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Fine structure
'p& state gg value
Lifetime ratio
Pure LS coupling

Cy

0.4412
0.4278
0.4289
0.5774

0.8974 0.9874
0.9038 0.9850
0,9033 0.9852
0.8165 1

TmLz III. Intermediate coupling coefBcients.

—0.1582—0.1725—0.1714
0

gg('Ps). Hence we make the estimate of —200~40 ppm
for the corrections.

In line 3, we have used the 'P~ state lifetime together
with the 'E~ state lifetime to calculate the coupling
coeKcients from the equations

Russell-Saunders coupling are related to the values in
intermediate coupling by the expression'

where rr and p are related to the coupling coefficients ct
and cs, and we have taken gs'(sEt)=1.50096 and
gzo('pt)=0. 99980. These values for gs' include an
estimate of —200 ppm for relativistic and diamagnetic
corrections. This estimate is obtained as follows:

gq (sos) = 1.50099(10).The difference between this value

and the theoretical value go=1.501156 is 170 ppm.
From a treatment of the relativistic and diamagnetic
corrections similar to the treatment of Abragam and
Van Vleck for oxygen, ' we can show that the corrections
to both the 'E'1 and the 'E1 gJ values are almost the same

and are slightly larger than the correction to the

' A. Abragam and J.H. Van Vleck, Phys. Rev. 92, 1448 (1953).

cr'+ '=1.
Ke have taken an average value T=(1.145~0.02)
)&10 7 sec for the lifetime of the 'P1 state.

The agreement between all three methods is good and
the agreement between the methods of lines 2 and 3 is
excellent. This is expected, since the hne structure is
more sensitive to conhguration interaction than are gJ
values or the lifetime ratio.
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A semiempirical method for computing atomic and ionic wave functions is described. The method uses a
pne e]ectrpn pptential obtained from a scaled Thomas-Fermi ionic charge distribution. The scale factors
are chpsen tp make the one-electron binding energies agree with experimental ionization potentials. A
number of oscillator strengths have been evaluated and are found to agree well with results of alternative
methods of calculation. The method has a wider range of applicability than that of Bates and Damgaard, and
calculations are much shorter than those using the self-consistent-Geld methpds.
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E consider in this paper an approximate and

rapid method for obtaining radial wave func-

tions in many-electron atoms and ions. Our main goal
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in this work is the calculation of electric-dipole tran-
sition probabilities ("oscillator strengths"), although
other applications (collision cross sections, spin-orbit
parameters, Slater integrals, etc.) suggest themselves.
In applications such as opacity calculations, which
require many hundreds of wave functions for transition
probabilities, speed of computation becomes an im-
portant consideration. Our particular concern, there-
fore, is to evaluate wave functions via some method
which circumvents the lengthy "self-consistent-held"
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(SCF) methods, since SCF rapidly gets lengthier as
the number of occupied electron orbitals increases, and
it becomes prohibitively lengthy if one contemplates
evaluating many oscillator strengths in many stages of
ionization of many elements. Current methods of com-

puting oscillator strengths are discussed brieQy in Sec.
II.

Our method may be regarded as a hybrid of the
semiempirical method of Bates and Damgaard' and
the nonempirical method of Thomas' and Fermi. e The
basic approximation we make is that any one-electron
wave function can be represented adequately by a
solution of the one-electron Schrodinger equation in
which the potential is that produced by a Thomas-
Fermi ion with the correct nuclear charge, the correct
number of electrons, and some value (stot in general
the Thomas-Fermi value) of the mean radius of the
charge distribution. The Thomas-Fermi ion, in other
words, is uniformly and isotropically dilated or con-
tracted to force some parameter of the radial wave
function to have a prescribed value. In the present
work, this parameter is the energy parameter in the
one-electron wave equation, which we take equal to
the experimental ionization potential of the electron
in question; other choices are, of course, possible. With
this choice the oscillator strength of any transition can
be evaluated from a knowledge of the initial and final

energy levels referred to the energy of the parent ion,
as in the Bates-Damgaard method; unlike their method,
however, our method does not neglect the part of the
dipole matrix element arising from small radial dis-
tances and so is not restricted to initial and final states
in which the active electron lies mostly outside the
passive electrons. The price paid for this wider range
of applicability is a brief machine calculation instead
of a hand calculation; the machine calculation, how-

ever, is at least an order of magnitude faster than any
of the SCF methods known to us. Our method is de-
scribed in Sec. III.

Our particular choice of potential is based on a
number of empirical considerations, besides the obvious
one of ease of handling: good numerical fit with po-
tentials obtained from the SCF methods, the resulting
close agreement of radial wave functions, and, ulti-
mately, reasonable agreement with the dipole matrix
elements obtained by other methods. The comparison
with other theoretical and experimental results is
exhibited and discussed in Sec. IV. Conclusions and
future work are summarized briefly in Sec. V.

II. CURRENT METHODS

Methods for obtaining wave functions of many-
electron atoms and ions may be divided into two broad
classes: first-principle methods and semiempirical

' D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London
A242, 101 (1949).' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).

K. Fermi, Atti Accad. Nazi. Lincei, Rend. , Classe sci. Gs., mat.
e nat. 6, 602 (1927);Z. Physik 48, 73 (1928).

methods. The former class, of which the Hartree, 4

Hartree-Fock, ' Hartree-Fock-Slater, 6 and "charge-
expansion"7 methods are examples, attempts to find
approximate solutions to the many-electron Schrodinger
equation which satisfy a criterion of variational opti-
mization within a restricted class of trial functions
chosen in advance. The quantity which is optimized
is always the total energy of the atom or ion. Although
the total energy is usually given quite accurately by
the variational methods, it is not ordinarily the quan-
tity which one wishes to evaluate. One usually wants
the ionization potential of an outer electron, a tran-
sition probability (square of the oft'-diagonal matrix
element of an operator such as the electric-dipole
moment), etc. These quantities are usually much more
sensitive to the behavior of the wave function in the
outer parts of the atom or ion than is the total energy,
so that, as has been pointed out many times, approxi-
mate wave functions which give excellent total energies
need not give even fair transition probabilities.

In contrast to first-principle methods, semiempirical
methods require that the approximate wave functions
satisfy some constraints taken from experiment, such
as one-electron energy levels or ionization potentials.
Among the semiempirical methods, the "Coulomb
approximation" of Bates and Damgaard' (which has
been extended to photoelectric transitions by Burgess
and Seatons) leads to a relatively simple computational
scheme and has been widely applied with considerable
success, ' often yielding oscillator strengths which agree
with experiment better than the self-consistent-field
values do. The Bates-Damgaard (BD) method utilizes
the experimental binding energy of the active electron
to construct an approximate radial wave function
which is accurate at large radial distances: a Coulomb
wave function with the right behavior at infinity and
the right energy. The length form of the electric-dipole
matrix element, which emphasizes large radial dis-
tances, is then evaluated using two such wave functions.
The resulting transition probability depends on the
initial and final energies and angular momenta of the
active electron, but not on the details of the atomic
potential at small radii.

The basic postulate of the BD method is that nearly
all of the dipole-length matrix element is contributed
by the wave function at radii where the active electron
is outside the "core" (the charge distribution of the
rest of the electrons and the nucleus); the contribution

s D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).' See, for example, D. R. Hartree, The Calculatiou of Atomsc
Structures (John Wiley tk Sons, Inc. , New York, 1957).

e J. C. Slater, Phys. Rev. 81, 385 (1951);J. C. Sister, Quautum
Theory of Atomic Structure (McGraw-Hill Book Company, Inc.,
New York, 1960), Vols. I and II; see also Ref. 31.

7 D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959);C. M. Varsavsky,
Astrophys. J., SuppL Ser. 6, No. 53, 75 (1961); A. Naqvi, J.
Quant. Spectry. Radiative Transfer 4, 597 (1964).

s A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron.
Soc. 120, 121 (1960).

s H. R. Griem, Plasma SPectroscoPy (McGraw-Hill Boolr Com-
pany, Inc., New York, 1964), Chap. 3.
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from smaller radii is either neglected (by using a cutoff
radius) or severely approximated (by introducing a
modifying factor into the approximate wave function,
which prevents the radial integral from diverging at
the origin). The postulate is violated, and the BD
method suspect, in two cases: (a) when the active
electron is in an inner orbital with very small amplitude
outside the core or (b) when the outer contribution to
the matrix element is very small because of cancellation
so that the value of the inner contribution is important.
The method described in the next section is designed to
remain accurate even when the postulate of the BD
method is violated.

s=r p)
&=0.8853Z-»3;

q= s/Z;
s= core charge;
Z= atomic number.

(2)

»p. Gornbas, Die Statistisctte 7'tteorie des Atoms (Springer-
Verlag, Vienna, 1949)."R.Latter, Phys. Rev. 99, 510 (1955).

III. THE SCALED THOMAS-FERMI METHOD

The derivation of the Thomas-Fermi (TF) sta, tistical
model for atoms and ions has been treated extensively

by Gombas' and will not be repeated here. Several
authors have evaluated one-electron wave functions
and energy levels in the TF potential (or approxi-
mations to it); the most comprehensive set of results
is due to Latter, " who obtained one-electron energies
for neutral atoms distributed through the periodic
table. The potential experienced by the electron whose

wave function is sought (the "valence" electron) is
produced by the nucleus and the rest of the electrons
(the "core") and reduces at large radii to the Coulomb

potential of the core charge. Thus, an approximate
potential for all radii is obtained if we replace the core

by a TF ion whose net charge is the core charge and
whose nucleus has the actual nuclear charge. (Latter
used, instead, a neutral TF atom and a somewhat un-

physical charge shell to get the asymptotic Coulomb
potential. ) The one-electron radial wave equation for
an electron of angular momentum l and principal
quantum number m is then

O'P„t/dr'+ $2ZQ (r/ts)/r+ E„t
—l(i+1)/r']Z„, (r) =0, (1)

where r is in Bohr radii, E is in Rydbergs, and

P(x) = p (x)+qx/xp (x(xp)
=g (x)xp);

q is the TF function, which satisfies

/tlgs = (pstsg —&ts ~

(p(0) =1;
p (*p)=0;

q= —&p&q/dx~ „;

The radial wave function P(r) satisfies the usual
boundary and normalization conditions:

Z.t(O) =0;

P t(~)=0 a,nd I'„)'dr = 1, if E(0;

P(r) ~ cos(kr+8(r)), if E=k'~0.

For bound states, tt is defined as i+1+1V, where & is
the number of nodes excluding those at zero and
infinity.

If the bound-state energies E g are determined as
eigenvalues of Eq. (1), they do not of course coincide
with experimental values. We (an render the model
semiempirical if we replace p, by 0.„&p,, where the scale
factor o.„& plays the role of an eigenvalue to be deter-
mined by setting E„I, equal to the experimental one-
electron binding energy. The introduction of 0. & corre-
sponds to a uniform dilatation or contraction of the
TF core in an effort to compensate for all the omissions
and approximations of the TF model (exchange,
correlation, relativity, etc.), and its justification is
primarily the quality of the resulting wave functions
and oscillator strengths. We note in passing that radial
scale factors in the TF model have been employed by
Fock" in connection with a virial theorem and by
March" as a variational parameter in an approximate
correction for exchange.

With n„~ determined as above, the parallel between
our method (which we will call the "scaled TF" or
STF method) and the BD method is very close—at
radii outside the core radius (r)nttxp), the STF wave
function is, apart from normalization, identical with
the BD wave function.

We have found that a„~ is a very weak function of
the quantum number tt (see Table II). It is therefore
a simple matter to extrapolate ~„~ to a value to use in
the Schrodinger equation for unknown levels or con-
tinuum wave functions. Hence the method is also
readily applicable to the calculation of photoionization
cross sections, including those for x rays.

With the radial wave functions obtained as above,
the dipole absorption oscillator strength for a transition
from ml to e'l' is given by the standard relations

gf=-', (E'—E)S(On;)S(g)as

4l)' —1
I' gI' prdr

where l&=max(l, P), and the angular factors g(0E) and
&(&) can be obtained from tables computed by Gold-
berg' and reproduced by Allen, " or from formulas of

» P. Pock, Physik Z. Sowjetunion 1, 747 (1932).» N. H. March, Advan. Phys. 6, 1 (1957).
~4L. Goldberg, Astrophys. J. 82, 1 (1935);84, 11 (1936)."C. W. Allen, Astrophysical QNuntities (The Athlone Press,

University of London, London, 1963), 2nd edition.
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TABLE I. Oscillator strengths for some atoms and ions. ~

Atom
Z or ion Transition gfSTF gfan gfExpt Other a" A

3 Li I
10 Ne I

11 Na I
19 K I
20 Ca I
21 Sc I
22 Tl I
23 V I
24 Cr I
25 Mn I
26 I'e I
27 Co I
28 Ni I
29 Cu I
55 Cs I

80 Hg I

2$-2p
(2p') 2p-3s

2p-4s
2p-5$
2p-6s
2p-3d
2p-4d
2p-Sd
2p-6d
3$-3p
4$ 4p

3d4s('Dg) 3d4p( 3-F4)

3d'4s(4F2/2) 3d'4p(-'G11/2)
3d34s('Fg) 3d'4p-('Gg)

3d'4s(3D2/2)-3d 4p( Fgg/2)
3d34s('Sg) 3d'4p('P-4)

3d042 (0Dg/2)-3d44p (4F11/g)
3d"42('Fg) 3d'4p('Gg-)

(' /)- ' p(' /)
3d04s('Dg)-3d'4p('F4)

3d1042 (2S1/2) 3d104p (2P3/2)
6$-6pl/2
6$-6P8f2
6$-7pIf2
6s-7P8@
6$-8pIf2
6$-8p8/2

6p (3P)-7s (3S)
6p('P1)-6d('D1)
6p ('P1)-6d ('Dg)

1.46
0.193
0.031
0.011
0.005
0.052
0.026
0.015
0.009
1.95
2.10
2.70
3.58
3.94
3.80
2.73
3.76
4.13
3.78
2.68
1.24
0.753
1.56
0.012
0.040
0.00233
0.00933
1.41

1.49

~ ~ ~

1,87
1.98
2.45
3.20
3.46
3.33
2.35
3.24
3.56
3.29
2.31
1..08
0.697
1.50
0.013
0.034
0.00259
0.00982
0.77

1.98d
1.1d
2.6d
38
4.0d
0.6d
5.3d
4.1
3.2d
0.8d
0.8d

~ ~

2.1g
2.0g
2.3g
3.7g
3.0g
0.5g
93g
44g
4.6~
1.0g
0.64g

2.38"

0.032h

0.00616"

0.7d 1.461

0.9i

1.49' 1.59d
0 163f 0 188e
0.026f 0.029e
0.009' 0.008'
0 004f 0 003e
0.037f 0.036'
0 020f 0 025e
p piif p 018e
0 007f 0 012e

1.94e
2.08e

~ ~ ~

2.26' 0.788
1.63'
0.0057'
0.0348'

0 013 0 00063i
0.00698'

1.30 1.12
0.995 1.027
0.995 1.010
0.995 1.007
0.995 1.006
0.995 1.199
0.995 1.146
0.995 1.154
0.995 1.159
0.95 0.97
1 135 1 135
1.19 1.24
1.17 1.21
1.14 1.18
1.11 1.13
1.08 1.11
1.05 1.07
1.02 1.03
0.985 1.00
0.96 0.99
0.93 0.95
1.14 1.135
1.14 1.119
1.14 1.127
1.14 1.111
1.14 1.125
1.14 1.109
1.00 1.04

1.00 1.03

& When only one strength is given for a doublet, it is the combined value.
b a and a' are the scale factors for the lower and upper states, respectively.
e Anderson and Zilitis, Ref. 18. ti Allen, Ref. 15.
f Cooper, Ref. 20. I Corliss and Bozman, Ref. 21.
f Stone, Ref. 23. j Penguin, Ref. 24.

e Kelly Ref 19
h Kvater and Meister, Ref. 22.

Rohrlich" or Kelly. '~ The above expression refers to
gf for a spectral line; gf values for multiplets or tran-
sition arrays are sums over the gf's of the constituent
lines.

For photoionization transitions, the upper-state wave
function belongs to the continuum; the cross section
per atom in the lower state, in units of gr&&(Bohr
radius)', is

4 1 1
A =- (z' —E)o' Qs(SR), —

3 137 pg L~s~

where k'= E'= kinetic energy of photoelectron, in
Rydbergs; g is the statistical weight of the lower state;
and 0-' is as before but with I'„.&. replaced by a con-
tinuum wave function normalized to asymptotic ampli-
tude unity as in Eq. (3). The above expressions (and
all the results of the present paper) neglect configuration
mixing, departures from LS coupling, and rearrange-
ment of the core electrons.

IV. RESULTS AND DlSCUSSION

In order to make a preliminary assessment of the
STF method, we have used it to compute a number of
oscillator strengths in various atoms and ions. Our

"F.Rohrlich, Astrophys. J. 129, 441 (1959); 129, 449 (1959)."P. S. Kelly, Astrophys. J. 140, 1247 (1964).

choice of test cases is intended to be representative
rather than comprehensive; we have included examples
of heavy and light, simple and complex atomic systems.
The examples are chosen, in part, for availability of
comparison data. In Table I (which cites Refs. 18—24)
we have tabulated some values, for neutral atoms, of
the quantity gf, where g is the statistical weight of the
lower state and f is the absorption oscillator strength.
Some of the transitions treated are single lines, others
are multiplets, and still others are transition arrays, as
indicated by the presence or absence of the quantum
numbers I., S, and J. In all cases, the gf values we

give are sums over quantum numbers which do not
appear explicitly. For each transition, we give in the
STF column, our value of gf; in the next column, the
BD value; in the "Expt" column, experimental values;
in the "Other" column, values calculated by other

E. M. Anderson and V. A. Zilitis, Opt. i Spectroskopiya 16,
382 (1964); 16, 177 (1964) LEnglish transl. : Opt. Spectry.
(USSR) 16, 211 (1964) i 16, 99 (1964)g."P. S. Kelly, J. Quant. Spectry. Radiative Transfer 4, 117
(1964).

~ J. W. Cooper, Phys. Rev. 128, 681 (1962)."C. H. Corliss and W. R. Bosman, Natl. Bur. Std. (U.S.),
Monograph 53 (1962).

~ G. S. Kvater and T. G. Meister, Vestn. Leningr. Univ. , Ser.
Fiz. i Khim. 9, 137 (1952), as referred to in Ref. 18.

~ P. M. Stone, Phys. Rev. 127, 1151 (1962}.24¹D. Penkin, J. Quant. Spectry. Radiative Transfer 4, 4i
(1964).
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semiempirical methods or by the Hartree-Fock-Slater
method; and in the last two columns, the values of the
scale factors n and u', corresponding respectively to
the lower and upper states of the transition. Each scale
factor was determined, as described in Sec. III, by
setting the energy parameter in the one-electron radial
wave equation equal to the experimental ionization
potentiaP' of the electron which makes the transition
(referred to the appropriate parent term); for transition
arrays, the ionization potential was taken as a weighted
mean over L and S. The same energy parameters were
used in the BD calculations shown here.

We consider Grst the results for the alkali metals
(Li, Na, K, Cs) in Table I. The strengths of the reso-
nance lines (rts-+rtp) of these elements agree closely
with the results of other methods; this is hardly sur-
prising since the large oscillator strengths of these
lines are rather insensitive to the details of the wave
functions. On the other hand, strengths of the higher
lines in the principal series (rts-+n'p) are extremely
sensitive to the wave functions because of strong
cancellation in the radial integrals. In particular, we
note that in Cs I the computed oscillator strengths of
6st/2 7ps/s and 6s&/s-7pr/s are in the ratio 3.3//1 even
though the 7ps/s and 7p&/s binding energies differ by
only 2%%u~. If the radial integrals for these transitions
were identical, the strengths would have the ratio 2/1;
the departure from this value is observed experi-
mentally "The. close agreement of our gf values with
those of BD indicates that the contributions from the
wave functions inside the core are insignificant in CsI.
In the region outside the core, the form of the wave
function depends almost entirely on the one-electron
binding energy. The radial integral, as we have seen,
is very sensitive to changes of the order of 1'Po in the
one-electron binding energy. This accuracy is not often
attained by SCF methods.

In Hg, we see that our values differ appreciably from
those of BD. This is undoubtedly because the states
involved have binding energies large enough to nearly
invalidate BD's own criterion that the effective
principal quantum number should not be less than
about 1+-,'.

The da, ta for the iron group (Z=20 through 29)
illustrate the application of the STF method to complex
atoms. Throughout this group three low-lying con-
figurations of even parity (3d*+' 3d*4s, and 3d* '4s')
are present. Strong configuration mixing is to be
expected, '~ and may produce large departures of the
line strengths from those computed from any pure-
con6guration model. Therefore, it is somewhat sur-
prising that the over-all agreement with experiment is
as good as it is.

Neon is included as an example which cannot be

"Charlotte E. Moore, Atomic Energy I.eeels, Natl. Bur. Std.
(U. S.), Circ. 467, Vol. I (1949), Vol. II (1952), Vol. III (1958)."E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, New York, 1959),p. 376.

~' Reference 26, p. 330.

TABLE II. Selected oscillator strengths and scale factors in the
sodium isoelectronic sequence. '

Z Ion Transition

11 Na I Bs-3p
3s-4p
3s-Sp

12 Mg II 3s-3p
3s-4p
3s-5p

13 Al III 3s-3p
Bs-4p
Bs-5p

14 Si IV 3s-3p
Bs-4p

17 Cl VII Bs-3p
3s-4p

20 Ca X 3s-3p
Bs-4p

23 V XIII Bs-3p
3s-4p

26 Fe XVI 3s-3p
Bs-4p

29 Cu XIX 3s-3p

fsTF

0.977
0.151(—1)
0.236(—2)
0.940
0.230(—3)
0.100(—2)

0.866
0.113(—1)
0.681(—2)

0.796
0.302 (—1)
0.627
0.102

0.525
0.145

0.450
0.195

0.399
0.226

0.363

fan

0.934
0.143 (—1)
0.201(—2)

0.891
0.124(—3)
0.129(—2)

0.826
0.105(—1)
0.746(—2)

0.758
0.286(—1)
0.607
0.091

0.507
0.143

0.439
0.182

0.394
0.210

0.358

0.943 0.963
0.958
0.957

1.008 1.004
0.997
0.995

1.043 1.027
1.019
1.017

1.067 1.042
1.033

1.139 1.093
1.088

1.140 1.087
1.078

1.217 1.135
1.126

1.259 1.154
1.144

1.305 1.173

Note: a and a' are the scale factors for the lower and upper states,
respectively.

treated by the BD method because the effective
principal quantum number for the 2p orbital is too
small; here we obtain generally good agreement with
Cooper's'0 simplified self-consistent-field results and
with Kelly's" Hartree-Fock-Slater results.

In Table II we exhibit the behavior of a few STF
oscillator strengths and scale factors along the sodium-
like isoelectronic sequence, again based on experimental
energy levels. Table II serves to illustrate the smooth
behavior of n along such a sequence or along a Rydberg
series, and hence the possibility of extrapolating n's to
unknown levels. For comparison, the BD oscillator
strengths are also shown.

Table III (citing Ref. 28) shows STF photoionization
cross sections from the ground state of atomic oxygen.
In these calculations the continuum radial wave func-
tions were evaIuated using values of 0. determined from
bound states of the corresponding angular momenta.
For comparison, cross sections computed from Hartree-
Fock wave functions using the leligth and velocity
forms of the dipole Inatrix elements" are quoted.

We have compared the 2p orbital of the ground state
of oxygen obtained in the STF potential with orbitals
obtained by the Hartree, "Hartree-Fock, ' and Hartree-
Fock-Slater" methods. When the 0. in the STF method
was adjusted to give the same energy parameter as the
HF method (1.26 Ry) the HF and STF wave functions

's A. Dalgarno, R. j.W. Henry, and A. L. Stewart, Planetary
Space Sci. 12, 235 (1964)."D.R. Hartree and M. M. Black, Proc. Roy. Soc. (London)
A139, 311 (1933).

'0 D. R. Hartree, W. Hartree, and 3.Swirles, Phil. Trans. Roy.
Soc. London A238, 229 (1939).

s'F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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3r 6
+8 QN;PP—(r)

4 x'r' ~

—1i3

E—1
+C Yp(iver)+ Q c"(ii) Yp(pir)

4t;+1 &»

2 c"(pj) Yp(Vr)NP, r( I,

Pg(r (2L(2l,+1)(2l,+1)Jl'
l ]—(r/2)34~;) '

~

where (A,B,C) = (1,0,0) in the H (Hartree) method
= (0,1,0) in the HFS (Hartree-Fock-

Slater) method
= (0,0,1) in the HF (Hartree-Fock, con-

6guration average) method;

were found to agree within 5% in the tail (r)4 Bohr
radii); at smaller radii, the agreement was considerably
better. The maxima of both wave functions occurred
at 0.85 Bohr radii.

In Table IV is a comparison of wave functions
obtained by the various methods at one point in the
tail; the ratios of the wave functions are typical for
4&r&8. It is important to note that the energy
parameter in each case is the one obtained by the
respective method. This table is shown to emphasize
how sensitive the asymptotic amplitudes of the wave
functions are with respect to relatively small changes
in the energy. By way of contrast, all these functions
are within 5% of one another at 1 Bohr radius.

Since the TF model is a rather simplified picture of
the atom, one may well ask to what extent its omissions
and approximations can be compensated by intro-
duction of the single parameter a. Our use of the STF,
rather than the unmodified TF, potential rests simply
on the numerical observation that (in the cases we have
examined) the STF gives a reasonably good 6t to SCF
potentials, and is usually significantly better than the
TF. This observation is supported by comparisons of
the resulting wave functions and transition probabilities
with SCF results.

We consider erst the "screening function. "P which

appears in the radial wave equation (1). In the nu-

merical SCF methods this function is replaced by a
function U(r) which is constructed from previously
estimated wave functions. Specifically, for a con6gu-
ration with N; electrons in the ith orbital (e,l;), the
screening function U; in the ith radial wave equation is'

1
U;(r) =1+——Q N; Yp(jjr)+A Yp(iir)

Z j

TABLE III. Photoelectric cross sections at various wavelengths
from the ground state of atomic oxygen, in units of 10 '8 cm~. '

x(~)

550
420
290
175

HFI.

12.4
11.4
7.8
3.2

HFy

10.0
9.0
6.0
2.5

STF

14.3
11.2
5.7
1.9

a Note: HFr. and HFp refer to the use of length and velocity matrix
elements, respectively, taken between Hartree-Fock wave functions as
reported in Ref. 28.

TABLE IV. Comparison of 2p orbitals in the ground state of
oxygen at r =6 obtained by various methods.

Hartree-Fock'
Scaled Thomas-Fermi
Hartree-Fock-Slater~
Hartreeb

—&ms(Ry)

1.26
1.165~
1.04
0.94

Pp„(r=6)

0.011
0.013
0.016
0.025

a This energy parameter is the experimental ionization potential averaged
over L and S.

b See Ref. 29.
I See Ref. 30.
d See Ref. 31.

cP(pj ) =cP(1~0; t~0) =atL(21;+1)(2t&+1)]'~PC4r;p;

(Ref. 32)
X;,=off-diagonal Lagrange multiplier

and, in each case, —E; is the computed ionization
potential in the Koopmans ("unrelaxed-core") approxi-
mation. The quantity (Z—P;N;+1)/Z is, of course,
the (core charge/nuclear charge) ratio q.

The potentials corresponding to all of the above
screening functions Pand to the STF screening function
Usque(r)=P(r/np) j reduce to the nuclear potential as
r —+ 0, i.e., U(0) = 1. As r ~ ~, UH and Usrs approach

g, and UHp does the same when the ith orbital is the
outermost so that P;/P; ~ 0. The HFS method, which
uses an averaged exchange potential obtained from the
local electron density (as in the Thomas-Fermi-Dirac
model), fails to eliminate completely the self-interaction
potential. Accordingly, UHxsg 1 for one-electron atoms,
and in general UHFs —+ q

—1/Z as r-+ ~. In recent
extensive applications"" the procedure adopted was
to replace UHps by q whenever UHp&&q; in the rest
of this paper the designation HFS implies this
replacement.

In the analytic Hartree-Fock (AHF) method, »» '4

the orbitals are not obtained as numerical solutions of
wave equations with the screening functions UH~, but
are restricted to prescribed analytic forms. The wave
equation which such an orbital does satisfy can be
obtained readily by differentiating the analytic orbital
twice. The resulting screening function UAHp, may or

Yp(ijr)= P;(r')P;(r')(r'/r)Pd '
3' See Ref. 26, p. 182.
33 C. C. J. Roothaan and P. S. Bagus, Methods in Compltati onul

I'hysics (Academic Press Inc., New York, 1963), Vol. II.
P;(r')P, (r')(r/r')~'dr'; &C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131, 1177

(1963).
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may not agree closely with the UHp constructed by
integration from the same set of orbitals, depending
on the fiexibility of the trial functions employed and
on the size of the wave function at the point where the
comparison is made; the agreement tends to be worst at
very small and very large radii where the wave function
is small and has little weight in the total energy. Un-
fortunately these regions may contribute appreciably
to transition probabilities. '~ The "charge-expansion"
methodv may be regarded as a rather highly restricted
AHF scheme using scaled hydrogenic orbitals, and
corresponds to U~HF ——Z,/Z, where the effective charge
Z; is a variationally determined constant for each
orbital. This scheme naturally leads, in general, to
rather poor wave functions except for inner orbitals or
highly stripped ions.

It is illuminating to compare the various screening
functions for a specific example. Figure 1 exhibits this
comparison for the 2p orbital in the 1ss 2s'2p con-
6guration of 0 IV; we have used the AHF orbitals of
Roothaan and Kelly'4 to construct UH, UHpz, and UHp

by integration, and U&Hp by differentiation. We also
show UsTi. with u= 1.67 (which yields the experimental
E») and with n=1 (which yields the unmodified TF

potential). Figure 2 shows the corresponding quantities
for the 3d orbital in the is' 2s'3d condguration, where
Kelly's AHF orbitals" were used and n=1.96. The
reason for using the same wave functions throughout
is to exhibit directly the HF exchange contribution
(UHF —Un) and its HFS approximation (UHFs —UH).

Examining Figs. 1 and 2, we see that the STF and
HFS potentials appear to be of comparable quality as
approximations to the HF potential. Both decrease
somewhat too steeply in the outer part of the ion. The
Hartree potential, and especially the TF potential, are
consistently smaller than the HF potential; a radial
scaling of the Hartree potential would bring it quite
close to the HP. The AHF potential is indistinguishable
(in the graphs) from the HF, except at large radii for
the 2p orbital and small radii for the 3d orbital.

The 2p and 3d orbitals are nodeless; for orbitals with
nodes, the HF and AHF potentials in general have poles
at the nodes of the orbital, and so cannot be Gtted in
detail by any smooth potential such as the STF or HFS.
Nevertheless the resulting wave functions can be quite
similar, as illustrated by the 4p orbitals for neutral
krypton"»" shown in Fig. 3.

I I I I I I I I I I I I I I I I I I I

1.0-

0.8—

0.6— HF

0 4
AHF

4 ~ ~
4 4

4
4

4

0.2—

0
0.0 I

I I I I I I I

O. I

I I

I.O
I I I I I I

IO

FxG. 1. Screening functions for the 2p orbital in the 1s' 2s' 2p con6guration of 0 IV. Where the analytic Hartree-Fock (AHF)
function (dotted curve) is not shown, it is indistinguishable from the Hartree-Fock (HF) function.

"B.H. Worslev, Proc. Rov. Soc. (London) A247, 390 (1958).
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l 1 1 l I 1 I I I
I

1 1 I l I 1

1.0-
~~~os~)o ~

0.8—
~ ~ 0 ~ ~ Olygy ~

0.6—

0.4—

0,2—

0
0.01

11
0, 1

1I
1.0

I I I 1 I I

10

t'

I'rG. 2. Screening functions for the 3d orbital in the 1s~ 2s' 3d configuration of 0 IV. Where the AHF function
(dotted curve) is not shown, it is indistinguishable from the HF function.

I I I I I I I I I I I I I I I I I I I I

0.8—

0.6—

0.2—
L

-0.2—

-04—

0.0 I

I I I I I I I I
O. l

I I I s I s I I

1.0
I t I s I s I

10

Fzo. 3. 4p orbital in the ground state of neutral krypton (8=36): Hartree-Fock (HF) by Worsley (Ref. 35), Hartree-Fock-Slater
(HFS) by Herman and Skillman (Ref. 31), scaled Thomas-Fermi (STF) with a =1.02. The difference between HFS and S'TF is too
small to shower on the graph.
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We consider next the comparison of UBTp and UHpa
for neutral atoms. Although no HF or AHF results are
available, to our knowledge, beyond Z=47, the HFS
potentials and orbitals for the ground states of all
neutral atoms have been computed by Herman and
Skillman. " Their results for UHpa at three selected
values of r/Is are plotted against Z in Fig. 4, together
with UsTs for several values of u. (The neutral TF

Fro. 4. Hartree-Fock-Slater (HFS) (Ref. 31) and scaled
Thomas-Fermi (STF) screening functions for neutral atoms at
r/p=0. 50, 1.50, 3.10. The heavy curves give the HFS values, and
the light curves (labeled with values of a) the STF values.

potential used by Latter corresponds to a=1, Z= oo.)
The peaks and dips in UHpa as a function of Z, which
reflect the inQuence of shell structure, show the extent
to which n must Quctuate if USTA is forced to Gt UHps.
The quality of 6t obtained in a few cases is shown in
Fig. 5. The STF potentials, with 0.'s which correspond
to the experimental ionization potential of the outer-
most electron in each atom, Gt the HFS potentials
closely except in the vicinity of the HFS cutoG radius.

Finally we consider the transitions 2p-3s and 2p-3d
in oxygen and nitrogen in several stages of ionization,
which have been investigated by Kelly using both
AHF" and HFS" orbitals. Table V lists his values of
the radial factor o' for the transition arrays 1s' 2s' 2pN-
1ss 2s'2P —'3s and 1ss 2ss 2P —]sr 2ss 2P r 3d, with
/=4 to 1 in oxygen and /=3 to 1 in nitrogen. Each
array (except when IV=1) consists of several multi-
plets; we have averaged Kelly's AHF results over the
multiplets in each array, weighted with the relative
multiplet strengths S(OR). The HFS method yields one
value of 0-' per array. Our STF results were calculated
using as one-electron binding energies the appropriately
weighted means of the experimental values; the corre-
sponding values of n appear in the table. Some BD
values, calculated from the same energies, are also
shown; these result from extrapolating the BD tables
into the region I+ ra &rs*&l+1 Lwhere ss*=s/g( —E)],
which is considered marginally valid by BD; where no
BD values appear, it is because rs*&l+-,' for the 2p
orbital. Unfortunately, no measured strengths of these
ultraviolet transitions are known to us. Using the AHF
values as a standard of comparison, we 6nd for every
case in Table V that the STF value of 0-' is closer
(though not always much closer) to the AHF than
either HFS or BD is.

V. CONCLUSIONS AND FUTURE WORK

The results presented in Sec. IV suggest that the
STF method is accurate enough to provide a useful
complement to the BD method. Roughly speaking,
we may divide the transitions of interest into two
classes: those (Class I) to which the BD method is
thought to be applicable (because rsa)k+1 for the
initial and final states of the active electron) and those

TAsLK V. Radial integrals for nitrogen and oxygen.

Ion

NI
N II
N III
OI
0 II
0 III
0 IV

u(2p) n(3s) u(M)

1.27 1.40' 1.53
1.45 1.64 1.75
1.65 1.84 1.92'
1.16 1.24 1.285
1.32 1.46 1.50
1.48 1.65 1.70
1.67 1.88 1.96

BD

0.197 0.166
0.101 0.112
0.056 0.069
0.137 0.109
0.080 0.082
0.048 0.056
0.031 0.037

0 243
0.142
0.090 0.038
0.151 ~ ~ ~

0.098
0.066 0.025
0.046 0.022

o'(2p, 3s)
STF AHF' HFS STF

0.0121
0.036
0.044
0.0050
0.021
0.030
0.033

0.0071
0.030
0.048
0.0028
0.016
0.028
0.036

0.0138
0.043
0.056
0.0055
0.024
0.035
0.040

os(2p, 3d)
AHF~ HFSb SD

~ ~ ~

0.040

~ ~ ~

0.024
0.032

ss See Ref. 17.
b See Ref. 19.
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Fro. 3. Hartree-Fock-Slater (HFS) (Ref. 31) and scaled Thomas-Fermi (STF) screening functions for neutral atoms
of boron (Z=S), oxygen (Z=8), and krypton (Z=36).

(Class II) to which it is inapplicable or marginally
applicable. In Class I the STF and BD methods agree
rather closely, as expected; in Class II the STF method
appears to be, at least, competitive in accuracy with
the HFS method as an approximation to the AHF
method.

On the basis of the extensive experience of Herman
and Skillman" and Clementi, " representative com-
puting times (IBM-'7090) per configuration may be
estimated: about one minute for the HFS method and
one hour for the AHF method at moderate atomic
number, with a trend toward longer times for higher
atomic numbers. In contrast, the STF method takes
about five seconds per orbital (ten seconds for a tran-
sition probability). In view of these numbers and the
fact that applications in astrophysics and plasma
physics exist'~ which require very large numbers of
oscillator strengths, we cannot regard the speed ad-
vantage of the STF method as insignificant for large-
scale computation. Its most useful application is
probably to Class-II transitions, which ordinarily lie
in the experimentally dificult ultraviolet or soft x-ray
region and are inaccessible to the BD method. For
Class-I transitions the STF method does not seem to

offer any advantage over the BD method except
perhaps near the class boundary n*=l+1; a simple
program we have used which interpolates in the BD
tables takes 1/15 second for a transition probability.

The need for experimental energies in the STF
method is somewhat alleviated by the observation we
have already mentioned: The scale factor 0. varies
smoothly along Rydberg series and isoelectronic se-
quences and is always of the order of unity, permitting
accurate extrapolation. The quantum defect is also
smooth but has a far greater range of variation.

We also note from Tables I, II, and V that the 0.'s
involved in a transition are usually within a few percent
of each other. This suggests that, as a simplifying
approximation, the two n's be set equal. We would
then be able to produce a universal line-strength table
similar to BD but extended in scope. Instead of their
parameters e* and e*' for a given l and l', we would
use e, e', e*, and e*' for a given l and l'. The extra
parameters e and e' are discrete and take on only a
few values.
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singularity in (A3) for numerical solution, the sub-
stitution @=y' is made.

In order to maintain high accuracy throughout the
physically interesting range q= (1,0.01), it was found
necessary to split the range into three regions: 1.0&q
&0.5, 0.5&q&0.1, 0.1&q&0.01. These regions will be
identified as I, II, and III, respectively.

In region I, we have

APPENDIX

A. Scaled Thomas-Fermi Potential for the
Positive Ion

The scaled Thomas-Fermi (STF) potential of a
positive ion as seen by an electron is given (in Rydbergs)
by —V(r) = (2Z/r)Lp(x)+qx/xpj (x&xp),

= (2Z/r)q (x&xp), (A1) 15

xp =P tzn$z",
eM

(A6)

(A7)Q= (1—q)'t' 10&q)0 5

where r is the distance in Bohr radii and x is the dis-
tance in scaled TF units, which is related to the actual where
distance in Bohr radii by

f =A[MS~

with tt=-'(9tr'/2Z)'t'=0. 88534Z '" The fractional de-
gree of ionization is q=(Z —Ã)/Z, where Z is the
nuclear charge and Ã is the number of screening
electrons in the ion. The factor tr in (A2) is the scaling
factor for the charge distribution, and the ionic radius
in scaled TF units is xo.

The TF function po(x) in Eq. (A1) satisles the
differential equation

In region II,

where

12

xp"=P h fzz",
nM

bz =hzq; O.S&q) 0.1.

Finally, in region III
9

xpzzz=exp(g cn$zzz"),

(A9)

(A10)

q "(x)=x '"q (x)'t' (A3)
where

bzz ——lnq; 0.1&q) 0.01. (A11)
subject to the boundary conditions

~t (0)=1

q (xp) =0, q'(xp) = —q/xp.

(A4)

(AS)

TABLE VI. Coefficients for determining the ionic radius zs (in
TF units) as a function of the fractional degree of ionization q.
LSee Eqs. (A6)—(A11)g.'

b„

The problem of solving for po(x) is not trivial because
xo as a function of q is not initially available.

Ke have made a high-accuracy polynomial fit of
xp (q) which allows the boundary conditions (AS) to
be met as initial conditions so that when (A3) is
integrated from xp back to 0, tt (0)=1 is automatically
satisfied to better than 1 part in 105. To eliminate the

The coefEcients u„, b, c are given in Table VI.

where
p"(r) =K(r)p(r),

K(r) = f (1+1)/r'+ V (r)—E
through the recursion relation

2+ (Sh'/6) K(r„)
n+1 pn

1-(h'/»)K(r. +z)

B. Numerical Solution of the Schrodinger Equation

Probably the most efficient way to solve numerically
a second-order ordinary differential equation with first
derivatives absent is to use Numerov's method. "This
scheme approximates the solution to the Schrodinger
equation:

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15

9.959960(—9)
2.959563
1.853800(—1)
7.709556—5.57687(1)
4.724630(2)—3.063916(3)
1.503024(4)—5.522799 (4)
1.516092(5)—3.086518(5)
4.587142 (5)—4.830562 (5)
3.412177(5)—1.449479(5)
2.798640 (4)

2.402529 (—1)—4.751733—3.441959—6.138401—7.127922—6.352223—4.261793—2.135743—7.861645 (—1)—2.061712(—1)—3.644020 (—2)—3.888973(—3)—1.892519(—4)
0
0
0

2.039856(—2)—2.060645—9.042510 (—1)—3.031483(—1)—3.978742 (—2)
1.407012 (—2)
8.716138(—3)
2.182259(—3)
2.367851(—5)
7.862225 (—7)

0
0
0
0
0
0

1—(h'/12)K(r„ i)
p. i, (83)

1—(h'/12)K(r„+i)

where h is the step size.
There is much to be gained, however, in changing the

independent variable to

since, in the kind of fields we are dealing with, the
nodes of the wave function become nearly equally
spaced in the y scale so that the step size need not be
constantly changed to maintain numerical accuracy.

~ The integers in parentheses are the powers of ip by which the cn- R. W. Hamming, Ngmerical Methods for Scsewtssts atttf
efBeients must be multiplied. Bngineers (McGraw-Hill Book Company, Inc. , New Vork, 1962).
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The disadvantage to such a change of independent
variable is that instead of Eq. (Bi) there now appears
an equation with a first derivative,

P"b)-y-'P'b) =4y'Kb')Pb), (»)

Ibb) =y'"cb),
so that we now have

where
~"b) =Kb)~b), (87)

K(y) =L16l(l+1)+3)/4y'+4y'LV(y') —E], (88)

which is of the required form. Equation (87) is now
solved using the recursion scheme (83), using X(y)
instead of K(r), and the final solution is obtained
through the transformation (86).

which is not amenable to solution by Numerov's
method. A change of dependent variable eliminates the
first derivative:

(86)

P(R)=nF(R)+PG(R) =0. (C2)

The derivative (with respect to r) is found here also:

to apply the WEB approximation to normalize our
continuum wave functions with sufhcient accuracy.

Let ro=apxo be the ionic radius. At distances r&ro,
continuous wave functions must be a linear combination
of F(r) and G(r), the regular and irregular Coulomb
wave functions, respectively:

P(r) =nF(r)+PG(r) . (CI)

Since we require that P(r) reach unit amplitude at
infinity, and since F(r) and G(r) are already normalized
to behave asymptotically like sine and cosine, P(r)
will be properly normalized by dividing it by

(ns+ ps) 1/2

To find ns+P', a point R) re is found, by interpolating
between points of the numerical solution if necessary,
where

C. Norma1ization of the Continuous Wave Functions D (R)=—nF'(R)+PG'(R) . (C3)

The continuous wave functions are integrated nu-
merically from the origin starting with an arbitrary
slope, with the consequence that the amplitude does
not reach &1 asymptotically, as required. At energies
of several Rydbergs, this is not a problem since the
wave function quickly reaches its asymptotic amplitude
and could be renormalized by inspection. At a fraction
of a Rydberg, however, the asymptotic amplitude is
not attained except at distances which are prohibitively
distant for numerical integration.

We have found, using recently published tables of
Coulomb wave functions" as a check, that it is possible

se A. R. Curtis, Royal Society Matberaatical Tables (University
Press, Cambridge, England, 1964), VoL 11.

n2+Ps —D2 (F2+Gs)/E

We have found that the WEB approximation

- lj2

F (R)+G (R)=
E+ (2z/R) —El(l+1)/Rsh

(C4)

(cs)

holds extremely well, provided

R)max{re, (l+1)s/s, 5/s) . (C6)

These are modest requirements. Equation (CS) is then
accurate to better than 1% even in the limit E-+ 0.

We make use of the Wronskian, FG' GF'=gE,—to
find that


