EFs . (4)

Here E~ is the energy corresponding to the unperturbed
wave function Ns, and (k'~ V~ k)= J"Ns *V24sdr. We can
express Ns in terms of Wannier functions I2(r—R;):

Ns ——1/QE QR,. e'" RIa(r—R;) . (5)

The summation is over all the lattice sites of the crystal,
which has 1V atoms. From (4) and (5) we get

3. Conduction Electrons

Here we come to the core of the problem. We calculate
the change in the conduction-electron charge density
due to the virtual displacement of the ion core. We will
borrow White's treatment of the problem using Slater-
Koster formalism for a localized perturbation and
adapt it for a body-centered cubic structure.

The perturbed wave function f for the electron is
expanded in terms of the unperturbed wave functions

We assume that the ion core at the origin is displaced
along the x» axis and that the perturbation V has a
dipole symmetry about xi=0 plane, i.e., V(xi,xs,xs)
=—V(—xi, xs, xs). Also because of the symmetric
nature of Wannier functions, LO~ V~01=0. The cubic
symmetry of the lattice causes the matrix elements
LO~ V~A;j between the origin site and the four first
neighbors on one side of the x» ——0 plane to be equal.
The corresponding matrix elements for the other four
nearest neighbors on the other side of this plane are
also equal, and the matrix element for these sites is the
negative of the matrix element for the first four. All
the other matrix elements are assumed to be zero. With
these approximations the ninth-order determinantal
equation reduces to a second-order equation.

If we take a microcrystal of cubic shape, the Born-
von Ka,rman cyclic boundary condition gives for the
allowed vectors

k= (2r/NI2) (kiii+ksis+k, is). (12)

Here k», k2, k3 are integers; i», i2, i3 are unit vectors along
x», x~, x3 directions, respectively, a is the spacing of the
atomic planes, and there are 2e planes along a crystal
edge. The permitted k vectors are given by

+ki+ks&~I, &ks+ks&~ 22, &ks+ki~& I (13).

Now if we work. within the free-electron approximation
for the conduction electrons in a crystal of volume v,

energy E.The consistency condition for Eq. (9) provides
the general determinantal equation for energy,

det( (E—E,)"oR, ,R„(1/—X)QR,.(R;
~
V

~
R;$

XP ~ ex~'( ' "&)=0 (11)

with
Fs.——L1/(E—Es.))QR,. A (R;)e—.~'R;

A(R,)= (1/X)P, ,,$Z;~ V~Z, )e*& R~F,

LZ;~ V~X;]= (2'(r R,)Va(r R;)d—r. —

(7)

(8)

242
——(1/+2I) e' '.

The unperturbed energy is

E =2rsksq/22I*222a2

where m* is the effective mass and

(7 k12+k22+k22

(14)

(16)

With the help of (6) and P) we get

A (R;)= (1/QE)P. .,.„D('.;~ V~R;1
XGR(R;,R„)A (R„), (9)

where

G (R . R ) Q e42' ~ (Rg—R~i

E—E

In (10) E is one of the perturbed energies closest to
unperturbed eigenvalue E,. As indicated by White, it
is a valid simplification in our first-order calculation
of the effect of an infinitesimal perturbation to restrict
the sum over k' to only those unperturbed states which
are degenerate and have energy closest to the perturbed

4 S. H. Vosko, Phys. Letters 13, 97 (1964).

The perturbed-energy values given by (11) are in
this case

(E—E,) =& (csc4)'I', (17)

The summation in (18) is over all sets of integers k,
which have the same value of k'. If we label the various
first-neighbor sites as shown in I'ig. 1, we can write from
(9) and (10)

A (1)=A (2)=A (3)=A (4)= —A (5)= —A (6)
= —A (7)= —A (8)= (tcs//(E E,)jA (0) . (19)—

with cs= (1/1V) $1
~

V
~
0]X(total number of k vectors),

64 2l kl 2I ks 2I ks)
c4=—$1) V[0)g( sin' cos' cos'

)
. (18)

N
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FIG. 1. The body-cen-
tered-cubic structure.

spin degeneracy. Use of (21) and retention of only first-
order terms give

Ap= —2e QL2 Re(u,+"p,+)+2 Re(u, 'p, )j
=2 ~p»; (23)

"Re" means the real part. We write the expression for
hp in terms of the following real functions

Q,=s'I'P uk,

mug xk2 mk3
iR»=n'I' P sin cos cos

S I S

(24)

I A(0) I

s - 64css wk,
P 1+ sin'

(E—E,)' (E—E,)' I
m.k2 mk�-

sco' cos'

A (0) is determined by using the normalization property
of the perturbed. wave function lbs. This gives The summations in the above expressions are over

all k degenerate at E,. Now if in the expression for p,
we represent the summation in the following form,

Z (k' nondegenerate at Ze) 2 (»'Y»)Z (k' degenerate at Ze') &

Therefore,

I
A (0) I

s= c4L1
I
V

I
Oj/21lt'. (20)

we can write, because E—Eqr goes to Eq Eqr as 6

tends to zero:
In the case of sodium, there is one 3s conduction

electron; the lower half of the conduction band will be
ulled with discrete energy states. The pertuI:bation will

split every energy state into two levels, one displaced
upwards and the other downwards. The corresponding
perturbed wave functions are t/r»+ and lp»—.Let the
corresponding linear combination of the unperturbed
wave functions Nq be nq+ and I, . Then

ib 6—u d:+p 6 (21)

where u»+=pk Fk+ugp (the summation is for all k
degenerate at E,), and P,+=P~r Fk +uk + (the summa-
tion is for all k' nondegenerate at E»). The change in
the charge density of the conduction electrons produced
by the displacement 8 along x~ axis of the ion at the
origin is given by

32I I
I VIoj Q, ,z,+Q,z,,

hp=— ZZ
Ãe q q' E,—Eq

(25)

R= —eet*L1I l'I03/2k' ' w. a (26)

The final expression for hp can then be written in the
form

The summation for q' is over all the 3s conduction-band
states and q is summed over the lower half of the 3s
band, barring q=0. If we interchange q and q' in (25),
the numerator remains the same and the denominator
changes sign. Ap will therefore be zero if we sum (25)
over all q' (except q'= 0) in the lower half of the conduc-
tion band only. The crystal volume ~=4'', and we
introduce R given by

hp = —2e P fP»+*/»+ u,+'u,+-
+lb,—'iP,——u,—'u,—). (22)

S' Q» E»+~» Q»
Ap= —32—R Q P

q q' q' —q

(27)

Here the summation is over all q in the lower half of the
conduction band except q=0, which is a nondegenerate
state and remains unperturbed. The factor 2 stems from

Because of the arguments given above in Eq. (27), q is
summed over all its values except q=0 in the lower
half of the conduction band and q' is summed over all

TABLE II. Q, (r) and R, (r) for r along L111$axis; r= (a,n,u)a

(k&,k» tka)

(a,0,0)
(a,u,0)
(u,u, u)

(a,b,0)

(u, b, b)

(u,b,c)

Q, (r)

6 cos(wna/e)
12 os'(c/wn)ae
8 c s'( o/wa)ue

24 cos (wua/e)cos (wnb/e)

24 cos (waa/e)cos'(wab/e)

48 cos (wna/e) cos(wnb/e) cos (wnc/e)

R,(r)

2 sin( / w)suine(wnu/e)

8 sin(wa/e) cos (wa/e) sin (wna/e) cos (wnu/e)
8 sin(wa/e)cos'(wa/e)sin( /wn)uc es'( o/wn)ue
8{sin(wa/e)cos(wb/e)sin(w /e)cnoas(wnb/e)

+sin (wb/e) cos (wa/e) sin (wab/e) cos (waa/e) }
8{sin (wu/e) cos'(wb/e) sin (waa/e) cog» (wnb/e)
+2 sin (wb/e) cos (wu/e) cos (wb/e) sin (wnb/e) cos (wnu/e) cos (wnb/e) }

16{sin (wu/e) cos (wb/e)cos (wc/e)

sin�

(waa/e) cos (wnb/e) cos (wnc/ e)
+sin (wb/e) cos (wc/e) cos (wu/e) sin (wnb/e) cos (wac/e) cos (wau/e)
+sin (wc/e) cos (wa/e) cos (wb/e) sin (wac/e) cos (waa/e) cos (s ab/e) }
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values in the upper half of the band and in addition
over q'=0. In evaluating (27) special care must be
taken to give proper weights to contributions to hp
from Ir vectors lying on the surface, edges, or corners of
the Brillouin zone.

We have evaluated. Q, (r) and R, (r) for r along the
three symmetry directions [100], [110], and [111].
The forms of R, (r) and Q, (r) are given in Table II for
(n,n, n)a and for six possible combinations of (kt,ks, ks).
Calculations of hp were carried out for microcrystals of
diferent sizes by varying rl,. It is found that beyond
m=6 (i.e., a crystal having 432 atoms), hp is substan-
tially independent of e. This is apparent from Fig. 2
where we have plotted hp against the number of atoms
in the crystal at a point r= (a,0,0). In Fig. 3 we have
plotted Ap as a function of r along the three principal
symmetry directions [100], [110], and [111]for a
body-centered crystal of 432 atoms. From Fig. 3 we
have constructed Fig. 4, where we have shown the
variation of hp with polar angle at r=0.5a. The 6gure
shows that at r=0.5a, the change Ap is independent of
azimuthal angle and shows a cos0-type dependence on
polar angle 8. We have plotted hp in units of —R. R
involves [1~ V~O], which could be fixed from the
condition that no net dipole moment is produced by the
virtual displacement of the ion at the origin, as observed
from a distant external point. Thus the dipole moment
due to hp should cancel that due to the ion core plus the
excluded electrons.

The contributions to force constants from Ap were
calculated by dividing hp curves into three regions:
r&1.6a, 1.6u&r&2.5a and 2.5a(r&3.4a. In the region
r &1.6a, dp can be represented fairly well by a relation
of the type

8-

c 4

2-

FIG. 3. bp versus r along the three symmetry directions of the
bcc crystal. Full, dashed, and dash-dotted curves are for $100$,
$110$, and t 111jdirections, respectively.

The electrostatic effect of this distribution is the same
as that for a dipole of moment —6.735a' along xt axis.
This value for dipole moment was obtained by following
the procedure outlined by White in his paper. The
contributions to force constants from this region are
given in the erst column of Table III.

We represent dp in the region 1.6a(r(2.5u by a
spherical cap with radius 2a, opening 80=60', and
constant surface charge density 0.0661'. There will

be a similar cap with equal negative charge density for

hp= —18.36R cosg sin(rs-/1. 6a)e ' ""~~. (2g)

8, -

ur
I

O

5-

3-

3- 2-

0
0 20 30 40 50 60 70 80 90

Polar angle e in degrees
I

200
I I

400 600 800
Nvmber oI' atoms in the crystal

$000

FIG. 2. The variation of Ap with the number of atoms in a micro-
crystal of cubic shape at the point r= (u,0,0}.

FIG. 4. Variation of Ap with polar angle 8 at r=O.Su. Circle-
represent points in the plane containing L100] and t 1111direc-
tions. Crosses are for points in the plane de6ned by L100$ and
L110j directions.
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TABLE III. Electronic contribution to force constants.

Force
constant

Contribution due to conduction Total
electrons in the region electronic

r (1.6u 1.6u (r (2.5u 2.5u &r (3.4u contribution

p

pt
It

ptt
II

0—4457—5789
2894
1023—511—1535

1232
107—775
675
335
321—103

—362
48

500
-255
—129—498—162

870—4302—6064
3314
1229—688—1800

TABLE IV. Force constants of sodium.

xi(0. The electrostatic effects of such caps at external
or internal points were represented by expansions in
Legendre polynomials up to Ps(cos8s). The dipole
moment of the spherical caps along xi axis observed
from a distant external point is 2.49m'R. The contribu-
tions to atomic force constants from this region are
given in the second column of Table III.

In the region 2.5u(r(3.4a we represent hp by a
spherical cap of radius 3a, opening 45' and constant
surface charge density —0.033aR for x»0, and a
similar cap with equal negative charge density for
x~(0. The contributions to force constants were
estimated in a manner exactly the same as that de-
scribed in the preceding paragraph. The dipole moment
of the spherical cap observed from an external point is
—2.8u4R. The contributions to force constants from this
region are shown in the third column of Table III. In

the region beyond 3.4a, the change hp is quite small
and we neglect it in our calculation of force constants.
The total electronic contribution to force constants is
given in the last column of Table III. R was evaluated
according to a process outlined earlier and its value was
found to be e5/7a4.

III. DISCUSSION

In Table IV we have displayed the contribution to
force constants from the overlap forces, the ionic
Coulomb interaction, and the ion-electron-ion interac-
tion. The results are compared with the reliable values
of force constants obtained by Woods et al. ' by neutron-
spectrometric methods. The agreement between the
calculated and experimental force constants is surpris-
ingly good in view of the approximations that have gone
into our calculation. In deriving the electronic contribu-
tion to force constants we have made many crude
approximations. Our neglect of all matrix elements
other than $1i ViO) is questionable. In addition the
force constants were calculated from the knowledge of
Dp graphs along only three symmetric directions by
procedures which are not very satisfactory.

The form of Ap curves obtained by us is similar to
those obtained by March and Murray' in their self-
consistent calculation in a free-electron metal containing
localized defects. The oscillations in the Dp curves are
shown to be the result of a singularity in the dielectric
constant, so that the charge density at large distances
contains oscillatory terms of the form r ' cos2k~r,
where k~ is the Fermi wave vector. '

p

pt
It

pII
II

109
147

76—6
0
0
0

Force Over-
constant lap

0
4643+418
6049+544—3024—272—1069—96
535+48

1605+144

870—4302—6064
3314
1229—688—1800

Contribution from
Ionic coulomb Ion-

interaction electron-
+excluded ion
electrons interaction

Values of
Woods

Total et ul.

979 1175
906 1320
605 472

12 104
64 0—105 —38—51 —65
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