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Theory of Melting

DORIS KUHLMANN-YVILSDORF

School of Fngsneering and Applied Science, University of Virgsnsa, Charlottesville, frrsginsa

(Received 12 April 1965; revised manuscript received 6 October 1965)

A, theory of melting is presented. It is based on the contention that melting occurs when the free energy of
glide dislocation cores becomes negative. When this happens, dislocation cores are generated to fill the
crystal to capacity. In the process the crystal absorbs a considerable amount of latent heat and loses all
permanent resistance against shear forces. Equations are derived to relate the temperature of melting as
well as the latent heat of fusion to known crystal properties, in addition to two parameters, n and X.These
are related to the energy and dilatation of dislocation cores, respectively. Quantitative comparison of the
theory with experimental data allows evaluating not ss and X directly, but n/q and X/q, with q the highest
shear strain that can be supported by a defect-free crystal of the substance considered. From the geometry
of dislocation cores, X/q can be calculated independently within rather narrow limits. For a wide variety
of elements, including argon, typical fcc,hcp, alkali and bcc metals, silicon, and germanium, the values of X/q
derived from the present theory agree very well with the values derived from core geometry. The data for
ss/q indicate that the latent heat of melting is nearly the same multiple of modulus of rigidity times the
atomic volume, independent of crystal type. It is shown that the theory predicts a first-order transition.
Suggestions are made of how the theory could be employed in investigations into properties of ideal crystals,
crystal defects, liquids, and the electronic structure of atoms.

dislocation cores, nor the volume dilatation due to them,
have as yet been evaluated accurately, there is general
consensus that to a good approximation, the core
energy per unit length of dislocation line U, can be
written as

1. INTRODUCTION

U.= (Gb'cr)/4sr.

Here C is the modulus of rigidity, b is the Burgers
vector of the dislocation, and o. is a numerical factor,
not far from 1, say, between 2 and. 4, more or less. The
parameter 0. should almost certainly depend on crystal
type, and one may expect it to rise with increasing
width of the dislocation core, since the number of atoms
included in the core does, of course, rise with the core
radius.

In the majority of crystalline substances, anisotropy
cannot be neglected. Correspondingly, G should be
exchanged for a combination of the elastic constants,
as, for example,

2. BASIC PROPERTIES OF DISLOCATION
CORES

a. Core Energy

It has been known for a considerable time that about
10% of the mechanical energy of a normal glide
dislocation resides in its core, namely, that region very
close to the dislocation axis which is so severely strained
that Hooke's law does not apply. It is also well known
that, because of the severely disturbed condition of the
core, it is a center of dilatation. Consequently, the
vibrational entropy of the dislocation core is not
negligible.

Even through neither the mechanical energy of

Cyi —C12
G=3C44

4c44+ c11 c12

for any dislocation on the close-packed planes in fcc
crystals as proposed. by Mackenzie and Mott, ' or
Ls c44 (crt cts) )"s for screw dislocations with rs(110),
—',(1120) Burgers vectors respectively, on the close-
packed plane of fcc and hcp crystals. '

In the present paper, this refinement has been
neglected, , partly for convenience sake, partly because
the correct parameters are not easily available for the
less intensely studied crystals, and partly because it is
not yet clear what precise combination of elastic
constants would be the most appropriate. It should be
recognized, though, that the said refinement will be
mandatory in detailed considerations of the theory
presented here.

' J. K. Mackenzie and N. F. Mott, Proc. Phys. Soc. 63, 411
(1950).' N. F. Mott, Proc. Roy. Soc. A215, 1 (1952).' J. Rothstein, J. Chem. Phys. 23, 218 (1955).

4 S. Mizushima, J. Phys. Soc. Japan 15, 70 (1960).' A. Ookawa, J. Phys. Soc. Japan 15, 2191 (1960).
M. Siol, Z. Physik 164, 93 (1961).

"Note added sn proof. The author is indebted to Professor
F. R. N. Nabarro, University of the Witwatersrand, Johannes-
burg, South Africa, and Professor A. Seeger, Stuttgart, Germany,
for stimulating discussions and for directing her attention to the
theories by Rothstein, Mizushima, and Siol. s A. J. E. Foreman, Acta Met. 3, 322 (1955).
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'HE problem of why crystals melt and how melting
temperature and latent heat of fusion are deter-

mined has until now found no satisfactory solution. In
the following, a theory will be proposed to account for
the phenomenon of melting qualitatively and quantita-
tively. This theory is based on the contention that
melting occurs when the free energy of dislocation cores
assumes negative values. Some of the ideas presented in
this paper were earlier discussed in papers by Mac-
kenzie and Mott, '' Rothstein, ' Mizushima, ' Ookawa, '
and Siol. ' "
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b. Volume Dilatation in Dislocation Cores

The dilatation in the core may be estimated as
follows: Consider a dislocation on the close-packed
plane of a fcc or hcp crystal, with a Burgers vector
equal to the nearest-neighbor distance. This is the most
common, and at the same time most important disloca-
tion in the named structures, and it is believed to be
the decisive one also in the present theory. The path on
which the atoms on one side of the glide plane move
relative to the atoms on the other side, when a disloca-
tion moves past, can be either of the two extremes
indicated in Fig. 1(a), or, corrunonly, will be inter-
mediate between these. Since the crystal is close packed,
the two atomic planes facing each other across the slip
plane must thereby "ride up" against each other, i.e.,
must slightly increase their normal distance of
separation. If the lower, straight path is taken, then
the greatest separation occurs in the position mark. ed
AA, which is sketched in cross section in Fig. 1(b).
As seen, the distance of separation between the planes
in this position is (11/12)'I'b, with b the Burgers vector,
as before, compared to the normal separation between
neighboring (111}Planes of (sz)'I'b. Thus the sePara-
tion has increased by

Ah = P(11/12)'~' —(-') '~s7b—0.141b.

This riding-up effect becomes marked at the rim of the
dislocation core, reaches its maximum at the center,
and drops again to almost zero at the other rim of the
core. Therefore, if the radius of the core on the slip
plane is given by ro, the volume increase due to a core
segment of length b, becomes AU—robhh.

Previously, ' rs was evaluated as rs ——qb/2sr. Here q

is a numerical parameter, characteristic of any given
crystal structure, fairly independent of the special
substance consid. ered. Briefly, 1/q is the largest shear
deformation, parallel to the crystallographic slip plane,

which the dislocation-free crystal could support. For
the close-packed planes in fcc and hcp crystals, q is
believed' to be not far from 30, while it is estimated at
about 15 for bcc crystals, and 7 for crystals with the
diamond structure. Thus, d, V=0.141(qbs/2sr)=1. 0n, is
the dilatation in the core per length of b for the lower
path of Fig. 1(a), introducing s, =bs/V2 as the space
available per atom in the close-packed structures.

If, on the other hand, the atomic path goes via the
stacking fault position, then maximum dilatation occurs
in Position BB [Fig. 1(c)7. Now Ah=(%3/2 Q—ss)b—0.049b, so that AV in this case becomes DU=0.33v,.
Actually, this latter value will never be reached since
it requires a very widely split dislocation, in which
case one must consider the two partials separately.
For each of these, (b„(= jb(/3. Thus AV=(2/V3)
&(0.33v,=0.38', is the smallest value hV could assume
in fcc and hcp metals on the basis of this consideration,
and this will be found only if the stacking fault energy
is quite low. In addition, some volume dilatation must
occur because of non-Hookean behavior, i.e., because
of the quadratic and higher terms in the stress-strain
relationship. Conversely, the riding-up eGect considered
here may be slightly decreased through compression of
the atoms.

In non-close-packed crystals, the volume dilatation
presumably is smaller, mainly because q is smaller so
that the cores are narrower. This decrease in hV must
be partly counterbalanced by the greater intensity of
the stresses in the cores, causing a greater contribution
due to anharmonicity. Still, in erst approximation, we
expect AV/q to be roughly constant for fcc and hcp,
with anharmonicity causing A V/q to be a little higher
in diamond structures, and bcc lattices having similar
values of AV/q as the others, probably intermediate
between fcc and diamond structures.

In summary, then, and introducing the parameter

(a) (b) (c)

Fro. t. (a) Geometry of the path taken by atoms in the core of a moving dislocation on a close-packed plane in either hcp or fcc
crystals. The burgers vector is the nearest-neighbor distance in the horizontal direction. The upper, kinked path would be taken if the
stacking fault energy is very low, while the lower, straight path refers to a very high stacking fault energy. Actual atomic paths are
intermediate between the two extremes drawn. (b) Vertical cross section through the atomic arrangement when a moving atom has
reached the line AA marked in (a), for the case of a very high stacking fault energy. (c) As (b), but referring to line BB at very low
stacking fault energies.

' Doris Kuhlmann-Wilsdorf, Phys. Rev. 120, 773 (1960); J. App]. Phys. $6 637 (y96S~
' J. K. Mackenzie, Ph.D. thesis, Bristol, l949 (unpublished); see A. H. Cottrell, Djslocatsoas and p&as~sc pforo sn Crystals (The

Clarendon Press, Oxford, England, 1953), p. j.o.
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X=8 V/s, as the dilatation per length of b due to
dislocation cores in multiples of b s/V2, we find that X
should be no less than —0.38 in close-packed metals,
rising with increasing stacking fault energy to, say, 1
or perhaps slightly more. In other crystals, X should be
lower than in close-packed crystals, dropping with
decreasing values of the parameter q, but such that
X/zt is quite slowly increa, sing with decreasing values of
q. The value of X/q should range between 0.013 and

0.032 in close-packed metals, as calculated above,
and should be slightly higher in bcc and diamond-type
structures, in that order.

c. Vibrational Entropy of Dislocation Cores

The vibrational entropy of a crystal increases with
increasing volume. According to the Gruneisen relation-
ship, vibrational modes of original frequency v assume
the frequency v' if the crystal volume is increased from
V to V' such that (v' —v)/v= —g(V' —V)/V, where g
is the Gruneisen constant. The vibrational entropy of
the crystal is thereby changed by

3Ã
f5=k g ln(v'/v),

to be summed over the 3E vibrational modes of the
crystal containing X atoms. Since the frequency
changes, as well as the volume changes to be considered
are small, we may write

ln(v'/v) = 1ng(v —Av)/v)= —hv/v

(V' —V)/V=AU/U, i.e. , ln(v'/v) =g(AU/V)

5,= 3gkX/b (2)

"The use of Kq. (2) in the further development of the present
theory does not imply that the vibrational modes affected by the
presence of a dislocation core are necessarily distributed. The
reason is that the size of the crystal volume considered, and thus
the number E in the above derivation, does not appear in the
final equation. Thus the modes could well be localized, and
correspondingly a rather small volume around a single core would
have to be considered, but the final equation arrived at would be
the same. In the present theory, moreover, no difhculties arise
due to the uncertainty as to how far reaching the influence of
cores on the lattice vibrations is, because the melting temperature
depends on the formation of larger clusters of close-packed
dipoles (see Sec. 4.a). Within these clusters, the volume expansion
must be nearly uniform, and therefore, Eq. (2) must apply to a
good accuracy.

65=3gEkhV/V.

A crystal containing a total length of p, of dislocation
cores per unit volume is, as we saw, dilated such that
hV/V=Xp, /1Vb. Here X is the same number derived
in the previous section and found to lie between 0.38
and 1.0 in close-packed crystals. Thus the entropy per
unit length of dislocation core is found as S,=3gÃk
&& (AV/U)/p„where AU/V= Xp,/cVb, i.e.,m

d.. Thermal Generation of Dislocation Cores

Dislocation cores must be generated spontaneously,
as soon as their free energy, F,=U,—TS„becomes
equal to or smaller than zero. Therefore a critical
temperature must exist beyond which dislocation cores
are generated freely, given by

U, Gb'n
T.=

5, 12m gkX

The result of the prolific generation of dislocation
dipoles would be the absorption of a considerable
amount of latent heat and the complete loss of any
permanent resistance to shear stresses. Most other
important crystal properties would be changed to only
a moderate extent, except that diffusion would be
notably enhanced since all of it would now be "pipe"
diffusion.

3. CRITICAL TEMPERATURE OF DISLOCATION
CORE GENERATION

In order to see whether the contemplated dislocation-
core generation could or does tak.e place, the critical
temperature T, must be calculated. To this end, the
requisite data for some important elements have been
collected in Table I. Not all of the quoted values are
altogether reliable, and particularly the values of G
(taken at the melting point) may be partly in error by
up to 30%.The various parameters have been obtained
from Refs. 11 to 16. Besides the quantities discussed,
the molar latent heat of fusion has been listed. under
the symbol Lv, and also listed are the ratios Lsr/Tzzr.
According to Richard's rule, Lzr/Tzzr usually has a
value near 2, as is also evident from the values of Lsr/T~
given in Table I.

In the column labeled X/u= (X/n) T,/Tsr, the
calculated values of (X/cr) T,=Gb'/12zrgk LEq. (3)j
have been compared to T~, the temperature of melting.
The ratio (X/oz) T,/Tsr is seen to lie between the extreme
values of 0.21 and 1.58, with most values at about
0.5&0.2. Evidently, then, if X/n had assumed these
values, the critical temperature T, would be the
temperature of melting. Since we saw above that 0.38
&X&1 and -', &cr &4, so that X/ct should lie in this very
range of values, it is a most tempting idea indeed to
equate T, with 1'~. Not only that, but, by the fol-
lowing argument, the hypothesis that melting occurs
when the free energy of dislocation cores becomes zero,
can be virtually proven correct:

'~ Metals IIandbook, Am. Soc. Metals, Vol. 1, 1961.» A. Kucken, Grzzndriss der Physi kalzschen Chezni e (Akad.
Verlags Ges. , Leipzig, 1944)."G. Masing, Iehrhzzch der aligezneznen ivlesallkzznde (Springer-
Verlag, Berlin, 1950)."E.R. Dobbs and G. O. Jones, Rept. Progr. Phys. 20, 516
(1957).» N. I'. Mott and H. Jones, The Theory of the Properties of
Metals aed Alloys (Clarendon Press, Oxford, England, 1936).

rz 3.R. T. Frost, Progr. Metal Phys. 5, 96 (1954).
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TABLE I, The relevant experimental parameters of 20 different elements, namely, G the modulus of rigidity, b the distance between
nearest-neighbor atoms, g Griineisen s constant, Tsr the temperature of melting, Isr the molar latent heat of melting, and Ljrr/Tsr the
entropy of melting, together with calculated values of the basic parameters employed in the present theory, namely, ~ the extra energy
possessed by unit length of the most common dislocation core in units of Gb'/47r, and X the volume of dilatation per unit length of the
same dislocation core, in units of b /v2. The listed values of X/n have been calculated from the hypothesis that the temperature of
melting is that temperature at which the free energy of the cores of the most common dislocations vanishes. From Lindemann s relation-
ship' it would follow that g(X/a) is nearly constant. The parameter X/q cannot only be calculated directly from the present theory,
yielding the values listed, but also from geometrical considerations. The latter yield 0.013&X/q&0.032 for fcc and hcp substances,
and in average slightly larger values for bcc and diamond structures, in that order, as explained in Sec. 2b. (The number of significant
figures retained is not meant to imply the corresponding accuracy. )

Sub-
stance Lattice

10-» ab
LAgb Pdyn/cm~ j g

cal
Lv

t'Kg mole

I-sr/Tsr
cal

X/n
mole'K = T, (X/n)/Tu n X X/q gX/o

Ar
Al
Cu
Ag
Au
Ni
Pb
Pt
Co
Mg
Z11
Cd
Ll
Na
K
Fe
Mo
WV

Ge
Si

fcc
fcc
fcc
fcc
fcc
fcc
fcc
fcc

fcc(hcp)
hcp
hcp
hcp
bcc
bcc
bcc
bcc
bcc
bcc

diamond
diamond

3.74
2.93
2.60
2.95
2.94
2.54
3.54
2.83
3.56
3.26
2.72
3.04
3.09
3.80
4.72
2.53
2.79
2.80
4.09
3.92

0.10 2.8
1.90 2.17
2.78 1.96
1.76 2.40
1.69 3.03
4.50 1.88
0.45 2.73
3.73 2.54
4.56 1.87
1.24 1.51
2.65 2.01
1.72 2.19
0.43 1.17
0.34 1.25
0.13 1.34
5.0 1.60
7.3 1.57
9.09 1.62
2.96 2 (?)
3.82 2 (?}

84
932

1356
1233
1336
1723
600

2045
1.764
923
692
594
452
370
337

1807
2900
3660
1231
1694

280
2310
3100
2690
3050
4240
1160
5300
3440
1750
1740
1380
690
630
570

3658
6700
8100
8100

12150

3.33
2.48
2.29
2.18
2.28
2.46
1.93
2.59
1.95
1.90
2.52
2.32
1.53
1,70
1.69
2.02
2.31
2.21
6.57
7.18

0.43
0.45
0.35
0.29
0.21
0.44
0.24
0.31
0.45
0.60
0.74
0.72
0.46
0.78
0.58
0.54
0.67
0.65
1.58
1.30

2.09 0.90 0.030 1.20
1.89 0.86 0.029 0.98
2.48 0.88 0.029 0.69
2.33 0.68 0.023 0.70
2.77 0.57 0.019 0.62
2.23 0.98 0.033 0.83
2.26 0.53 0.018 0.65
2.45 0.77 0.026 0.80
1.75 0.78 0.026 0.83
1.37 0.82 0.027 0.90
1.12 0.83 0.028 1.48
1.12 0.80 0.027 1.56
0.98 0.45 0.030 0.54
0.61 0.47 0.031 0.97
0.75 0.44 0.029 0.78
0.81 0.44 0.029 0.86
0.76 0.51 0.034 1.05
0.73 0.47 0.032 1.05
0.17 0.27 0.038 3.16
0.22 0.29 0.041 2.60

See Ref. 17.
b Values at or near the melting point.

&Ye shall postulate that the melting point is not

equal to the critical temperature T, at which unlimited
generation of dislocation-core dipoles occurs. If this is
so, a,nd seeing that T, involves the two parameters I
and n, which depend in complica, ted wa, ys on stacking
fault energy, critical shear deformation, and probably
still other crystal properties, we must conclude that
T, must be smaller tha, n T~ at least in some cases.
The result of this occurrence would be that the crystal,
even though not molten, would lose all permanent
resistance to shear stresses and would absorb a consider-
able amount of latent hea, t. At a higher tempera, ture it
would then melt. Such behavior is entirely unknown,

a,nd no two classes of substa, nces exist, namely, those
which lose their resista, nce to shear through melting
and those which lose it through dislocation-core
formation followed by melting. Consequently, the above
postulate must be wrong and we conclude that, indeed,
melting is a phase transformation occurring when the
free energy of glide dislocation cores reaches zero. "

In the subsequent sections, this conclusion is exam-

ined in qualita, tive and quantitative detail.

re~ Xofe added ee proof. Liquid crystals are seen as substances
for which the relevant parameters, and thus T„have widely
different values with respect to different directions.

4. QUALITATIVE COÃSIDERATIO&S
ON MELTING

a. Approach to Melting

The free energy of even the smallest isolated glide
dislocation loops and of isolated narrow glide dislocation
dip oles contains a significant contribution due to
their elastic stress field. The idealization tha, t only
the core energy needs to be considered, which is the
basis of Kq. (3), holds true only for large groups of
closely spaced dipoles which, through their mobility,
screen each other's stress fields. The energy of the un-
screened stress field at the surfaces of close groups of
dislocation cores is thus seen as the surface energy
between a crystal and its melt.

At the melting point, the chemical potentials of
melt and crystal phase must necessarily be the same,
since at that temperature these two phases are in
equilibrium. In the framework of the present theory,
this requirement is fulfilled automatically, as the melt
is generated from the crystalline phase by the addition
of dislocation cores whose free energy vanishes at the
melting point —by definition of the temperature of
melting.

While it has not yet been possible to develop a satis-
factory detailed treatment of the melting process, it is
easily shown that it must be a first-order transition.
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Namely, the lowest energy configuration in which a
section of dislocation core could arise through thermal
activation within a volume element of undisturbed
crystal is a glide dislocation loop of radius R= ra= gb/27'.
At the melting point, the contribution of its core to the
free energy of the crystal, excepting configurational
entropy, vanishes according to the present theory.
The associated elastic stress field contributes a strain
energy of magnitude"

)Gb'21! (2—v)/4(1 —
t )g ln(SR/ro —2)

= LGb'q(2 —p) ln6$/8~(1 —v),

but virtually no vibrational entropy. Hence, the con-
centration of such loops (with any one combination of
slip plane and Burgers vector) at the melting point is
found as

Cr, = exp) —3qgX(2 —v) ln6/2n(1 —v) j,
or, Cr, &exp( —30) according to the data of Table I.
Thus the concentration of dislocation cores in the
crystal at its melting point is vanishingly small, pre-
cluding any significant interaction between them. Con-
versely, in the liquid at the melting point, the regions
of order to serve as nuclei for solidification must be
similarly small, since at their surface unscreened stress
fields of similar energy must exist.

The fact that superheating beyond the Inelting point
is by far less common than supercooling is consistent
with the preceding consideration. Namely, slip motions
by ordinary glide dislocations, particularly where they
are joined at nodes, can generate interpenetrating close
groups of dislocation dipoles. Hence, dislocation nodes
will act as nuclei for melting. These are almost uni-
versally present in actual specimens, and only particular

specimens not containing nodes (and perhaps other
similarly complex crystal defects) could be expected to
show superheating. Corresponding nuclei of crystal do
not exist in the melt as considered in this theory and,
therefore, supercooling can be accounted for.

In the present paper, configurational eiitropy has
been disregarded throughout, except for that contribu-
tion which is due to the number of ways in which a
small concentration of cores can be arranged in a
crystal. The reasons for this procedure are these: The
atoms within an isolated stationary core have fixed
equilibrium positions with respect to the surrounding
lattice, and consequently do not contribute to configura-
tional entropy. Nor do the cores in the liquid have
configurational entropy since they fill the crystal to
capacity and actually have lost their identity. However,
in the melt the atoms themselves greatly contribute to
configurational entropy since the reference lattice has
been destroyed. Therefore, as long as only the chemical
potential of the solid is considered, in combination
with the latent heat of melting, as is done in this theory,

"Y.T. Chou and J. D. Kshelby, J. Mech. Phys. Solids 10, 27
(1962).

configurational entropy may be disregarded. This is at
once a strength and a weakness of the theory. On the
one hand, numerical results can be derived without
involving configurational entropy which cannot readily
be calculated, while at the same time the deeper under-
standing of the liquid state would doubtlessly require a
good grasp of its configurational entropy.

It is somewhat problematical to what extent the
liquid can be regarded as a solid filled with dislocation
cores. Certainly no ordered structure of mutually
perpendicular grids of dislocation cores is envisaged,
but the cores interpenetrate to the point that single
cores can no longer be distinguished. However, the
state of the average atom in the melt is believed to be
similar to that of an atom at the intersection point of
two or more cores.

b. A110ys

The influence of alloying on the temperature of
melting is partly governed by the accompanying
changes in the values of G and g. However, very often a
much greater influence will be exerted via the param-
eters n and X.

One may immediately conclude that in dilute mixed
crystals 0. is bound to be smaller than in the pure crystal,
since every type of binding between dislocation cores
and substitutional as well as interstitial atoms decreases
the core energy. Therefore it is not surprising that the
usual effect of alloying is to decrease the melting point,
i.e., to decrease the solidus temperature. Similarly, one
can conclude that, in close-packed metals, the parameter
Xwill usually be decreased through alloying. The reason
lies in the tendency of alloying to decrease the stacking
fault energy, and, as discussed in Sec. 2b, the parameterI is expected to be near 0.38 for close-packed metals
with very small stacking fault energy, rising to about
1.0 at the highest stacking fault energies. Thus, if not
overbalanced by an increase in 0,, the effect of alloying
on X must be to raise Tj/I.

The above considerations thus suggest that, usually,
alloying decreases T~, but that alloying of fcc or hcp
metals, particularly with substances of similar atomic
radii so that Cottrell binding is slight, may raise the
melting point. By scanning a considerable number of
constitution diagrams of lnetals, the above conclusion
appears to be confirmed. Namely, only the following
cases were found in which dilute mixed crystals exhibit
a higher melting point than the pure metal: Au+Pd,
Au+Pt, Cd+Mg, Co+W, Cu+Co, Cu+Fe, Cu+Ni,
Cu+Pd, Cu+Pt, Pb+Cu, Zn+Ag, Mo+W, and
Zn+Cu. With the exception of Mo+W, for which the
solidus line is almost straight between the twomelting
temperatures, suggesting an influence on T~ via G, all
combinations listed concern close-packed metals, sus-
ceptible to the described effect of the lowering of the
value of X to raise T~. The case of Mo+W is not
surprising either, since these two metals form a contin-
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uous range of mixed crystals, and since, according to
Table I, their respective X/n values are closely alike.

Clearly, also in the other cases, the inQuence of G on
T~ must be at least partly responsible for the positive
value of dT~/dc, but at least it is gratifying that no
violations of any of the above considerations have been
found. It would therefore seem feasible to study the
magnitude of Cottrell interaction energies, as well as
the inQuence of alloying on the stacking fault energy,
via measured values of dT~/dc.

c. Amoryhous Substances and Organic Crystals

Materials, in which for geometrical or other reasons
dislocations cannot form, do not show a definite
temperature of melting. In particular, dislocations
cannot be generated in amorphous substances, and
correspondingly these exhibit no melting point. Con-
versely, we may say with better logic that in the
amorphous state —as in the liquid —the density of
dislocation dipoles is extremely high already. The effect
of temperature on amorphous materials then consists
solely in increasing the mobility of the dislocation cores
in them.

Dislocations cannot be formed readily in crystals in
which the smallest possible Burgers vector for glide
dislocations is large, mainly because U, is proportional
to O2. This applies to many crystals of organic substances
and explains why these frequently decompose before
their melting point is reached.

d. Sublimation

The argument was made above that if T, and T~
were independent temperatures, then T, should at
least occasionally be smaller than T~ and therefore two
classes of substances should exist: (1) substances which
lose their resistance to shear because their temperature
rises above T, even while T~ is not reached, and (2)
substances which melt before T, is attained. Because
of the fact that two such classes of substances do not
exist, and that the anticipated behavior of a crystal
when T, is exceeded is that observed on melting, we
concluded that T~ and T, are one and the same
temperature.

With respect to Ty, the temperature of vaporization
as a function of pressure, however, the anticipated two
classes of substances, those with T,(T~ and for which
T,& T~, do indeed exist. The former are the substances
exhibiting the usual transition solid+-+ liquid +-+ vapor,
the latter evaporate before melting. Into this group
belong many inorganic compounds, which is not
surprising because of the large lattice constants and,
hence, large Burgers vectors, in these.

5. QUANTITATIVE ANALYSIS

a. The Latent Heat of Fusion

these are in contact everywhere, the molar latent heat
of fusion may be given as

L~= U.p.(A/d), (4)

pc=
2rpb qb'

Combining Eqs. (1), (4), and (S) then yields

3AGn
(6a)

which may be rewritten as

with &V Avogadro's number and p the "volume oc
cupancy" of the crystal, since b is generally equal to
the atomic diameter, leading to A/(Ed) =7rb'/6p.

It is interesting to note that Eq. (6a) can be derived
by an alternative path: In the melt, each atom partakes
in three mutually perpendicular dislocation cores. It
therefore posesses three times the energy of an atom in
the center of a dislocation in the solid, which equals,
say, twice the energy U, divided by the number of
atoms in the core. The number of atoms partaking in
unit length of core may be taken as 4rob/v„where v,
is the space available per atom in the crystal. Thus

L~ 6U,v, 3Gnv,

E 4rpb 4q
(6b)

It is v, =A/dE, while the volume of each atom equals
v= (47r/3) (b/2)'=7rb'/6 The "volume . occupancy" p
is defined as space occupied by the atoms divided by
space a,vailable, i.e., p=v/v„so that v, =v/p=vb'/6p
=A/dX. Hence

3AGn mGb'aE

where p, is the density of the dislocation cores in the
liquid (given as line length per unit volume), A is the
atomic weight, and d is the mechanical density.

in Sec. 2b above, the radius of a dislocation core in
its slip plane was introduced as ro qb/2——v. L.ogically,
then, on any given atomistic slip plane the dislocation
cores cannot be more closely spaced than a distance 2rp
apart. The normal distance of separation between
adjacent cores will be about equal to the atomic
diameter, with the core centers staggered, of course.
Finally, the shears leading to the cores are acting
independently on three mutually perpendicular planes,
corresponding to the shear stress components r „, 7„„
and r„.Thus we expect three times the core density
that could be achieved in one dimension, and hence
obtain

3 3'

Employing the model that the liquid is but a solid
with suc}l a high concentration of dislocation cores that as before.

(6c)
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c. Correlation between the Entropy of Melting
and Ductility

Masing (Ref. 13, p. 214) has reported that G.
Tarnrnann believed the low value of L~/T//r in metals
(as compared to organic crystals in which L//r/Tsr often
lies between 12 and 15) to be correlated with their
greater ductility. Subsequent tests by Masing and
Miething on organic crystals apparently confirmed that,
indeed, a correlation between the value Lsr/T//r and
ductility exists, inasmuch as organic crystals with low
values of Lsr/Tsr could. be readily deformed, while
those with high values of L//r/T//r were brittle up to near
the melting temperature. This report, even though not
detailed enough to permit a quantitative analysis, is
highly interesting in connection with Eq. (8), according
to which L//r/T~ is inversely proportional to q, namely,
as shown in an earlier paper, ' r&, the stress required to
move glide dislocations, the so-called Peierls-Nabarro
stress, is inversely proportional to q2. It was given' as
r& =Gv./4/l'. Hence one may write

L//r 3rr /sgXR(rD

p &G
(9)

It would be interesting to make experiments on various
organic crystals —in which one may expect r& to govern
the yield stress —in order to test Eq. (9).

d. Lindemann's Formula

Lindemann" has derived an empirical relationship
between the temperature of melting, the Debye temper-
ature 0'~, the atomic weight A, and the molar volume V,
of the form

—
Q~ 2+ Vs/3/C 2 (10)

where Cl, is a numerical constant ranging about 140
for fcc metals" when expressed in cgs units. One may
rewrite this formula by employing the relationship"

Q~
—C g—1/3d —1/6K—1/2f—1/s

~s F. A. Lindemann, Z. Physik ll, 609 (1910).

b. Richard's Law

Of considerable interest in a theory of melting must
necessarily be the ratio of L~/Tsr. For many metals,
this is known to be close to the gas constant E., i.e., close
to 2 cal/mole 'K, a relationship known as Richard' s
law. Combining, then, Eqs. (3) and (7), one obtains

3+gX
E=BE.

T//r Tg 2pg

For fcc metals, for which Richard's rule is rather well
obeyed, 3v'—q and. g

—2, so that, with P=ss, one
obtains 8—-', X. As argued in Sec. 2b above, 0.38&X
&1.0 so that 8 is expected to be near unity, in agree-
ment with Richard's law.

in which d represents the density, E the compressibility,
and 'f is a function of Poisson's ratio, such that, approx-
imately, f=2(K'G) s/'. The constant Cr/ has the value
3.6X 10 ' in centimeter-gram-second units. ~ith K'/'f'/'
thus equal to about 2'/'6 —'/' one obtains

IQ~ 2—&/scag —1/sd —1/6G1/2

Inserting Eq. (12) into Eq. (10) yields

2' 1/3 P'2/8

~M
22/3C 2'/3

(12)

(13)

This may be compared with Eq. (3), which renders

X 10' ~y
gX

in good agreement with Eq. (14) since n//gX is not far
from unity.

The implication that g(X/n) should be nearly
constant for those substances for which Lindemann's
formula holds, seems to be ful6lled, as seen from Table I.
One should remember, though, that an approximation
was made when putting f= 2/(KG)'/', so that O~D ~ G'/'

while in reality O~z& is also a function of Poisson's ratio.

e. Thermal Expansion at the Melting Point

For typical metals, the total thermal expansion
between absolute zero temperature and the melting
point amounts to about 7%%u~. This relationship was
first noted by Gruneisen in 1910. On the basis of this
empirical relationship, it has often beens urmised that
a critical amplitude of vibration of the atoms is required
for melting, which also is the underlying idea in
Lindemann's relationship. In the framework of the
present theory, the Gruneisen relationship 6nds the
following explanation:

The mechanical compressibility E, Gruneisen s
constant g, the relative thermal expansion lLv/v, and
the thermal energy density stored in the vibrational
modes E are related as

Av/v KgZ. — (16)

At high temperatures, E=3ET/V, where R is the gas
constant and V the molar volume, as before. Experi-
mentally, then, it is found that

Dv/vr~ —K3gRT//r/ V—0.07 . (17)

Since the compressibility is connected to the modulus
of rigidity as K=3(1—25)/2(1+I)G, where /s is

Remembering that V=A/d and that rrb'/6p=A/dlV,
as derived in Sec. Sa above, we anally obtain

Cg 2'
T Gb'=2 X10"Gb'.

22/3G s6p
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This is to be compared with

Gb' n

3gk 4mX
(19)

according to Eq. (3).
For fcc metals obeying the Gruneisen relationship,

s.(1+re)/9p(1 —2e) has values about 3, while X/n is
about 0.4, rendering n/4rrX —0.2, so that one obtains

n rr(1+re) —0.07,
k e Pr~ 4vrX 9p(1—2rr)

in agreement with experiment. Moreover, as suggested
by Eqs. (18) and (19), (n/X)/L(1+ n)/p(1 —2n) j tends
to be constant. It ranges from 0.24 to 0.49 with a mean
of 0.36 for the 17 metals listed in Table I, i.e., the
spread is in the ratio of 1:2.0 from the lowest to the
highest value found. By contrast, (1+m)/(1 —2e)
ranges in the ra, tio 1:4.1, and X/n in the ratio 1:3.7.
Employing the mean value of 0.36, one obtains
(»/e) &~=8.2%.

For the fcc metals, the scatter in the values of
(n/X)/$(1+I)/p(1 —2N) j is still smaller, ranging
between 0.38 and 0.48, i.e., in the ratio 1:1.28 with the
mean at 0.43. This scatter is smaller than one would
have expected in view of the uncertainty in the experi-
mental values of G and in view of the fact that anisot-
ropy was not taken into account. The inference is that
the latent heat of melting, as well as the energy in the
dislocation core, might better be expressed in terms of
the compressibility E, rather than the modulus of
rigidity G, as done in this paper.

6. NUMERICAL RESULTS AND DISCUSSION

a. General

With the parameters listed in Table I, and employing
the theoretical relationships for LM and L~/T~ LEqs.
(7) and (8)), the values of n and X have been calculated
for a wide variety of elements as listed in Table I.
The melting temperatures involved ranged between the
extreme limits of 84 and 3660'K, the latent heats of
fusion between 280 and 12 150 cal/mole. As may be
seen, the values obtained for X, the volume dilata-
tion due to a length b of dislocation core in units
of b'/V2, and for n, the numerical factor proportional to
the energy per unit length of dislocation core, are all
within the expected ranges. Perhaps the values for n
in fcc metals are somewhat on the large side, but they
are not unreasonable.

Most remarkable is the degree to which the derived

Poisson's ratio, and since V=2/d =ribs/6p, as
introduced in the preceding sections, we may rewrite
Eq. (17) as

Gb' m(1+m) (»
~M

3gk 9p(1—2n) 5 e

values of X and X/q conform to the theoretical predic-
tions set out in Sec. 2b. It should be realized that these
values are subject to less uncertainty than those of n and
X/n, since they do not depend on G, the least reliably
determined parameter. All derived values for X in
close-packed metals, given in Table I, range between
0.53 and 0.98, while in Sec. 2b it was calculated from
core geometry, that 0.38&X&1.0, with the low values
applying only if the stacking fault energy is very low—a
condition not fulfilled for any pure fcc or hcp metal
investigated so far. To some extent, this very close
agreement must be fortuitous, since, certainly, the
theoretical relationships would admit to some corrective
factors of moderate magnitude. It should be emphasized,
though, that throughout this investigation no attempt
whatsoever has been made to make the data conform
with the theory, and vice versa. The formulas presented
are those which were deemed to be the most reasonable,
and they have not been changed subsequent to their
original derivation. Only after the theory had been
developed, including the geometrical relationships
pertaining to the parameter X, and including all propor-
tionality factors, have any quantitative calculations
been performed. Therefore, the fine agreement between
the expected values for X, X/q, and n and those derived
from experimental data on the basis of the present
theory seems particularly significant.

b. The I'arameters X, n, and X/n in Different
Crystal Tyyes

Basically, neither X nor n can be derived from
experimental data, but only X/g and n/q. Because the
latter parameters actually have even more physical
significance than X and n singly, and because of the
uncertainty relating to the actual values of q, this is
most welcome indeed. However, we shall also discuss
X and n by themselves, assuming q= 30 for fcc and hcp,
q= 15 for bcc, and q= 7 for diamond-type substances.

As demanded by the present theory, the parameters
X and n (Table I) are grouped according to crystal
types. For clarity, this aspect has been summarized
and is presented in Table II. From it we see that,
obviously, n changes from its highest values applicable
to fcc metals, with a mean of 2.25, to a lower range of
values with a mean of about 1.2 for hcp metals, to a still
lower range centered about 0.78 for bcc metals, and to
about 0.2 for silicon and germanium. This trend is, of
course, consistent with the expectation that the
dislocation energy (encompassing the energy of all
atoms within s, strip of 2ro width) rises with rising ro.
Still, the magnitude of the change of n with lattice
type —and thus with q and, through q, with ro—is
larger than had been originally anticipated. Simple
elasticity theory would. have n independent of ro. '
(We may note that q=30 for nominally close-packed,

' A. H. Cottrell, Dislocatioszs and PLastzc FLonr irb Crystals
(The Clare@don Press, Oxford, England, 1953).
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TABLE II. Summary of the numerical results of Table I. A constant value for o./Pg would indicate that the latent heat of melting,
and with it the average extra energy per atom in dislocation cores, is the same multiple of Gb for every substance, independent of the
structure in which it crystallizes. The number of signiicant figures retained is not meant to imply the corresponding accuracy.

Lattice type

fcc (9 cases)

bcc (6 cases)

Value

lowest
mean
highest

Mg
Zn
Cd

lowest
mean
highest

30
30
30

30
30
30

15
15
15

Tsr['I]
84

2045

923
692
594

337

3660

cal

mole

280

5300

1750
1740
1380

570

8100

LM/Tw
cal

mole K

1.93
2.39
3.33

1.90
2.52
2.32

1.53
1.91
2.31

0.21
0.35
0.45

0.60
0.74
0.72

0.46
0.61
0.78

a X X/q

1.75 0.53 0.018
2.25 0.77 0.026
2.77 0.98 0.033

1.37 0.82 0.027
1.12 0.83 0.028
1.12 0.80 0.027

0.61 0.44 0.029
0.78 0.46 0.031
0.98 0.51 0.034

~/q ~/Pq

0.058 0.079
0.075 0.101
0.092 0.125

0.046 0.071
0.037 0.057
0.037 0.051

0.041 0.060
0.052 0.077
0.065 0.096

diamond Ge
Si

1231
1694

8100
12 150

6.57
7.18

1.58 0.17 0.27
1.30 0.22 0.29

0.038
0.041

0.024 0.071
0.031 0.091

but in reality not close-packed hcp crystals, is certainly
an overestimate, if q=30 should be correct for fcc
metals. )

Similary, the X values are grouped according to
crystal type. Still, as explained at the beginning of the
section, the values of X and ot depend on the choice of
the parameter q. More significant is thus the grouping
of X/n values according to crystal type, which also is
apparent from the tables.

c. The Parameter e/Pq

Turning to the primary parameter n/q, we note a
most interesting trend, namely, as may be seen from
Table II, n/q is nearly constant. This would suggest
that the additional average energy per atom in a disloca-
tion core compared to that in the undisturbed crystal
and, hence, also the latent heat per atom of the liquid,
is almost the same multiple of Gb3 for every crys-
tal type. However, if this should be so, not rr/q but
n/pq must be constant. This is indeed nearly the case:
Dividing the respective values of n/q with those of p,
namely p=0.74 for fcc, 0.68 for bcc, 0.34 for diamond-

type lattices, 0.64 for Mg, 0.65 for Zn, and 0.74 for Cd,
we obtain the values for u/pq listed in Table II. These
reflect a scatter of 1:2.5 among all values of cr/pq,
compared to a spread of n in the range of 1:16.3 and of
n/q in the range of 1:3.8. The scatter of the averages of

n/pq among fcc, bcc, and diamond is still smaller,
namely n/pq= 0.08&0.02. (In view of the considerations
of Sec. 5e, the extra average energy per atom may be
closer to a constant multiple of bs/K rather than Gb',
or it may be a combination of the two; possibly not
identically the same combination in the cores and in
the liquid. ) That the latent heat of melting is nearly
proportional to Gb' had earlier been noted by Mott and
Mackenzie' for the case of fcc substances. ' '

"'Pote added in proof. The author is grateful to Dr. P. 5. Rud-
man, Battelle Memorial Institute, Columbus, Ohio, for trans-

d. Comparison between X/q Derived from
the Geometry of Dislocation Cores and

Derived from the Present Theory

With reference to the parameter X/q —which is
not dependent on 6 and therefore may be calculated
with little experimental scatter —we note an amazing
agreement between the values listed in Table I and the
geometrical derivations of Sec. 2b. There it was shown
that, from geometry alone, X/q=hV/qe, =cMbs/27rv,
and that, in close-packed metals, 0.049b& Ah&0. 141b.
The lower limit of hh/b could certainly not be reached.
but must be replaced by 0.049&&0.38/0. 33=0.056, as
was explained. Thus we obtain, from core geometry
and employing v, =bs/v2, 0.056&v2rrX/q&0. 141 or
0.013&X/q&0.032 for close-packed crystals. It was
further stated that the lower values were correlated
with low stacking fault energies, the high ones with
high stacking fault energies, and that for bcc and
diamond-type lattices, the values of X/q should. be
moderately higher, in that order, because of the higher
strain energy of dislocations in these, adding to the
purely geometrical eGect; i.e., the lower q is, the higher
X/q was expected. to be.

In almost perfect agreement with the above expecta-
tions, the fcc and hcp substances in Table I show
values of X/q between 0.018 and. 0.033, while the bcc
metals have X/q values ranging between 0.029 and

mitting to her the manuscript of an unpublished theory of melting
based on a model quite similar to the one employed here. The said
theory demands a proportionality between Gb' and T~, and it is
shown by comparison with experimental values that T~/Gb3 is
nearly constant for a considerable number of widely different
elements and compounds. As seen from Eq. 14, Lindemann's
relationship leads to the same proportionality, while the present
theory yields (Tsr/Gb')(gX/n) constant. Significantly, covalent
crystals, among them germanium and silicon, with the largest
values of gX/a according to Table I, show the greatest deviations
from the average value of T~/Gb' in Dr. Rudman's compilation,
while conforming very well with the present theory, as shown.
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0.034, and the diamond-type substances Ge and Si
render X/q at 0.038 and 0.041, respectively.

Also the predicted correlation with stacking fault
energy is apparent. Actually, the geometry of the core
is not directly determined. by the stacking fault energy

p but by the ratio p/Gb, which we may name the
"relative" stacking fault energy, since the width of
splitting of an extended dislocation is inversely propor-
tional to this number. ' Gold is known to exhibit large
stacking fault tetrahedra when quenched and aged,
indicating the lowest relative stacking fault energy of
any pure fcc metal investigated so far," followed by
silver which has a lesser tendency to form stacking
fault tetrahedra. Copper is believed to have a higher,
but still intermediate, relative stacking fault energy,
while aluminum and nickel have high relative stacking
fault energies. Consistent with the said sequence, the
respective X/q values found are: for Au, 0.019; for Ag,
0.023; for Cu, 0.029; for Al, 0.029; and for Ni, 0.033.
Little or nothing is known about the stacking fault
energies of cobalt, lead, and platinum. However, cobalt
must have a low or intermediate relative stacking fault
energy since it transforms from fcc to hcp on cooling.
The X/q values found in Table I would indicate an
intermediate relative stacking fault energy for cobalt
and platinum and a quite low relative stacking fault
energy for lead.

It would thus seem very rewarding to recalculate X/q
for all important close-packed metals, employing the
most accurate known values for the various parameters
involved, and to compare with known stacking fault
energies. Should, the described correlation between X/q
and the stacking fault energy be further confirmed, then
it may be used for determinations of the stacking fault
energies in pure close-packed metals as well as alloys.
In alloys, the stacking fault energy is usually rather
small, and correspondingly X/q should have low values.

e. Remarks on the "Directionality of Bonding"

One question still to be answered is: Why should the
values of n/pq not be more uniformP Should there, in
fact, be any variation in n/pq, or are these variations
simply due to taking incorrect values for 6? Doubt-
lessly, the scatter in n/pq must be partly due to errors
in estimating the experimental values of 6 at the melting
point, since these are easily uncertain within 20'P~, and
it must be partly due to the uncertainty as to which
detailed combination of the elastic constants should be

2~ W. T. Read, Dislocations (McGraw-Hill Book Company,
Inc., New York, 1953), pp. 130—131.

~' Note added in proof. The most recent determinations of stack-
ing fault energies indicate that the order of gold and silver is
reversed, with silver having the smallest stacking fault energy of
any pure fcc metal, and gold, copper, platinum, aluminum, and
nickel following in that order /see I. I.. Dillamore and R. E.
Smaliman, Phil. Mag. 12, 191 (1965)j.The present paper yields
the values of X/q in the order of gold, silver, platinum, aluminum,
copper, and nickel. However, it ought to be remembered that the
present theory renders the value of the stacking fault energy at
the melting point.

employed in the theory. However, the fact that the
n/pq values appear to be grouped according to crystal
type, suggests that beyond these extraneous causes there
may be a real variation among the n/pq values with a
definite physical significance: Consider the parameter q.
It was first calculated by Mackenzie' on the basis of
crystal geometry. In fact, it may be regarded as a
measure of the "directionality of bonding, " since as
the parameter q decreases, the more directional is the
bonding in the crystals. In the preceding calcula-
tions, this was allowed for by assigning the value of
30 in close-packed metals, 15 in bcc lattices, and 7 in
diamond-type structures. However, the "directionality
of bonding" is a property of the electronic configuration
of the atoms and ions themselves. Moreover, the fact
that a certain element crystallizes, say, in the bcc form,
does not mean that it has identically the same proclivity
for directional bonding as every other bcc metal.
Instead, it means that its specific values of X, n, q,
X/n, and, perhaps, stacking fault energy y, fall into a
range for which the bcc lattice has the lowest chemical
potential. The apparent grouping of the values for u/pq
according to crystal types may be interpreted to indicate
this very state of affairs. This conclusion is further
supported by the result in Table I that cobalt and iron,
metals which exhibit transformations on cooling, are
both borderline cases within their respective groups, as
far as their values of n, and thus of n/pq are concerned,
cobalt veering towards the values in the hcp group and
iron towards fcc (or hcp, which cannot be distinguished).
If the above consideration should be correct, then it
opens up the possibility of studying the so far ill-defined
"directionality of bonding" through careful measure-
ments of the parameter n/pq.

'7. CONCLUSIONS AND OUTLOOK

The theory of melting presented above is logically
compelling, and is in excellent agreement with a
considerable body of experimental data. The important
parameters calculated, X/n and n/pq, may suRer from
some systematic errors because proportionality con-
stants in the basic equations may have been estimated
incorrectly. However, at this point, it seems that the
errors are small and that the conclusions drawn regard-
ing the correlation between X and o. with crystal type
and stacking fault energy cannot be in error.

In a measure, the success of the theory is astounding.
One may conjecture that. this comes about because the
state of the material in dislocation cores is Inore
closely like a liquid than one is aware of. With respect
to the volume changes accompanying melting, however,
the theory is inadequate. This is already apparent from
the fact that not all crystals expand on melting. The
important consideration in cases in which melting causes
volume contraction seems to be that the original
lattice becomes mechanically inst, able as soon as T, is
exceeded, but that the energy possessed by the atoms
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in dislocation cores is still closely lik.e that of the atoms
in the liquid. Still, the discrepancy between the actual
volume change on melting and the volume expansion
which would be calculated from the dislocation-core
model of the liquid, is a Raw in the theory, indicating
that a liquid is described incompletely by the said model,
even though it may still be very useful.

The following conclusions are the most important:

(1) The temperature of melting is certainly correlated
with the temperature at which the free energy of
dislocation cores vanishes. Almost certainly the two
are one and the same temperature.

(2) The latent heat of melting per atom is almost the
same multiple of either Gb', or perhaps b'/IC, or a simple
combination of these, for all substances considered.
A slight dependence of this multiple on crystal type in
the solid state apparently exists, which probably is
correlated with the "directionality of bonding. "

(3) The volume dilatation in dislocation cores
derived from the present theory is in almost perfect
quantative agreement with the values of the same
quantity derived from simple considerations of core
geometry, including its dependence on stacking fault
energy.

The most exciting aspect of the theory presented here
is the opportunity which it affords for further probing
into the properties of atoms, crystal bonding, crystal
defects, and, perhaps, liquids. %e may look forward,
now, to determining, for example, the stacking fault
energy of metals from caloric data. Similarly, the
Peierls Nabarro stress, which has been tantalizingly
elusive, can perhaps now be determined by employing
Eq. (9) as discussed, and the properties of dislocation
cores will Anally be better understood. Also the whole
range of atomic properties, which have been described
above with the term "directionality of bonding, "may
now become accessible to more quantitative investiga-
tion. Finally, it will most likely prove to be fruitful for
the better understanding of liquids to employ the model
of a crystal 6lled to capacity with glide dislocation
cores. For example, diffusion in liquids may be better
understood in terms of pipe diffusion, and vacancy
concentrations in liquids Inight be calculated from a
theory of vacancy binding in dislocation cores."

8. SU3M:MARY

In the preceding sections, a consistent theory has
been developed to show that melting occurs when the
free energy of glide dislocation cores assumes negative
values. It is found that, excepting the volume change,
every single aspect of melting which was considered is
explained satisfactorily by the proposed theory. These
aspects include the magnitudes of melting temperature
and of the latent heat of melting, they include an
explanation for Richard's law, for Lindemann's relation-

~ Doris Kuhlmann-Wilsdorf, J. Appl. Phys. 36, 637 (1965).

ship, and for Griineisen's relationship, as well as the
general trend of melting temperatures in alloys, and a
little-investigated relationship which seems to exist
between ductility and the entropy of melting.

Numerical calculations have been performed for 20
elements with very widely different values of melting
temperature and latent heat. The parameter X rep-
resenting the specific dilatation in the cores, divided by
q, where q determines the width of dislocation cores,
may not only be calculated from the present theory,
but also on the basis of the geometry of dislocation cores.
The ra, nge of values derived for X/q from the theory of
melting coincides almost precisely with the range
calculated from geometry. Moreover, the trend of the
dependence of the experimental values of X/q on
crystal type, as well as on stacking fault energy in
close-paced metals, is in good accord with theoretical
expectations.

The values for n/pg, reflecting the average extra
energy per atom in dislocation cores as well as in the
liquid, are almost constant throughout, indicating that
this energy is almost the same multiple of Gb' for all
crystal types, where G is the modulus of rigidity and b
is the atomic diameter.

Throughout, the numerical calculations have been
performed for pure substances, and overwhelmingly
for metals. The reason for this was the better access-
ibility of the relevant data for metals. However, the
theory is meant to apply to every crystalline substance
which begins to melt at a fixed temperature, including
inorganic and organic compounds and alloys. Substances
in which, for one reason or the other, dislocations
cannot form, are therefore expected not to have a
fixed melting temperature. Many inorganic and organic
crystals fall into this category because of their large
Burgers vectors. These then sublimate or decompose
before melting.

Perhaps the nature of liquids may now be better
understood, namely, as crystals filled to capacity with
dislocation cores, and it may prove possible to correlate
liquid properties with those of dislocation cores, thereby
leading to the better understanding of both. Similarly,
through systematic studies of the derived values of
X/u, X/g, and n/g, important information can presum-
ably be gained on such diverse quantities as the stacking
fault energy in close-packed metals, the magnitude
of Cottrell and Suzuki-binding energies between foreign
atoms and dislocation cores, the "directionality of
bonding, "which is a property of the electronic structure
of atoms, and the frictional stress on dislocations.

Amorphous substances are understood as liquids of
high viscosity, due to high frictional stresses on the
dislocation cores. Thermal motion reduces it' as well
as helps to overcome it, which explains the gradual
softening of amorphous substances on heating.

It is recognized that not all data for G and g, the
Gruneisen constant, as used in the tables, are entirely
reliable, and errors in these may easily reach 20%%uo,
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affecting the derived values for X/tr and n/tf. It is
confidently expected, though, that no major changes in
the results will occur through adjustments of the
numerical data. The same holds true for the substitution
of either the modulus of compressibility or a combina-
tion of the elastic constants for G. Such a substitution is,
however, mandatory for all anisotropic crystals.

Doubtlessly, some adjustment of numerical factors
employed in the theory will become necessary even-
tually. For example, a factor of 2 was employed to
relate the energy per atom in the center of a core to the
average energy of atoms in dislocation cores. Still, at
the present time, knowledge of how to improve these
factors is lacking. As it stands, the formulas were
derived completely, including choosing the magnitude
of the said numerical factors on the basis of the best
logic, before the numerical calculations were made.
Under these circumstances, the success of the theory
and, particularly, the very good agreement between the

values for X/q with those derived from core geometry
must be taken as a strong indication that the numerical
constants were chosen not far from their correct values.
Thus, although some systematic errors must necessarily
have been incorporated in the derived values for ct/t/
and X/q, these are believed not to be severe.
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gn single NaF crystals with 10' to 10» Mn'+ per cm', and in reagent-grade powder„ the F» NMR line-
width is studied from 300 to 1000'K, and the spin-lattice relaxation time from 2 to 1380'K (at 27 Mc/sec,
with supplementary low-temperature work at 13 and 39 Mc/sec). The Mn'+ EPR spectrum at 9 Gc/sec,
which is observed from 2 to 1000'K, with saturation-relaxation measurements below 100'K, indicates
positive-ion vacancy diffusion above 250'C, and Mn'+ diffusion above 425'C. The NMR results yield a jump
rate vN, =8.8X10"exp L

—2 eV/AT) sec ' in the intrinsic region, and in the extrinsic region, an energy of acti-
vation of 0.52 eV for vacancy jumps, with a frequency factor not less than 1.1&&10"sec '. Negative-ion dif-
fusion with an apparent activation energy of 3.5 eV is found above 950'C. The relaxation of isolated Mn'+
ions changes from the direct to the Raman process near 60'K. The calculated F» relaxation rate due to this
Mn2+ relaxation is at a maximum and of the observed order of magnitude in the range 150 to 200'K. The
F» relaxation from 2 to 150'K is attributed to the effects of Mn'+ pairs or clusters and shows a change from
"rapid diffusion" to "slow diffusion" near 4'K.

I. INTRODUCTION

~HE temperature dependence of the nuclear spin-
lattice relaxation time T1 supplemented by in-

formation on the magnetic-field dependence of Tj and
on the nuclear-resonance linewidth, can serve to show
which random disturbances are the cause of nuclear
relaxation in a given solid. In this paper we describe an
investigation of the F' nucleus in XaF from this point
of view, from 2 to 1380'K. For simple ionic crystals
such as this one, the relaxation-producing disturbances
at elevated temperatures are elementary ionic transla-
tions, while ordinarily those at and below room tem-
perature are magnetic fluctuations due to paramagnetic
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impurities, ' accidentally or intentionally included in the
sample. In the present work, all measurements in which
the presence of paramagnetic impurities is important
are done with samples containing Mn'+ in sufhcient
concentration to dominate the effect of the impurities
on nuclear relaxation. In addition, the paramagnetic
relaxation time for isolated Mn'+ ions (but not for pairs
or clusters, which are also present) is measured from
2 to 100'K, making it possible to show where a signif-
icant nuclear transition rate due to the isolated Mn'+
ions is to be expected. This particular impurity ion was
chosen because it has been the subject of paramagnetic-
resonance investigation in many host crystals, ' and.
because it enters easily into the lattice. An incidental

' N. Bloembergen, Physica 15, 386 (1949).
~ K. D. Bowers and J. Owen, Rept. Progr. Phys. 18, 304 (1955);

J. W. Orton, ibid 22, 204 (1959). .


