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Equivalence of Different Pair-Breaking Mechanisms in Superconductors*
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Paramagnetic impurities in a superconductor and a magnetic Geld parallel to a thin superconducting
Glm with short electronic mean free path are known to have similar effects on many physical quantities. By
investigating the properties of vertex functions and their renormalization factors we have derived necessary
and sufhcient conditions for such a physical quantity to be equally affected by the two pair-breaking
mechanisms. We Gnd that different expressions are obtained in the two theories only for those quantities
which involve s-wave, spin-triplet vertices with momentum transfer 9& (lge) 't, where l is the electron mean
free path and &0 is the coherence distance. With the help of those results different response functions are
analyzed and it is shown that the spin susceptibility is the only one of the quantities usually considered
which satisfies the above requirements and hence gives different results for the Geld and paramagnetic-
impurity cases.

I. INTRODUCTION

S IMILARITIES in the theories of paramagnetic
impurities in a superconductor as developed by

Abrikosov and Gorkov' and of a magnetic field' (or a
curren. t') parallel to a superconducting film with short
electronic mean free path, as developed by one of the
authors (K.M.), have been of considerable interest. So
it has been noted that not only the single-particle
excitation spectrum and hence the tunneling density of
states, but also certain response functions such as
electrical and thermal conductivity, '—' are the same in
both theories. The latter can be expressed in terms of a
quantity $, which characterizes the strength of the
depairing mechanism. This seemed to suggest that all
response functions might have identical expressions in
both theories. Our recent calculation of the spin sus-
ceptibility, which is measured for example in Knight-
shift experiments, showed, however, that this is not the
case. Different expressions for the spin susceptibility
were obtained for the magnetic-field and paramagnetic-
impurity cases. This raises the question of what criteria
allow one to distinguish in a simple way response func-
tions with different expressions in both theories. The
problem is solved by investigating the properties of
vertex functions in the presence of a 6eld or paramag-
netic impurities.

*Work supported in part by the OfBce of Naval Research and
the National Science Foundation.

t On leave from the Enrico Fermi Institute for Nuclear Studies,
University of Chicago, Chicago, Illinois and Research Institute
for Mathematical Sciences, Kyoto University, Kyoto, Japan.
Present address: Department of Physics, University of California,
San Diego, La Jolla, California.

f. Present address: Institute fiir Theoretische Physik der Uni-
versitat Frankfurt/M, Germany.' A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) /English transl. : Soviet Phys. —JETP 12, 1243
(1961)].' K. Maki, Progr. Theoret. Phys. (Kyoto) 31, 731 (1964).

s K. Maki, Progr. Theoret. Phys. (Kyoto) 29, 10 (1963);29, 333
(1963).

e K. Maki, Progr. Theoret. Phys. (Kyoto) 31, 378 (1964).
~ V. Ambegaokar and A. GriKn, Phys. Rev. 137, A1151 (1965).
6 S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.

136, A1500 (1964).
~ P. Fulde, Phys. Rev. 137, A783 (1965).
8 P. Fulde and K. Maki, Phys. Rev. 139, A788 (1965).

A

Response functions can generally be written in terms
of averages over the Gibbs' ensemble of products of four
field operators. ' For superconductors this average can
be decomposed into products of two Green's functions
which were originally introduced by Gorkov. " In the
presence of impurity scattering these products have to
be averaged with respect to the positions of impurity
atoms and the Green's functions have to be modified
accordingly. The averaging process is most easily
carried out by introducing vertex functions into the
theory. We take account of the effect of scattering by
renormalizing both the self-energy in the Green's func-
tion and the vertex functions.

The renormalization of the self-energy, which amounts
to a replacement of co and the order parameter 6 in the
Green's function by to(co) and Z(co), has already been
discussed by Abrikosov and Gorkov' for the paramag-
netic-impurity case and by K, Maki for the magnetic-
field case. The aim of this communication is to present
calculations of the renormalization factors for the
vertices in both theories and to analyze the above
problem in terms of these factors. This will be done in
the next two sections where we will first treat the
magnetic-field. case and subsequently the case of para-
magnetic impurities. Special attention will be paid to
vertices belonging to s waves. The importance of the
latter is connected with the fact that their renormaliza-
tion coeKcients are larger by a factor (rh) ' as com-
pared with higher l-wave vertices. 7 is here the mean
free time of an electron and (rh) I))1 for the cases of
interest. Furthermore, we expect in the presence of
paramagnetic impurities different renormalization coeK-
cients for spin-singlet and spin-triplet vertex functions,
while we have no physical reason to expect such a
difference in the case of a magnetic Geld.

In the last section we will discuss the results of those
calculations, establish criteria for the nonequivalence of

9A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Qttantstm Field Theory in Statistica/ Physics (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

"L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 505 (1958)g.
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the magnetic-field and paramagnetic-impurity cases,
and analyze various response functions in the light of
those criteria.

II. VERTEX FUNCTIONS IN THE PRESENCE
OF A FIELD

In the following calculations of the renormalized
vertex functions we will mak. e use of Nambu's repre-
sentation of temperature Green's functions in a super-
conductor. " Observable quantities can be obtained in
this formalism by analytic continuation as extensively
discussed in Ref. 9. In the presence of a field and in the
limit of a short mean free path the Green's function can
be written as

G(y, oi„)= (ioi„+q v g,p—a Z„a—2pi).

& (own &q' v)+—$rP3+Anrr2pi

(&o„iq—v)'+)~'+6„'

Here po, pj ~ p3 and o p, o'y' ' 'o-3 are the unit matrix and
the Pauli spin matrices, respectively, which operate in
two different spaces as explained below, $„=P2/2m ji-
where ji is equal to the chemical potential and v= p/m.
Furthermore, q= eA, where here and in the following we
set A=c=k~=1. In this notation we use a four-
component space in which the electron-field operators
are written in the form

=o,pjI'i (8)+ji
I u(I p')

I P3G(p 8&+)
(2w)'

X(;pj) i„..I'i.(e')G(P', )p, . (5)

Here ji is the impurity concentration and co~ ——oi&oie/2,
where coo is the energy transfer. The quantities co+ are
again half-integers multiplied by 2~T. By decomposing

~
u(p y')

~

' in terms of spherical harmonics

(2')2 (2t+1)
iu(P P') i'= P Pi(cose)

Nlem &~ ri

with cosg= (y p')/p, ' we can simplify Eq. (5) to the
form

where u„=Fo„/5„, co = ir T(2e+1) (ji is an integer), and
j =2rt, ,/3he'e'(A'(x)). The brackets indicate that the
spatial average of the square of the vector potential A
in London's gauge has to be taken. v- and v-~, are the
mean free time and transport mean free time, respec-
tively. For simplicity we will restrict ourselves first to
the case of zero momentum transfer g. In that case a
vertex can be characterized by angular-momentum
quantum numbers I, m and a matrix o-;p, . The inte-
gral equation for the renormalized vertex function
(o;p,) i...~F'i (8) in the presence of a field is given by

(- p, ) i„..l'i. (0)

d3

A(x)
4' (x)4'(s) =

.y&t(x).

(2) (o'jpj)i, ren=o jpj+
porjir i

d3p/

»G(li', ~+) (~'P j) l
(2n.)'

XG(I',~-)p3 (&)

Although in the case of a magnetic field it would be
sufhcient to work in a two-dimensional space, we have
additionally introduced o-; matrices in order to facilitate
the comparison of the pair-breaking effect of the mag-
netic field with that of paramagnetic impurities. The
products p;o-; can then be expressed as

Here we have neglected terms of the order (rA) con-
taining other angular momenta which con1e into the
equation because of mixing due to (v A)' terms. In
general we have 16 combinations o;p;. Since the integral
kernel in Eq. (5) mixes o.;p; only with a2o;pip j, we can
reduce the above equations into a set of eight inde-
pendent equations of rank 2. In those equations the
following matrices are coupled to each other:

poo'i =
) (1,pi~,),

(p»p&o 2) r

(o'ip3)P2o 3) &

(o 4'ipio'e) ~

(o'2P»&P2) ~ (o'3P»&P2o'i)

(~~,pi) (~»~pi~i).

co„and 6 were calculated in Ref. 2 and are given by

Nv4 I
~n =oi~+ +2t'A

2T(1/u~')"' (1+u„')8t'

1 i (1—2u ')
3„=6+ +—A

2r(1+u ) I 2 (1+u ) ~

"See, for example, J. R. Schrieffer, Theory of Superconductivity
(W. A. Benjamin, Inc. , New York, 1964).

The first two pairs correspond to spin-singlet vertex
functions while the last 2)&3 pairs correspond to spin-
triplet vertex functions with spin pointing into x, y, s
direction. " Indeed it can be seen easily that, for ex-
ample, 1 and o-3 belong to a spin-singlet and spin-triplet

"We would like to remark that we deal here with general two-
electron states, which means electron-electron, electron-hole as
well as hole-hole states.
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vertex, respectively, by writing

4't(x) 1%(x')=l/2+(x)|/;(x')+fg+(x)fg (x')

+|/' (x)4' +(x')+4' (x)|/' +(x')

+'(x) +(x') =k+(x)4 (x') —4+(x)A(x')
+|/ ( )4.(")-A( )4 +(")

In the limit x'~ x the first expression reduces to the
electron density, and the second expression to the s
component of the electronic spin. In order to write the
solutions of Eq. (5) in a simple form we have to intro-
duce the following matrices

This leads to the result for /=0:
1

= (1~~-)(2D-') ',
Ag'

Bo'= —Bg'=iE+(2D ') ',
B 1—B 1 g (2D 1)—1

(12)

'= (, 2 ~, 2/2, /2) ~ ( =o, 1, ":3).

Furthermore we make the ansatz

(rl;)„„=(A,2yzBPII, )rr, ,

(11,~/,)„.= (A 2+ zB,211,)rr, ~&,

for the renormalized vertex functions (II;)„„and
(11;0/oo)„„.The coefficients A p, A 2, Bp, B;2 can be de-
termined from Eqs. (5) after straightforward algebraic
calculations. In stating the results we distinguish be-
tween the cases l/0 and 1=0.

In the former case we obtain

(A o' ro
(1~C ) D

kA g' L 22. /

t/A2' ro
(tWC~) D/

(Ao' L 2r/
(10)

The quantities D+' are defined as

D+'= r~L(1+~')'"+ (1+~+')'" t (1—~+)7 (13)

Thus our calculations show that in the case of a mag-
netic field the renormalization factors are the same for
spin-singlet and spin-triplet vertex. This behavior is
physically to be expected in the present case but it will

turn out not to hold in the paramagnetic-impurity case.
Ke want to discuss now the case of nonzero mo-

mentum transfer (q/0). In this case a vertex can no
longer be specified by a quantum number / since the
q-dependent integral kernel in Eq. (5) is no longer
invariant under rotations in momentum space. Never-
theless, it still is permissible to consider the angular
momentum as a good quantum number as long as
(/q)((1 where /= v2r. In that case terms of the form
(rh)2/ (/q)' can also be dropped. A calculation similar to
the one performed for the q=0 limit reveals that the
only change occurs in the expression for the determinant
D/(q) which is now of the form

Z jo
Bp = —By = E+Di

2T)

Tp
B '=8'= E D

2Ti

D&(q) = 1.—ro22
(22r)2 1 2(/q)s—

where s=cos(q p/~q~ ~ po~) and

for /= 0, (14)

and

Here the following functions have been introduced:

T'p NQ+~ 1
Dg= 1——,C~=

(12+1)1/2(N 2+ 1)1/2

jV~=
(~2+ 1)1/2(N 2+1)1/2

It is apparent that for /= 0 these solutions would diverge
and that a more careful analysis in this case is required.
It can be shown that the denominator in the expressions
for the coe%cients A, A,3, 8, 8 becomes now of
order (rA), thus resulting in an enhancement of the
renormalization factors by a factor of the order (rh) '.

D/-o, y(q) = 1—t 1j(/q)7 arc tan(/q)+D~'(0)
for /= 0. (15)

For the definition of D~'(0) see Eq. (13).We see that
for //0 vertices under the assumption (/q)(&1 the de-
pendence of the renormalization factor on momentum
transfer q can be disregarded. Inspection of Eq. (15)
shows, however, that for /=0 vertices the q-dependent
term gives an important contribution and becomes
dominant as soon as q becomes larger than (/Po) "',
where go is the coherence length. In the limit q/))1 the
determinant D/ o, +(q) approaches unity.

III. VERTEX FUNCTIONS IN THE PRESENCE
OF PARAMAGNETIC IMPURITIES

In the presence of paramagnetic impurities one has to
consider the possibility of electron spin Qip due to im-
purity scattering which may result in di6erent re-
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normaliza. tion factors for spin-singlet and spin-triplet
vertices.

The Green's function is again given by Eq. (1) with
q=O, where, according to'Abrikosov a,nd Gorkov, the
following relations for co„, h„now hold:

1 1 u„
«'w =«n

2 r r, (1+«„-')"2
(16)

The quantity t =1/ran is a measure of the strength of
the depa, iring mechanism. r g can be expressed in terms
oY %he spin-Sip part. o4 &.e. impurely sea,ftering yotm'63$
'Es as

1»mpp
5(5+ 1)

4x

dQ
--I «'(p p') I'-',

her
(17)

where S is the impurity' spin. The equation for the
renormalization vertex function is now of the form

(oa )~,--I'~ (0)

=o.;P, I (, (0)+n
yp/

I
«(p. p') I'ppG(p', ~+)

(2pr)

& (o'l ) i,--&'i-(0')G(p', ~-)pp+4~(~+1)»

—
I

«'(p p') I'
(2m-)'

Here n is defined as n= (1+pp)/2o+ (1—pp)/2o prop. It
can be checked that the last term on the right side of
Eq. (18) does not change the property of the integral
equa, tion to mix o-;p,. only with o-&o-;p&p;. We therefore
obtain again a, set of eight independent equations of
rani. 2. It is therefore advantageous to introduce the
quantities II; as defined in the last section and to make
the ansatz (9) for the renormalized vertices. We again
distinguish between the cases t&0 and 3=0, and again
state only the results of the straightforward calcula-
tions. For l~O the coeS.cients 3,', zi,', 8,8, a,re given
by identica, lly the same expressions as in the magnetic-
field case Lsee Eq. (10)$, implying that for lQO the
renormalization fa.ctors are the same for spin-singlet and
spin-triplet vector as in the case of pa.rama, gnetic im-
purities. For /= 0 the coefficients 3,', 8,' are of the same
form as in the magnetic-field case Lsee Eq. (13)j. The
coefficients 3,', 8,' on the other hand, turn out to be
different. They ca.n be obtained from .&I,', 8 simply by
replacing D+' by D+', where

+'=»L( +«')"'+( +«+')'"—&( +p +)j (»)
Thus in the case of paramagnetic impurities the

renormalization factor differs for /=0 for spin-singlet
and spin-triplet vertex.

For nonzero momentum transfer (q40) a similar
consideration as done in the last section holds, and again
only s-wave vertex functions are affected and then only
if q is of the order of or larger than (l(p) '" In. that case
D+' and D+' have to be replaced by

(
D,i(q) D~'(q =0)= 1—(ql) ' arctanql+, (20)
D~'(q) D~'(q=0)

where D+'(q=O) and D+'(q=0) were defined in Eqs.
(13) and (19), respectively.

In the last two sections we have calculated the
renormalized vertices belonging to different angular
momenta and spin states, for both the magnetic-field
and pa, ramagnetic-impurity case. It wa, s found that for
zero momentum transfer q the renormalization factors
for l=0 vertices were enhanced by a, factor (rD) ' as
compared with those for //0 vertices. Furthermore we
found that in the presence of paramagnetic impurities
the renorrnalization factors were different for spin-
singlet and spin-triplet s-wave vertices in contrast to the
magnetic-field case for which no such difference did
occur. The results were shown to hold also in the q/0
case as long as q& (l(p) '". For larger q values the
renormalization factor of a spin-singlet approaches that
of a spin-triplet vertex. The la,st result can be derived
under the a.ssumption that the kernel in the integral
equation for the renormalized vertex function does not
mix different angular-momentum components, which
holds for the q region of interest. This enables us to
formulate as follows the necessary and su%.cient condi-
tions for distinguishing physical observables which be-
have differently in magnetic-field and paramagnetic-
impurity ca,ses.

Theorem: A physica, l quantity, if expressed in vertex
functions, must have at least one component belonging
to an s-wave spin-triplet vertex with momentum tra.ns-
fer smaller than q&. (l(p) "' in order to give diiferent
expressions for magnetic-field and paramagnetic-im-
purity ca,ses.

With the help of this theorem we want to discuss
va, rious transport coe@cients.

A. Electrical and Thermal Conductivity
(P-Wave Vertices)

Both electrical a.nd thermal conductivity are ex-
amples for p-wave vertices which give identical results
for both pair-breaking mechanisms. The p-wave charac-
ter of the vertices can be seen by writing down expres-
sions for o;;(p,&op) and ~,, (p, iop) in terms of Green's
functions from which the physically observable elec-
trical and thermal conductivity can be obtained by
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analytical continuation to imaginary coo values:

d'P
~'~(q ~s) =

I

—
I
T 2

k m) n (2s.)'

&&T fp'G(p+ +)(P) .- PG(p- -))

It,;(q,coo) =
fPPcoo

&&Trfp'PsG(P+, ~+) (Ps) t,--p G(p- ~-))

(21)

given in Refs. 8, 14, and 15, respectively. Since we deal
in this case with an s-wave spin-triplet vertex the
expressions for Xs/x„differ in the two theories. The
spin-triplet character of the vertex can be seen by ex-

pressing the susceptibility in terms of Green's functions
as

pg
xs(q, ~o) = T Q

n

XTr j&spsG(P+ ~+)(gasps) G(P—P—)) (23)

where p+
——p~q/2, ~+ to„=s——.T(2~+1), rd =to„—toe,

and ces= 2s Tmp. Since the vector p transforms like a p
wave under space rotations, only p-wave vertices appear
in the above expressions. With the help of the expression
derived for (ps) t „ it is not difficult to verify the results
obtained in Refs. 4, 5, and 6.

B. Ultrasonic Attenuation
(s- and d-Wave Vertices)

The ultrasonic-attenuation coef6cients have been
studied in detail by Kadanoff and Falko. "Using their
analysis one can show that the transverse attenuation
coeKcient involves s and d waves. Since we deal in both
cases with spin-singlet vertices only, there will be no
distinction between the magnetic-field and the para-
magnetic-impurity cases. In order to understand how s-

and d-wave vertices enter into the problem we note that
the attenuation coefficients can be written in terms of
correlations between the electronic stress tensor (r,; in

the notation of Ref. 13) and the electron density.
Furthermore, we note that the trace of the stress tensor
7-,; and the density transform like an s wave, while the
trace-free part of the stress tensor r;;—37~~5;; trans-
forms like a d wave. |A'hile the transverse attenuation
coeKcient can be expressed in terms of the tracefree part
of the stress tensor only, the longitudinal attenuation
coefficient contains, in addition, the trace of the stress
tensor as well as the electron density. Thus the above
statement follows. The reason for the appearance of
spin-singlet vertices only, lies in the fact that there are
no electron-spin interactions in ultrasonic-attenuation
processes. Using our Eqs. (10)—(13) we obtain a slightly

diferent expression for the attenuation as compared
with Ref. 13. Our results have the same form as in Ref.
13 except for a replacement of the quantity X as defined

in Eq. (56) of Ref. 13 by

X=/qadi+ rA ((1+u')'"+ (1+m~')'"—i (1—Cp) )j. (22)

The correction is of importance for q( (/)s) '".

+ (1—(q/)
' arctanq/)

27.6
(2&)

for the susceptibility in the presence of paramagnetic
impurities. X (0) denotes in both cases the susceptibility
in the normal state. Thus we have an explicit example of

a physical quantity which leads to different expressions

for the magnetic-field and paramagnetic-impurity cases.

D. Nuclear-Spin Relaxation (s-Wave, Spin-Triplet,
Large-Momentum- Transfer Vertex)

In order to be able to express the ratio Rs/R„be-
tween the nuclear-spin-relaxation rate in the supercon-

ducting and normal state we introduce first the
frequency-dependent function Rs (&as)/R„de6ned by

RB(~o)

R„

T2

(0)2~ n

dP dP

(2~)' (2s-)'

&&Tr( p G(p, )( p )„„G(p', )), (25)

where X(0)= nzPs/2vrs. If we then continue analytically

Rs(~o) to imaginary &o = s~vsalues, Rs/R„can be
written as

Rs/R. = lim ImRs(~)/R-
Cd ~0

(26)

Again the physically observable susceptibility has to
be obtained by analytic continuation to imaginary ~0
values. Although a general expression for Xs(q, a&s) can
be written down explicitly we want to restrict ourselves
for simplicity to the special case Xs (q,0). In that case we

obtain

Xs(q,0) AT
=1—(q/)

—' arctanq/ g(u '+1) '
x„(0)

( 1"(1+2N ') )
(tc„'+1) 1—

3(1+I 2)$/2)

C. Spin Susceptibility
(s-Wave, Spin-Triplet Vertex)

Detailed investigations of the spin susceptibility in

the presence of a field or paramagnetic impurities were

"L.P. KadanoB and I.I. Falko, Phys. Rev. 136, A1170 (1964).

where Im means that the imaginary part has to be
taken. In the integral for Rs (toe)/R„ the main contribu-

'4 L. P. Gorkov an(I A. I.Rusinov, Zh. Eksperim. i Teor. Fiz. 46,
1363 (1964) LEnglish transl. :Soviet Phys. —JETP 19,922 (1964)g.

"A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 48, 232 (1965)
/English transl. : Soviet Phys. —JETP 21, 153 (1965)g.
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tlons come from !p!, !p'! values close to pp tllus
implying large momentum transfer. It was shown before
that the determinants D '(tl) and D 2(ti) reduce to
unity in that case. Hence we can replace (cps)„„in Eq.
(25) by (epp) and the depairing effect of the magnetic
Geld or the impurities enters only in the coherence
factors. Ke obtain, therefore, results equivalent to those
derived by Ambegaokar and Griffin" with a "golden
rule" calculation.

The above analysis shows that the spin susceptibility
is the only physical quantity for which the pair-breaking
effect of a magnetic field and paramagnetic impurities
lead to different results. Other physical observables,
which were not considered here, such as tunneling cur-
rents, give identical results in both cases since no
renormalized vertices enter into their expressions.
I'inally we want to remark that in the presence of both
a magnetic field and paramagnetic impurities, both
pair-breaking effects can be added up in the quantity f,

except for the spin susceptibility, in which case the es-
sential determinant D ' is replaced by D '= rh/(us+ 1)
+(u+'+1) —(fr+t2 —(fr—iz/3)C )j where ir and fs
are the parameters for the pair-breaking effects of the
field and the impurities, respectively.
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APPENDIX

Let us consider vertex functions with zero momentum
transfer in the presence of a magnetic field. Kith the
ansatz Eq. (9) we obtain from Eq. (7) the following set
of equa, tions for (IIp)„„,for instance:

2r tn(~)

QQ+—1 7A
+ tK1(u, u~) ApP

(I+us)1/2 (]+u+2) 1/2 2 7.1fl (co)

i u+zt+
rhea K2(u, u+) A—P'

2rtQ(po) (1+u )'/ (1+u ')'/

rhtK2(u, —u+) Bp'=1;
2r Q(po) (1+u')'/'(1+u ')"'

Here we used the following abbreviations

Q(/d) —(~2+A2)1/2+(~ 2+/k 2)1/2

1 NS+—1 7 6
1+ + fK2(u, u~) Bp'=0.

2r tel(&p) (1+u')'/'(1yu+')"' 2r g(pp)

10(uu+ —1)1 ( 1 1 1
+ +

8 (1+u')'/'(1+u ')"' & 1+u' 1+u ' (1+u')'/'(1+u ')"'j

(
1 1 14

+2 + +
]+u2 1+u 2 (1+u2)1/2(1+u 2)1/2

1 10(uu+ —1) ( 1 1 1
E2- + +

(1+u2)1/2(]+u 2)1/2 (1+u2 1+u 2 (1+u2)1/2(1+u 2)1/21

1 1 14 4QN+
+6! + !+

41+u' 1+u+'j (1+u')"'(1+u+')'/' (1+u')"'(1+u+')'/'

(A2)

1 u+u+ ( 10uu+
K3=—

g (1+u2)1/2(1+u 2)1/2 g (1+u2)1/2(1+u 2)1/2 (
1 1—10 + +14!

1+u' 1+u '

1 1 I+
+ -+

I (1+u2)1/2 (1+u 2)1/2j t (1+u2)1/2 (1+u 2)1/2 j
'pA. Griflin and V. Ambegaokar, Proceedings of the Ninth International Conference on I.o2o Temperature Physics, Columbus,

Ohio, 1964 (Plenum Press Inc. , New York, 1965l.
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The above equations are solved and we find:

~"=[1—("/2 )(1+C )X -',
Bp'=i(rp/2rt)E+Dt ', for /~0,

and
Ap' ——(1—C )(2D ')—',
Bp'=iE+(2D ')-', for /=0,

where
D =1-("/ )+0( A),

(A3)

(A5)

D i=TA[(1+Is)its+ (1+tt+s)its i.(1—C )g. (A6)

From the above expressions we see that the term pro-

portional to rAi in Eq. (A1) gives negligible correction
(of the order of rA) for the case of /40 while it gives an
important contribution in the case of /=0. %'e obtain
almost similar equations for the other amplitudes
(A,',8,') (i/0).

Now let us turn to the case of nonvanishing q. In this
case we obtain equations similar to those in (A1), which
can be obtained by simply replacing Q(co) ' by
Q(cc) '(/q) ' arctan(g/) for the s-wave case. In a, higher
wave vertex such a momentum dependence is negligible
as long as q/(&1.

In the case of paramagnetic impurities the equations
involved are much more simple and we do not feel it is
necessary to present them here.
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Linewidth of the Electron Paramagnetic Resonance of (AlsOs) i, (Cr&03)
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The linewidth variation of electron-paramagnetic-resonance (EPR) absorption in single crystals of
(Al&Os)& ~(Crs03), with x equal to 0.01, 0.001, or 0.0001% has been investigated as a function of the angle
between the C axis of the samples and the magnetic field. The observed width variation is practically in-
dependent of the values of x and of the choice of the axis of rotation perpendicular to both the C axis and
the magnetic field. In order to account for the observed width variation, three alternative models have been
considered: a mosaic model, a strain model, and a hybrid of the two models. The calculated width variation
based on each of the three models is in qualitative agreement with the observed one, the degree of agreement
being the best for the strain model. Quantitatively, however, significant discrepancies between the observed
and calculated variations have been found for some regions of the angle of rotation. Some discussions of the
discrepancies are presented.

I. INTRODUCTION

EJECT electron-paramagnetic-resonance (EPR)
absorption studies" of the Cr'+ ion in single

crystals of (AlsOs), ,(CrsOs) with x close to 0.03%%uo

have indicated that the width of the three EPR lines
corresPonding to the (s —+ —s) and (ss —+ s) transitions
is approximately 12 G, when the external magnetic
field is parallel to the crystallographic (111)or C axis of
the samples. For such small values of x, the spin-spin
interactions among the Cr ions contribute insignificantly
to the linewidth. For example, when x is taken to be
0.001%, the linewidth of the (-,' —+ s) transition, if
broadened solely by the spin-spin interaction, would be
not larger than 0.5 G.' Under the circumstances, the
hyperfine interactions between the electronic spin of
each Cr ion and its neighboring Al nuclei of spin ~

and of 100%%u~ abundance have to be considered as being

t Work supported by U. S.Atomic Energy Commission Contract
No. WT(&&-&)-SOS4.

'W. J C. Grant and M. W. P. Strandberg, Phys. Rev. 135,
A715 (1964); 135, A727 (1964).

~ N. Laurance, E. C. McIrvine, and J. Lambe, J. Phys. Chem.
Solids 23, 515 (1962).

responsible for the linewidth. According to Laurance
et al. ,' the hyperfine broadening mechanism wouM lead
to a linewidth of 9.7 G. This is approximately 81% of
the observed width of 12 G. Thus the hyperfine broaden-
ing mechanism appears to be the major, but not the
sole, source of the linewidth for the case of the mag-
netic 6eld being parallel to the C axis.

The linewidth is expected to vary depending upon the
angle 0 between the C axis and the magnetic held if
the dipolar part of the hyperfine interactions is appre-
ciable. The expected anisotropy of the linewidth may be
calculated in terms of the hyperfine coupling constants
measured by Laurance et al.2 The hyperhne broadening
mechanism then would predict a variation of the line-
width between 9.4 and 9.9 G [see Eq. (B 14) of Ref. 1],
when the samples are rotated over the 90' range of 0

about an axis which is perpendicular to the C axis.
In the following, the axis of rotation is referred to as
the a axis.

However, the experimental results obtained from the
sample with x less than 0.01% investigated in the
present work indicate that the linewidth varies by
approximately a factor of 5 over the 90 range of 0,


