
P H YS I CAI' REVI EN VOl. UM R 140, NUMBER SA 29 NOVEMBER 1965

Autoionization States of H- below the n =2 Level of H
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The resonances below the inelastic (n =2) threshold of electron-hydrogen scattering are examined by the
projection-operator technique of Feshbach. This technique converts the problem to an eigenvalue problem
for a projected Hamiltonian in which the autoionization levels of H become true bound states. The number
of levels of this problem is found to be infinite and cluster at the n= 2 level of H. The relative spacings of
the levels are identical to the resonances in e-H scattering as derived by Gailitis and Damburg.

I. INTRODUCTION

ECENTI Y, O' Malley and Geltman' have utilized
the projection-operator technique of Feshbach, 2

as applied to the atomic case by Hahn, O' Malley, and

Spruch, ' to calculate the compound autoionization
states of H—below the m=2 excitation threshold for
e-H scattering. The point of using the projection opera-
tor Q is that it projects out (removes) the ground state
of hydrogen from the total wave function, and therefore
gives rise only to asymptotically vanishing terms even
for a wave function that would otherwise be capable of
describing e-H elastic scattering. Thus one can formu-

late an ordinary eigenvalue problem for the Schrodinger
equation with a projected. wave function QC':

and, following Pano, 4 O' Malley and Geltman have
shown that at energies E„close to the eigenvalues B„of
the above problem,

E =8+6,
the phase shift associated with the scattering problem,
described by 0', undergoes an increase of approximately
m radians corresponding to resonances in the elastic
scattering.

Although an explicit formula for h„was given, ' it
involves coupling to the continuum part of O'. Thus the
O' Malley-Geltman calculations were confined to 8„
below the inelastic (2s) threshold for H (e-H scatter-

ing) and He (e-He+ scattering). The neglect of h„would
indeed be justifiable as agreement with other scattering
calculations' ' and experiments showed. However,
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there is a special circumstance in the case of elastic
scattering just below the 2s threshold which makes for
an inhnite number of resonances which cluster on the
2s threshold, (a similar clustering occurs below the
threshold of all excited. states of hydrogen). This
remarkable result was deduced by Gailitis and Dam-
burg' on the basis of close-coupling scattering calcu-
lations above threshold which were then extrapolated
below threshold. The physical basis for this phenomenon
derives from the very long-range nature of the potential
(r s) which in turn stems from the degeneracy of the 2s
and. 2p levels of hydrogen (and it is only in this approx-
imation that the infinity of resonances applies). On the
other hand, the actual calculations of O'Malley and
Geltman' yielded only two eigenvalues in each channel,
which result, although it was in accord with previous
predictions of two resonances, ' leaves open the question
of whether the higher eigenvalues are present below

threshold in the actual spectrum of QHQ or whether the
in6nity of resonances are brought below threshold only

by the uncalculated 6„.
The formal definition of the projection operator Q as

it applies to this problem has been given by Hahn,
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O'Malley, and Spruch':

Q=1 P—P—+P P, (1.3)

(1.4)

dropped. For 5 states they are

(d'/dy'+ b) r/= 6w/r'

(d'/dy' 2/r—'+ 8)w =6t//y'.

(2.5)

(2 6)

ys(r, ) is the ground state of hydrogen occupied by the
ith particle (i=1, 2).

In the next section we shall show that the spectrum
of discrete levels of QHQ is indeed infinite below thresh-
old, and we shall derive a formula for the relative
spacings of S„which is identical to that of Gailitis and
Damburg' for E„.

R~, (y) t/(y)dy. (2.3)

The last term (in square brackets) in Eq. (2.2) is seen
to be a short-range (exponentially damped) term. It can
therefore only contribute short-range terms to the
coupled integro-differential equations that one would
derive from Q%' and therefore does not destroy the
necessary property

II. ANALYSIS

We start with a close-coupling wave function for the
'S state of e-H scattering including is-2s-2p states of
hydrogen:

+= (1/yty2) (I I( 1)R1 ( 2)+e( 1)R2 ( 2)

+w(yr)Rs„(yt)cosetsf+L(1~2) j), (2.1)

where E„» is r times the given radial wave function. A
straightforward. application of Q on 4 now yields

Q+ (1/ 1 2)(Ltt(yt)Rs. (ys)+w(yr)Rs (ys)cosgrs&

+L(1~~2)j—C„LRt,(yt)Rs, (ys)+ (1+~2)j), (2.2)

where

P()= ()+-'L(i—(3&)'"3 ()
The diagonalized equation is

(2 7)

(d'/dy'+L(3&)'" —1j/y'+ @)P(y)=o (2 8)

In this equation 8 is the energy in rydbergs relative to
the 2s threshold. Having gotten the equation in this
form, we can appeal to an argument of Landau and
Lifshitz" to answer aKrmatively the question of
whether there are an infinite number of bound states of
F(y) For th.ey" have shown that any problem governed
by the potential in (2.8) for large y and well behaved for
small r has a solution with an infinite number of nodes
as 8 —+ 0. Thus for 8 negative and small, one can 6nd
bound-state solutions with any arbitrary number of
nodes, i.e., there are an infinite number of bound states
with 5&0.

This much was also clear to Damburg and Gailitis
as a perusal of their paper shows. The new point thus
far has been that the elimination of the is state from the
close-coupling wave function can be put on a more
rigorous basis by a consistent application of the Q
operator. Below we shall actually evaluate the eigen-
value spectrum of Il.

Letting
(2 9)

These equations may be diagonalized" so that two
linear combinations of e and m satisfy two uncoupled
equations with an attractive and repulsive r ' potential
respectively. The one which contains the attractive r—'
potential corresponds to

lim Q@=0.
7 y-+00

(2.4) one can convince oneself that the solution of (2.8) which
vanishes at infinity is

Furthermore, it will not alter the long-range form of the
coupled equations that would be obtained from a form
of (2.2) with the last term absent. In other words the
long-range form of the equations for v and m are the
same as those in the is-2s-2p close-coupling approxi-
mation" when all terms depending on u and R~, are

where
P(y) —yl/2+. (1) (eel/sy)

~= L(37)'"—(5/4)3'"

and B; &" is the Hank. el function

(2.10)

(2.11)

~ I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (1957). The close coupling equations are given in a very
explicit form by K. Omidvar, Phys. Rev. 133, A970 (1964).

It was originally thought that the last term in Eq. (2.2) could be
omitted from the entire equations; however, this depends on there
being enough freedom in the equations for a solution to exist such
that e is orthogonal to RI,. This being a bound-state problem,
however, it cannot be taken for granted that such freedom in e
exists. We are indebted to P. G. Burke for conversations on this
point. He has found it necessary to modify the short-range part of
the 2s-2p close-coupling equations in a manner which is presumably
equivalent to incorporating the last term of Eq. (2.2).

The suggestion that the resonant energies of the scattering
problem would correspond to the discrete spectrum of the closed-
channel part of the close-coupling equations was first made by
H. S. W. Massey fcf. footnote 23a of P. G. Burke and H. M.
Schey, Ref. 5j. Thus the argument which we present here can be

J„and N„are the Bessel and Neumann functions
respectively. For large values of" r

n'+-', // 1
limF(y) cce """ 1— +OI — . (2.12)~00 (yse

considered a justification of Massey's suggestion on the basis of
the Q-operator formalism.

u M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961).
~ L. D. Landau and E. M. Lifshitz, Quantgm 3fechaeics

(Pergamon Press, Ltd. , London, 1958), p. 118 ff.
n W. Magnus and F. Oberhettinger, tormllas artd Theorems for

the Ftclctiols of Mathemattcat Physics (Chelsea Publishing Com-
pany, New York, 1949), p. 16.
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For values of r& a the equations for F and a second It is easily verified that for n given by (2.11) and for
linear combination of v and zo, call it r=a, (2.14) guarantees that

G= e+-', L1+ (37)'"gw,

will be coupled. They cannot be decoupled by any
linear transformation. However, it is certainly possible
to de6ne a nonlocal potentiaP4 which will describe an
uncoupled F(r) down to the origin. This nonlocal
potential can in turn be approximated by a local
potential V, (r) at least for values of r slightly below the
value of r =a where Eq. (2.6) is valid. . Now it can safely
be assumed that V, (r) will continue to decrease (in-
crease in magnitude) until such a point r = b where the
centrifugal barrier forces the potential up to in6nity.
Therefore,

J
V, (r) [) [ V(a) [

=L(37)'"—1j/a' b&r&a. (2.13)

Then for any energy satisfying

e«L(37)'~' —1]/a',

the wave function F(r) will be virtually independent of
e for r&a. Let the logarithmic derivative of F(r) at
r=a, as obtained by integration from the origin

'

presence of the actual potential, be defined by

(2.14)

L&lF(a) jdF(r)l—«l =.
To repeat, for energies satisfying (2.14), t is virtually
independent of ~.

This logarithmic derivative must be matched to that
of F(r) for r) a in order to obtain the allowed bound
states. In this region F(r) is given by (2.10).It is shown
below that as long as we only consider energies con-
sistent with (2.14), the small argument expansion of the
Hankel function in (2.10) may be used in the vicinity
of r= c.

To see this we consider the small-argument ex-
pansion"

(ss)"
Il (1) (s) e—(vn'

sinvm I'(1+v) I'(1—v)

i I
l'

X 1+Oi i
. (2.16)

&4i v+1' I

2ie&"~ sinLn ln(-',e'I'r) —(v]
(i) (sel/sr)—

(~n sinh(en) ji"
er'

X 1+O~ I, (2.17)
44(ns+1)'~')

where

( =argtl'(1+~) l.

"M. Mittleman, Ann. Phys. (N. Y.) 14, 94 (1961).

Putting in the imaginary values v=m and z=ie'~ r
yieMs the explicit expression

1 dF(r) CL 1=—
cotton 1n(use'I'a) —y]+—. (2.19)

F(a) dr, a 2$

The allowed bound-state energies may be found by
equating this to t, the value from the interior, and
solving for e'" assuming, of course, that t is independent
of e.

2
e'~'= exp(—n ')cot ' ((2/a —1)/2n)+ q +me.j), (2.20)

0&cot 'g&x.

Let the energy of the lowest bound state be desig-
nated by ei. If ei satisfies (2.14), the successively higher
states are given by the recursion relation:

&n+1= & &e p

—2m'/0. (2.21)

as is easily seen from (2.20). Equation (2.21) is identical
to the formula for the ratio of resonant energies obtained
by Gailitis and Damburg. ' This relation becomes more
accurate with increasing e, because of the decreasing
dependence of t on e, and because of the increasing
validity of the first-order expansion (2.17).~e now look
at the case m=1.

O' Malley and Geltman' have given for the energy of
the lowest lying 'S bound state:

ei ——0.645 eV= 0.0474 Ry. (2.22)

If this energy is to satisfy (2.14), the matching radius
which we choose must satisfy

a'«
t (37)'I' 15/et —107, —

where all lengths are given in Bohr radii. For a=5,
(2.14) is satisfied fairly well. However, the extent to
which the asymptotic equations are valid at such a
small radius is questionable. The potentials coupling in
other channels could give 10% eGects at r=5 quite
easily. But allowing a 10% error in the relation (2.21)
for e= 1 is not serious, since with ei fixed by (2.22) one
obtains

es = (0.037&0.004)eV. (2.23)

)It should be understood that the error estimate of 10%%uo

in the accuracy of Eq. (2.21) between e& and e& is a
subjective estimate which couM conceivably err on the
smaQ side. We believe, however, that it is quite a liberal

Per'/4(n'+ 1)'~')&&1.

Therefore, with no further restriction we have, to
within a proportionality constant,

F(r) = r'~' sinLn ln(-,'e'"r) —(vj) r =a, (2.18)
and
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estimate. ]This result corresponds to a fairly narrowly
delned second eigenvalue; namely (relative to the
ground state of hydrogen):

hs = (10.167&0.004)eV.

Furthermore, since the asymptotic form of the 2s-2p
equations, (2.6), contains no exchange terms, Eq.
(2.19) must hold for triplet as well as singlet S states
(albeit with a different e~). For other values of the total
angular momentum one has equations similar to (2.6)
with altered numerical coeKcients of the r ' terms. "
Only in I' and D states will the diagonalization yield a
net attractive r—' potential with associated coeKcients
n= 1.86 and 0.75, respectively. "With these changes in
n, Eq. (2.19) also holds for states of both spins.

In Table I, we summarize the numerical results for
the Q.rst three resonances for S and I' states. The ener-
gies are given relative to the ground state of hydrogen
(which is appropriate for comparison with resonant
energies in the elastic scattering of electrons from
hydrogen). The S and I' states of both spins are in-
cluded and the lowest state in each case has been chosen
to agree with the calculated results of O' Malley and
Geltman. ' The second states, which in the 'S case are in
accord with the original prediction of two resonances, ' ~

then provide a point of comparison with the O' Malley-
Geltman result.

It can be seen that our second states particularly in
the 'S case are lower than the corresponding O' Malley-
Geltman states. The discrepancy in e2 is 0.011 eV which,
by comparison to (2.23) is seen to be a difference of
30%. The qualitative lowering of the levels as we have
obtained is almost certainly correct. This is again
because of the tremendously long range of the r '
potential. A quantitative estimate of this potential can
be obtained by observing when the second term in the
asymptotic expansion (2.12) becomes comparable to

'5 The Gailitis-Damburg spacing formula, Ref. 9, was derived
originally for the 'S state. P. G. Burke and K. Smith, p. 89 of the
conference proceedings quoted in Ref. 7, were the erst to extend
it to P states.

"These numbers are given in footnote 16 of T. F. O' Malley,
Phys. Rev. 137, A 1668 (1965).

TA&LE I.Autoionization levels of II
(in eV above the ground of hydrogen').

State O' Malley-Geltmanb This paper'

'S

1P

'P

9.559
10.178

10.149
10.202

10.178
10.203

9.727
10.198

9.559
10.1668
10.2016

10.149
10.2006
10.2036

10.178
10.2029
10.2037

9.727
10.1875
10.2032

the first. For any eigenfunction n, we define this value
of r bye„:

(mrs+ 1)/e 1/2 (2.24)

In the 'S case R1—25 ap and E2—100 ao, where we have
explicitly appended the unit of length as (the Bohr
radius). Having used a not unusual relative partial-
wave-type variational wave function with up to 25
parameters, it is not surprising that O' Malley and
Geltman could get an accurate lowest state whose range
(25 ae) is not very much more than an ordinary-type
bound-state wave function. However, the range of the
second state (100 as) is so large that it is surprising
indeed that it could be obtained by a conventional
variational wave function below the m=2 threshold
at all.
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aOur numbers are based upon the Rydberg being taken as exactly
13.605 eV.

b From Ref. 1.
This column contains only the first three of the eigenvalues for each

state of the infinity of eigenvalues predicted by Eq. (2.21). The actual
number of levels is finite and cuts o8 when the energy separation of the
autioionization states becomes comparable to the Lamb-shift splitting of
the n =2 level of H. (See, for example, Ref. 9.)


