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Ferromagnetism of an Electron Gas*
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In order to clarify whether or not the so-called itinerant-electron model can predict the existence of the
ferromagnetism in the narrow d-band or transition metals, an electron gas in a background of a uniform
positive charge (single-band model) is considered as a simplest model. On the basis of the interpolation
formula for the correlation energy developed by Pines et ul. , the difference of the energy between the ferro-
magnetic state and the unpolarized (paramagnetic) state is examined. Contrary to the prevailing view,
apparently due to Wigner and Pines, if the dynamical screening for spin-polarized states is correctly taken
into consideration, the electron gas then is shown to become ferromagnetic even in the intermediate-density
region. The critical value of (m*/m)r, Lwhere (me/m) is the ratio of the band effective mass to the free mass of
electrons, and r, is the inter-electron spacing in units of the Bohr radius/ beyond which the system becomes
ferromagnetic lies between 7 and 10. The paramagnetic susceptibility also shows a divergence approxi-
mately over the same density range.

system per particle in the paramagnetic state, eo(0), is
given (in Rydberg units) by

"UCH attention has been paid recently to the
- ~ nature of ferromagnetism of the transition

metals. As starting points in studying this problem, two
diferent approaches are generally employed. One is the
so-called localized electron model in which the electrons
pertinent to magnetism are taken to be localized near
lattice points; the other is the itinerant (collective)
electron model in which the electrons are assumed to be
moving through the lattice as almost free electrons and
to form various bands. If we use the latter model, the
crucial point lies in how accurately one can treat the
many-electron correlation effect. The correlation effect
has been discussed to a certain extent, but the results
are far from what one would call well established. In this
paper we would like to emphasize the crucial importance
of the dynamical screening effect in discussing the
occurrence of ferromagnetism. By dynamical screening
we mean the time dependence (retardation) of the
effective screened Coulomb interaction which arises
from the dielectric property of an electron gas as a
screening medium; hence this screening is equivalent to
the frequency dependence of the dielectric constant in
an electron gas. ' It is this effect that gives rise to a long-
range interaction in the system through plasma oscilla-
tions, which becomes more important for the inter-
mediate- or low-density electron gas. Because of our
limited objective, we may formulate the problem on
the basis of the simplest model, i.e., the single-band or
Sommerfeld (jellium) model in which ions are assumed
to be smeared out as a uniform background. Ex-
tension to the case of two degenerate bands is rather
straightforward.

In the Hartree-Fock (HF) scheme in which only first-
order exchange energy is considered, the energy of the

o( ) = ( / ') ( / p' / p), — (1)

where p =err /sr, cr = (4/9sr)" s= 0 521, and r, is defined as
(3/4zn)"s divided by the Bohr radius, rt being the
number density of electrons. Now let us consider
pola, rized states of the system. We introduce a param-
eter to describe the degree of polarization, tt (0~& tt ~& 1),
a,nd put the number of electrons with spin up and down
equal to rt+ ——(rt/2)(1+tt) and rt = (I/2)(1 —ts). The
Fermi momentum in the polarized state, measured in
units of the Fermi momentum in the unpolarized state,
becomes

(2)P+= (1+p)"' P =(1—p)""-
Then the HF energy for polarized sta, tes is

3 1 p"' 1—p,
"'

eo(p) =
27' 5p'

(1+p)"'+ (1 p)"'—
(3)

2p

A comparison of Eqs. (1) and (3) indicates that the
(completely polarized) ferromagnetic state has lower
energy than the paramagnetic state, ep(1) (ep(0), when'

p)g(2its+1) Or r,)5.45. (4)

On the other hand, partially polarized states have
alwa, ys higher energy than either the completely polar-
ized state or the paramagnetic state and may be ignored.

We may not take the Bloch condition (4) as valid
for actual metals because of the complete neglect of the
correlation effect (or screening effect) in HF scheme. In
fact, if we take the screening effect into account by the
Thomas-Fermi potential, then it has been shown4 that
the paramagnetic state always remains the lowest sta, te
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3 dq
ep(p) = ds

4m' o q

(—1)" Q+(~)+Q
(5)

&~q'n=2 m

where

Q,+(n) = d'p dt
IP+ql ».

P &P+
q2

Xexp Agq —
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' S. Misawa, Phys. Letters 7, 249 (1963).
sL. D. Landau, Zh. Eksperirn. i Teor. Fiz. 30, 1058 (1956)

/English transl. : Soviet Phys. —IETP 3, 920 (1957)j.
D. Pines, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1955), Vol. 1, p. 373;
J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957); P.
Nozihres and D. Pines, Phys. Rev. 111,442 (1958).

8 The Hubbard result for exchange correction to the correlation
energy can be described by the formula 0.024—0.002r, in the
intermediate-density region. Since the fjrst term independent of
the density is unaltered by spin polarization, the energy difference
between the para- and ferromagnetic state arises only from the
second term; 0.002 (1—2 '/')r, =0.0004r, .This energy difference is
less than 20~% of the other term coming from the nonexchange
correlation energy or the HF energy in the density region of
interest (r,~7). It is also con6rmed that the increment of this
energy difference with respect to r, is less than 10% of the in-
crement arising from the other terms.

'Besides Ref. 7, D. Bohm and D. Pines, Phys. Rev. 92, 609
(1953); M. Gell-Mann and K. A. Brueckner, ibid. 106, 364
(1957); K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout,
ibid. 106, 507 (1957).' Ferrell has argued that the GB energy violates his convexity
theorem for the energy when r, &1 LR. A. Ferrell, Phys. Rev.
Letters 1, 443 (1958)g. His validity criterion, however, has been
obtained by taking only the fLrst two terms of r, expansion (high-
density expansion). If, instead, we do keep the exact form of the
GB energy (5), then their result never violates the convexity
theorem for the whole range of r, . This is in accordance with the
fact that the mathematical structure of the GB energy in the
low-density limit (r, —+00) is exactly the same as that of Wigner's

and the system can never become ferromagnetic. A
more refined calculation' based on Landau's Fermi-
liquid theory' has been performed, but the conclusion
remains unchanged. However, it is important to note
that in all these theories only static screening has been
considered and the effect of dynamical screening has
been completely ignored.

Here we shall rigorously show that, when the dynami-
cal screening effect is preserved, the electron gas
definitely becomes ferromagnetic for a density above a
certain value of r, . Our theory is in principle based on
the interpolation formula of the correlation energy for
the intermediate-density region developed by Pines,
Hubbard, and Nozieres and Pines. ~ Taking Hubbard's
result, however, we may conclude that the higher
order exchange effects give a contribution of less than
10% s of the main term. Therefore, within this error, we

may take the correlation energy in the form given by
the random-phase approximation' LRPA; Eq. (3&) in
Hubbard's paperr7. In the Gell-Mann and Brueckner
(GB) form" the correlation energy is"

The I dependence of Qs+(u) reflects the dynamical
screening effect. First of all, we consider the completely
polarized ferromagnetic state for which Q, (e) in
Eq. (5) vanishes. For this state, by applying a linear
transformation

we obtain

P ~ 2"'P,
t —+ 2 '~'t, N~ 2')"u,

(—1)" p
, (7)

( 1)n
g" 2

n=2 'g

which appears in Eq. (5) behaves like 1/x for large x."
This indicates that, for sufficiently large p, the correla-
tion energy can always be approximated by the form

e, (0)=—A/p, (9)

where 2 is a positive numerical constant given by"

A= dqq
o

dl Q, (u) =
27r2

It is important to note that the correlation energy of the
form (9) is a natural consequence of the dynamical
screening effect. When neglecting this effect, the value
of 2 in Eq. (10) becomes indeflnite and hence the energy
can never take the form (9). In the light of Eq. (8),
it is seen that the correlation energy of the paramagnetic
state is definitely higher than that of the ferromagnetic
state in this density region. Combining this with the

electron lattice LG. Iwata, Progr. Theoret. Phys. (Kyoto) 24, 1118
(1960)j.

~~ K. A. Brueckner and K. Sawada, Phys. Rev. 112, 328 (1958).~ This procedure has also been justi6ed by Iwata using a Mellin
transform (see Ref. 10)."Although the integral A apparently includes a divergent term
of the form Jd'q v(q) Lwhere v(q) is the Coulomb potential(,
it can be shown that this term is completely cancelled with an-
other divergence corning from the integration JP dq q' J'„"du
)&in/1+ (p/sqs)Qj for z, . Only the 6nite part of A determines the
asymptotic behaviors of &, for large p, (9).

where Q, (u) is the function deflned by Fq. (6) for the
paramagnetic state (p+ ——1). From this form it is seen
that the correlation energy of the ferromagnetic state
(p=1) is obtained from that of the paramagnetic state
by replacing p by p/2+' and dividing by 2; i.e.,

"(1 P)=s"(0 P/2"')

Now let us take a suKciently large va, lue of p (low-
density region) so that the analytic continua, tion
x—

st x—ln(1+x)7 of the series
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HF energy, which also gives lower energy for the
ferromagnetic state when p) ss (2'~'+1), we can conclude
that above a certain critical value of p (or r,), the
ferromagnetic state has a lower energy than the
paramagnetic state. '

The critical density where the transition from para-
to ferromagnetic takes place is determined by a root
of the equation

e() (0)+e, (0)—ep (1)—e, (1)=0. (11)

To proceed in calculation we tak.e the same approximate
form for Q, (e) as used by GB"'

Qe(u) =43ri 1—u tan '(1/u))—=43'(u)
for 0&~q~&1, (12)

=0 for q&1.
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e, (0)= — du

8m p' o

X lp(1+4pll) —(4434)' lrr(1+ —4434, (13)
4pR

and for the ferromagnetic state
i

see Eq. (8)j
e, (1)=

3 25/3

8Z' p'
du ln(1+2"'PR)

—(2 (spE) in' 1+
l

—2 ) PR . (14)
2'('PZ)

These energies have been evaluated numerically for
various values of p and plotted in Fig. 1. From this
result we obtain the final conclusion that the system
becomes ferromagnetic when

(15)

%e have assumed so far that the electron mass, in the
absence of the Coulomb interaction, is equal to the

This is justified by the fact that Q, (u) is appreciable
only for small values of q and damps rapidly for large q,
and also, in evaluating the correlation energy (5), con-
tribution from integration over small q is predominant.
In this approximation, the correlation energy in the
paramagnetic state becomes

FIG. 1. Energy difference between paramagnetic and ferro-
magnetic states plotted against p(=44r, /4r=r, /6). For p&1.23
(r,&7.41) the ferromagnetic state becomes energetically favorable.

bare electron mass i', vapo. In the case that the single-
particle energy can be described in terms of a band
eGective mass m* near the Fermi surface, the criterion
(15) should be modified to read

(m*/m)r, )7.41. (16)

00
p

s(p) =
o

R(N) ( 1
dl in' 1+

(1+rr'}r ( 4431(rr))

represents the contribution from correlation. Since
s(p))0, the correlation effect always reduces the sus-
ceptibility in this approximation, "but is not so grea, t

So far we have considered only the completely
polarized state. However, if partially polarized states
are taken into account, then the critical condition
(15) or (16) might be modified so that the partially
polarized ferromagnetic state is first established for
a lower value of r, . By observing the singular point of
the paramagnetic susceptibility g, it will be shown that
this is not the case. From the p,

' term in the energy, we
obtain, in the ratio to the noninteracting value Xo,

X/X()=(1 P+s(P)j (17)

where the second term comes from HF and the third
term, in the approximation (12),

"This conclusion seems to contradict Pines (see Ref. 7) who
claims that there is no possibility of ferromagnetism. However, he
has used the assumption that the change in screening due to spin
polarization may be neglected. This is not correct, but instead the
change in screening is crucial, in our view, for the occurrence of
ferromagnetism. In particular, the relation (8) cannot be ob-
tained by Pine's assumption."Since the 8 term (constant in r,) in the GB energy is ignored,
this approximation is not good for the high-density region (r, &2).
However, for the intermediate density region in which we are
interested (5 &r, & 10) the approximation seems to be very good;
this is confirmed by comparing our results with Hubbard's values
(see Ref. 7) which have been numerically evaluated without
approximation.

"This statement should not be taken as general, since the
approximation (12) is not so accurate for this case. In fact,
taking the low-density limit of the correlation energy (5), we have

3 1 " " g,+(I)+g;(I)e.(p,) ——,— dqq du '
4m.4 p 0 2

(1+p)'"+ (1—p)'" ~
2 P

as the exact value, where A was given by Eq. (10). Therefore, in
this limit, s(p) should be

s(p)- —(2e/3)A p,

which is negative, while the approximate expression (18) always
gives positive values.
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as to reverse the enhancement due to the HF term. In
fact, because of the inequality 1n(1+1/x)(1/x for
x&0,

p dN

~(p) &-
(1+44')' 4

(19)

0.046 p4

e,' (0;r,) = +0.0136—,
1+0.326P' r,

(22)

'7 This difference should not be taken very seriously, because of
the approximation (see Ref. 16).

Xo/X&1 —4p.

Therefore, again, the paramagnetic state is locally un-

stable with respect to the spin polarization for p grea, ter
than 3. A more accurate value for this critical point is
found by numerical integration of s(p) to be p=1.25

(r,= 7.51), which is very close to but slightly larger than
the critical point of (15) or (16).'~

I Note added ie proof The .results obtained above are
somewhat sensitive to the accuracy with which we have
treated the effect of higher order exchange terms (ex-
change correlation). In preceding discussions we have
examined this on the basis of Hubbard's calculation. '
However, his scheme~ is not consistent with the physical

requirement that the pair distribution function for par-
ticles of like spin should vanish at the origin. To satisfy
this requirement, it is essential to take the second-
order exchaDge term with the dynamically screened
Coulomb interaction Lsee S. Ueda, Progr. Theoret.
Phys. (Kyoto) 26, 45 (1961)j. This exchange-correla-
tion energy, denoted by e,"(p;r,), can be written down

as three 4-dimensional energy-rnomenturn integrations
of an integrand consisting of the product of four one-

particle propagators, one bare Coulomb potential, and
one dynamically screened Coulomb potential. Using
this fact we can derive the relation of e,'* between the

ferromagnetic state and the paramagnetic sta, te:

e,"(1r,) = e -(0;r,/24").

The explicit evaluation of e,"as a function of r, is very
dificult, so we will estimate this from the results of
Nozieres' and Pines' analysis. 7 The energy e,- consists
of two parts, one arising from the short-range part of
the screened interaction, the other coming from the
long-range part; i.e.,

cars

m (2+P) ln(1+2/P) —2

From Eqs. (21), (22), and (23), we can calculate the
energy difference, c,"(1;r,) 4,"(0;r—,), between the
ferromagnetic state and the paramagnetic state. The
results are 0.0047, 0.0049, and 0.0052 Ry for r, =8, 10,
and 12, respectively. If we make these corrections to
Eq. (11), then the critical value of r, in (15) is shifted
to approximately nine. If we further correct the error
introduced by the approximation (12), it is safe to
conclude that, within the scope of the present treat-
ment, the system becomes ferromagnetic when

(n4*/~)r, & 10. (24) I

Finally, we will make a comment concerning a re-
quirement which more refined theories must satisfy.
From the structure of Eq. (13) or (14) it is seen that
the most important term in the correlation energy is
always of the form —A/r, This r, ' term corresponds
to the leading term in the usual low-density expansion.
It is remarkable that even in the intermediate density
region, 1&r,&10, the most important term is given in
this form. We should note that in order to obtain this
form it is essential to make the analytically continued
function from a complete series of the perturbation
expansion. This kind of situation must be preserved in
more reined theories. It is never reasonable to describe

physical quantities in terms of the "bare" Coulomb
interaction. We should always take the dynamically
screened Coulomb intera, ction as the real interaction of

physical meaning; this is in accordance with the fact
that this screened interaction itself is obtained as a.

result of analytic continuation.
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where g is the usual cutoff parameter of the plasma
oscillations. As a function of r„P for the paramagnetic
state may be determined by Ferrell's relation fR. A.
Ferrell, Phys. Rev. 107, 450 (1957))


