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Relativistic Corrections to the Fine Structure of Helium*
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Relativistic corrections to the 6ne structure of the hydrogen atom have been calculated by many authors,
but the experimental confirmatio of the theory, or alternatively the determination of the numerical value
of the fine-structure constant a, is limited to an accuracy of 1/10' because of the short lifetime of 2'P states
of hydrogen. However, in view of the fact that 2 I' states of helium have a longer lifetime, we expect that
the fine-structure intervals of the 2sP states of helium can be measured to an accuracy of 1/10' or better.
With this expectation, we attempted to evaluate semirelativistically the theoretical formula for the helium
Gne structure to the order n4 Ry.

I. INTRODUCTION

~~i NE of the simplest 6elds of application of quantum
mechanics is the theory of atoms with one or two

electrons, which also provides a fairly accurate test of
the validity of quantum electrodynamics. The simplest
of all the applications involving radiative corrections is
the calculation of the hydrogen fine structure (2Etls-
2P3/s), and its best experimental data at present come
from the work by Dayhoff, Triebwasser, and Lamb, '
which is uncertain to about one part in 10'. The best
available data for 0., the Gne-structure constant, comes
from this work with the same accuracy. But from the
consideration of the short lifetime of 2P states of
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hydrogen, it is unlikely that we can better the existing
experimental data any further than the accuracy of
1/10', and this makes the further coninmation of the
theory to higher order very dificult. However, in view
of the fact that 2'P states of helium have a longer
lifetime (which is about 10 r sec compared. with about
10 ' sec for 2I' states of hydrogen), we expect that the
Qne structure of 2'P states of helium cue be measured
to an accuracy of up to 1/10' or even better. ' This
experimental prospect and the existing need'' for a
better value of n make it necessary to improve the
theoretical data for the helium Qne structure up to the
same order.

The study of the helium one structure has histori-
cally played a very important role because it provides
the test for the validity of the quantum mechanics of a
many-electron system, not only in its nonrelativistic
form, but also in its semirelativistic part. An earlier
attempt in this direction was made by Breit5 by intro-
ducing into the Hamiltonian the so-called "Breit inter-
action term, " which essentially comes from a one-
photon exchange between the two electrons of helium,
and, by using a two-term wave function, Breit calcu-
lated oo& (see Fig. 1) to an accuracy of several percent. '
The Breit term, when transformed into Pauli form, is
of order cr' Ry (which we denote by Xs, whereas the
unperturbed Schrodinger Hamiltonian is denoted by
Xo) and should give more accurate results than Hreit
initially obtained if a more accurate wave function is
used. ~ Breit's results were improved this way and also
by including in the Hamiltonian the terms" of order
cr' Ry (which we denote by Xs and which is sometimes
called the "Schwinger term" because it is obtained by
introducing into 3'.2 the anomalous magnetic moment
erst suggested by Schwinger"). For example, by using

v = 0.076 cm ~ 2 291 Nc/se~'
32

FIG. 1. Energy levels of the 1S2P 'I' state of helium.

*Research supported in part by the U. S. Air Force Once of
Scientiic Research, Grant No. AF-AFOSR-130-63.' E. S. Dayhoff, S. Triebwasser, and W. E. Lamb, Phys. Rev.
89, 106 (1953).

' See footnote 6 of Ref. 15.
e C. K. Iddings and P. M. Platzman, Phys. Rev. 115,919 (1959).' D. Zwanziger, Bull. Am. Phys. Soc. 6, 514 (1961).' G. Breit, Phys. Rev. 34, 553 (1929);39, 616 (1932).
e G. Breit, Phys. Rev. 36, 383 (1930).
s G. Araki and S. Huzinaga, Progr. Theoret. Phys. (Kyoto) 6,

67'3 (i951).
H. Fukuda, Y. Miyamoto, and S. Tomonaga, Progr. Theoret.

Phys. (Kyoto) 4, 121 (1949).' T. Fulton and P. C. Martin, Phys. Rev. 95, 811 (1954)."J.Schwinger, Phys. Rev. 73, 416 (1948).
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an 8-parameter wave function, Araki, Ohta, and. Mano"
obtained z sz with an accuracy of 1%;by using an 18-
parameter wave function, Traub and Foley" came
within 1/10'; and by using a 220-term trial wave func-
tion, Pekeris, Schiff, and Lifson" reached the accuracy"
of 1/10', which is just about the order of accuracy
needed to see the presence of K3 in the Hamiltonian.
In order to improve the theoretical data further to the
accuracy of 1/10', we need to have:

(1) the wave function of Xs in 228 states, which

gives the expectation value of X2 with an accuracy
of 1/10'
and

with
H=H„+H,+H;, (»-1)

II„= d'kkkc a),* a), (II-2)

H, = (cnz Pz+Pzmcs —eyz)

+ (c'n2'P2+Psmc' —eys)+eq z2 (II-3)

H, =enz Az+en2 A2,

II. HAMILTOÃIAN

We start with the Hamiltonian for the two-electron
system consisting of three parts, given by

(2) the Hamiltonian term of order a4 Ry (which we

denote by K4) and perhaps the terms of order n' inn

Ry.

(hc)'I'
A(x) =

2~

d'k
P sz(k)taz(k)e-"

lk z-z

+uz*(k) e'2']; (11-5)
C. Schwartz" worked out (1) by using the same tech-
nique he had successfully applied for the helium ground-
state (1S) wave function. 's Our objective in this paper
is to deal with at least part of (2); tha, t is, to find K4.

Our approach in this paper is basically nothing new.
In our Dirac-type Hamiltonian the photon field is
quantized, whereas the number of electrons is axed. In
order to simplify our task and to avoid the difficulties
which will arise from the self-energy terms, we intro-
duced a form-factor in our Hamiltonian. Terms corre-
sponding to the emission and re-absorption of photons
by the same electron, the e6ect of which is included in
the form factor, will be omitted in the later process of
calculations. This Hamiltonian, which is expanded in
terms of a, is then transformed into the Schrodinger-
type Hamiltonian. Then by using a generalized per-
turbation theory we get the Hamiltonian term K4 as
well as Ko, K2, and K3. Here the K's are to be under-
stood as their expectation values with respect to the
wave function of 3'.0 giving the corresponding terms in
the expansion of the energy. In K3 and X4 only terms
contributing to the fine structure are considered (many
spin-independent terms have been dropped).

Finally, our attempt to 6nd K4 is not intended to be
complete (because we have not started from the com-
plete relativistic quantized theory), but we hope that
the main parts of 3C4 are included in our results and
will serve for later improvement.

"G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959)."J.Traub and H. M. Foley, Phys. Rev. 116, 914 (1959)."C. L. Pekeris, B.SchiG, and H. Lifson, Phys. Rev. 126, 1057
(1962).

'4 When the more accurate theoretical data was compared with
the more accurate experimental data (of Ref. 15), the accuracy
here was still 1/10'. This shows that the inclusion of one of the
higher order terms, namely X42, alone does not improve the
theoretical data, but more or less changes the sign of discrepancies."C. Schwartz, Phys. Rev. 134, A1181 (1964).

z' C. Schwartz, Phys. Rev. 128, 1146 (1962).

k g=kct —k r;

Laz(k), az.e(k')] =8zz.8(k—k'), (»-6)

where H„is the Hamiltonian for the radiation Geld;
JI, is the Dirac Hamiltonian for a two-electron system;
and H; represents the interaction between the electron
and the radiation field. A(x) is the radiation field vector
in gaussian units, and (II-6) is the usual commutation
relation for the creation (e~) and destruction (a)
operators of a photon.

Then, by a perturbation method, it is rather straight-
forward in principle to evaluate the relativistic cor-
rections involving electron self-energy, but it is dificult
in practice. Ke will sidetrack this difFiculty by replacing
&pz(W2), V zs, and nz Az(ns A2) in (II-1) by pzsi'zspz

X(ys I"2 q2), I'zspzs, and yz I'z Az(ys I'2 A2), respec-
tively. Here r&, the so-called form factor, is given by

I"(rs) =L1+P(P2)]~s+(2/2m)G(&2)&. ~"s, (»-&)

and was derived by several authors. '~' Fy2 ls given by

I z2pz —(Y I ) (y I )222z2 (II-8)

which will be obtained if we calculate the matrix
element of an S matrix corresponding to one-photon
exchange through the interaction —ei'&A„(x) and take
the contribution of the time-like photon neglecting the
retardation e6ect.

The explicit formulas for p I', y'I, and j. ~2, when
expressed in atomic units, give

(y'I') z,s= (1+rrsP+-;nGP y) z 2,

(y'I )z, s ——p(1+erst)n+2'cz2(iy'n 22 P+nP'y)]z, s,
I'zs= D+&'f0+et'fzyz Pz+n'fsys Ps (II-9)

+cr fspz Pzgs'Ps] )

'r L. L. Foldy, Phys. Rev. 87, 688 (1952).' S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Row, Peterson and Company, Evanston, Illinois, 1961),
pp. 543 and 702.
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fp=Fi+Fs+n'FiF's

fi——-', (1+n'Fs)Gr ',

fs= s (1+u'Fi)Gs~

fa= &GrGs

(II-10)

Thus we have the desired Hamiltonian in atomic units:

n+r+(uni'P1+Pl n'(—1+n F&+n-,'Gi'7r Pi) p&7+/nu2'Ps+Ps u (1+u Fs+nsG2Y2 Ps)'p2]

+n'D+n'fp+n'fiyi P,+n'fsys Ps+n'fsy&. Pigs Ps]q is+u(gu)L(1+n'Fi)ni
+-,'n'Gi(iyipei x Pi+nPipyr)] Ai+n(Qu) L(1+u'Fs)ns+u'-, 'Gs(iyspes x Ps+uPspys)]. As. (II-11)

In regard to the Hamiltonian (II-11):

(1) In the process of calculating energy, the terms

involving emission and re-absorption of photons by the

same electron should be omitted because what is left
after mass and charge renormalization is supposed to
be already included in the form factor.

(2) We will expand the Hamiltonian in powers of n,
and we need to expand the form factor likewise as

tonian involving the Pauli spin matrix 6 but inde-

pendent of the Dirac matrices. We proceed as follows:

We know very well that we can decompose the wave

function for one Dirac particle (electron), which is a

1X4 spinor, into a large and a small component,

namely,

G='G+n 'G+n' 'G ~

F='F+u 'F+n"F (II-12)
The operators n, P, y, etc. sP acting on it have the effect

where

'G='Gi =PGs = 1/2';

iG=iG, =iG,= -032S/~'

which'9 was obtained from the 6eld-theory calculations

for the free electron. In actual numerical calculations

for helium, where the electrons are bound, we will use

these data hoping that the error is not signi6cant.
We expect that the corrections to the above static

values for G would be of relative order P'/tns which is,
in the atomic state, of order Ots and thus negligible. The
leading terms of F, which give the Lamb shift, etc., will

enter into our calculation independent of the spin

variables, and so will not contribute to the 6ne structure
to the desired order.

(3) Our Hamiltonian does not allow creation, nor
destruction, of electrons (and positrons), and corre-

sponding eRects are excluded from our consideration,

though some of these effects (vacuum polarization) are

included in the form factor.

Now that we have the Hamiltonian (II-11),our next
step is to convert this into a Schrodinger-type Hamil-

t'Al t'~l
e! =e

&ai lAi

)Aq A q

—a)' (II-13)

A~ (B~
a)

where 0 is the Pauli spin matrix and can be treated as a
c number. We do likewise for the two-e1ectron system,
and express the wave function g as

AU V~

&w x)' (II-14)

where the upper row (left column) denotes the large

component for the electron "1"("2")and the lower row

(right column) denotes the small component for the
same electron. In other words, U is the large-large

component; X is the small-small component; and

finally V(W) is the large-small (small-large) component
for electron "1"and electron "2", respectively. Then

'P C. Sommer8eld, Phys. Rev. 107, 328 (t957), and several
earlier papers referred to therein.

~ See pp. 26 and 69 of Ref. 18 for the definitions of the Dirac a
and y matrices.
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we have the relations:

(U V~ |W X~

kw xi kv vi'

~U Vl /V V

&w xi IX wi'

(U V~ pU V~
P11

Ew xi E—w —xi'

/
U V~ f'U —

V~
Psl

kw xi &w —xi'
pv Vi &/W X i

Vtl Iw xi &—v —vi'

(11-15)

we put

I
V&—=

I Vo&+(v'n) I
U / )+nl U &

+ ~ +n4I V4); (III-3)

W= Wp+—(Qn)W1/2+nW1+ +n4W4. (III-4)

Then we know from the standard perturbation theory
that GCp satisfies (3Cp—Wp) I Up)=0; Xp has d.iscrete
eigenvalues E„,with corresponding eigenfunctions,

I 72&; and ( I I)) form a complete set, i.e., Q„IN&(n I
= 1.

We choose N=O as the initial (and final) unperturbed
state. Then Wp=Zp, I Up)

—= I0), and

(3cp—Zp) I0)=0, (III-5)

where it is understood that IO) also includes the
photon vacuum-state vector. Then by a standard
perturbation theory we will get

W= Wp+n Wt+n Ws+n'W2+n4W'4, (III-6)
/ U V~ (V —Uq

&w x) &x —wi

Here, again, e's can be treated as c numbers. Hence,
by using the properties of (II-15), the wave equation
(H—E)4=0 Lwhere H is given by (II-11)j can be
transformed into a form of

A 8
kc Di

which is equivalent to four coupled linear equations:
2 =0, B=O, C=O, and D=O. Here A, B, C, and D are
linear equations with respect to U, V, W, and X.Then
by eliminating X, W, and V, we will obtain the single
Schrodinger-type equation for U, the large-large com-
ponent:

(II-16)

Obviously K, the Schrodinger-type Hamiltonian, is a
function of n, the Gne-structure constant. We expand
K as

+P+ ("1/n)+1/2+n ~1+ ' ' '+n (&&/n)+7/2

+n4K4+ ~ ~ ~ . (II-17)

The processes of obtaining the explicit forms of each
term of K is very tedious and we merely give the results
for X1(l=0, -'„~~, 4) in the Appendix A.

W = hs+n81+ +n'84. (III-9)

The results for 8~'s obtained in this manner are given
in Appendix B.

However, the 8&'s given by Appendix 8 are not of
workable form because they involve the photon oper-
ators. By eliminating photon operators and also by
carrying out the integrations over the photon mo-
mentum, we will get the final expressions for 8&'s as
given in the following

(1) gp»d g, »:

where 8'0, W1, W~, W3, and W4 are given as the ex-
pectation values with respect to the state vector I0).
LIt will turn out that W1&1/2(l =0, 1, 2, ~ ) vanishes. ]
However, W&(/= 1, 2, 3, 4) still depends on n through

INk, )1 "k,)t,&(ek,)," k.).l

Q. '=— P' ——,(III-7)
~2&11 "2.1.

I
g„—gp+ (k1+ ~ ~ ~ +k,)/n]1

where
I
72kt) 1 ~ k,)&„&is an s-photon state with momenta

kt& ' ' '
&
k.. Then, by expanding Q, ' in terms of n and by

regrouping terms of W according to the order of n, we
will get the energy in terms of

I nk&X1 k, )&,,&(nk1)&,1 k,)t, Ilg &=
sa, &" 2.1. (k,+k,+ . +k,)'

X (Z„—Z,)' (III-8)
as follows:

IIL ENERGY FORMULAS

For convenience we will use the notations

v;=—I v,); (III-1)

Bp=(0IKpl0) ' br=0

~p (P12+P22) V ~

Z1 Z2 1
P71+ P&2 P712 +

~1 ~2 ~12

(III-10)

(III-11)

(III-12)

d.v;+x,v;= (v; I
ac,

I v;). —(III-2)

Following the usual procedure of perturbation theory,

2& Actually S&=(0)X&&'&)0). However, K&&2&, along with SC&/2,
will be obtained by applying a gauge transformation, P —& P
+(ga)A, to Kp and its expectation value s& contributes to an
uninteresting (spin-, momentum-independent) constant self-
energy of the electrons. So we will omit 8& (i.e., 8&=0).
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X21————', (P '+P ').
X22 3 (+1 El++2'R2);

X23 4 (4rl'El X Pl+432'E2 X P2) =Xrro

(III-14)

(III-15)

(111-16)

where Xo is the ordinary Schrodinger Hamiltonian for
the two-electron system, as is expected.
(2) 82.

h2=(0IXsl0) =(0IX»+X22+X23
+X24+X26+X26 I 0) (III-13)

where r=r~ —r2, and the prime in 3!26 indicates that
when ( )' occurs in any integral over position space,
replace ( )' by zero for r(s, evaluate the integral for
e(r( ~, and then take the limit of e —+ 0.

These are the familiar results and were derived by
several authors. """Actually only X23, 3'.», and 3'.&6

contribute to the Qne structure. But %2~, 3'.22, and %24,
as well as the spin-dependent parts, will contribute to
the Qne structure through 84, as we will see later. The
physical significance of the various terms of K2 have
been discussed by Bethe and others. "
(3) 63:

1
X24 Pl'P2+ r' (r'Pl)P2

2r r'
(III-17)

with

a,=(olx, l 0), (III-20)

X26= (4rl'r x P2 432'r x Pl)=—X o
2r'

X3——2 'G(X23y2X26+X26)
= 2 0G(X„'+12X„~+X„). (III-21)

8x
X26 4 Irl ' 4325 (1)

3

These also are the familiar results ~ 3 and their
presence here has been discussed by Araki and others. "'
(4) h4.

1( el resr '-
+

I
1'432 3 —=Xss ' (III 19) 84——(0 l X4 l 0) = (0 lX4,+X42+X43

r3&
+X44+X46+X46 l 0), (III-22)

El = —&1V, and E2= —v2 V, with

X41=2 'G(X23+-,'X26+X26)+ ('G)'X2„.

X42 2 X2143)(22 I X2/(& —&0);

X43———-4'82(P1'+P2') —
—0,L(X26+X26) (Pl'+P2')+H. c.j;

X44 10[2~1TO +1 (+1T0~1rP2 )+ 2+1+2T0+1+2+E.T.j p

1- 3) r elxElr Psy 3 4 1
X46—————

l
421 XE1 P2+ l

——lr, XR, 432Xr——r P, Xg,+— R, lr, XP,+
r Err xr xP,

)r2

(III-23)

(III-24)

(III-25)

(III-26)

4~—-l Esx4r, P,—
r&

r E2X4rlr Pl) 3i
l

——r E2 x lrl+E.T. ; (III-27)
r2 f r3

1 01 r422 r)
x46= — —r ~2xP1+- o1 ~2+, l, 2~1 2P2 +——r P, xes——esxr. elxP1

16 r r r' ) 16 rs r3

li 1
01 x Pl Ps+—r(r P2) 421 x Pl l, -', (F12—P2 ) +E.T. (III-28)

r'

Notice here that:

(a) H. c. indicates the Hermitian conjugate terms,
and E.T. the terms obtained by exchanging the two
electrons;

(b) T0= bo+V, Pl—= 4rl Pl, &2=—43—2 P2, and (A,B)+
=AS+A, in X44,

(c) in X46 the momentum operators Pl and P2 do
not apply on the r's.

» the above, grouping terms by K4&, X42, etc., is rather
arbitrary except the first two. The physical inter-
pretations fol K43 through 3'.46 are not obvious. It is

n H. A. Bethe and E. E. Saipeter, Q44an244n4 Mechanics of One
and Takeo-Electron Atoms (Academic Press Inc. , Neer York, 1957);
see Eq. 139.14) on p. 181.

n G. Araki, Phys. Rev. 101, 1410 (1956).
For example, see pp. 181 and 182 of Ref. 22.
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(3) taking the leading terms, which turn out to be
of order 1/rrrso and 1/rso, with the result:

X10 p cm ', (IV-4)

where (and in the following) the upper (lower) row
refers to vpr (vys). If we use the result by Pekeris et al
for CL K4g'.

IV. CONCLUSION

We have obtained the energy formulas for the helium
fine structure (i.e., the energy terms involving the spin)
up to the order a4 Ry:

@=(ol&Xs+n'Xp+n'X410), (»-1) and (IV-2) for n'K+n'Kp.
with Xs, Xo, and K4 given by (III-13) through (III-19),
(III-21), and (III-22) through (III-28), respectively.
Our results for 3!~ and K3 check with the results ob-
tained by others" ""As for K4, the first two terms
%4~ and %42 are rather expected results, but the presence

then we have

of the rest of the terms is not obvious. One way to
check our results is to carry out the numerical calcu-
lation of (Oln4X4IO) and compare its contribution to
the helium fine-structure intervals with the experi-
mental data.

C. Schwartz" has carried out a very accurate calcu-
lation for the helium firie-structure intervals by using
(0ln'Xs+nPXs

I 0), with the results:

( 0.000158)
v(n4«s) =

I I
cm-',

&-0.000158)

(0.987837'
v(n'Xs+ n'Xo) =

I I

cm-&
(0.076530)

(0.987995~
v(n'Xs+n'Xp+n'X4s) =

I I
cm—'; (IV-6)

(0.076372)

(0.987929~
v(nPX, +n'Xs+n4X4) =

I I

cm-r (IV-7)
(0.076339)

)0.98791(4)q

(0.076473
(IV-8)

vp~
——0.987837 cm-'

vrs ——0.0765302 cm ',
yp2= 1.064367 cm ~

(IV 2) Our result (IV-7) looks very good for vor, although
it does not look encouraging for v~2. However, it is not
conclusive for the following reasons:

quite likely that some terms grouped in one may also and
be found in others.

The physical interpretations for K4& and 3!42 are
rather simple. The presence of 3'.4~ here is due to the
presence of anomalous magnetic moment, and can be n' t' —10~ )—66'
understood similarly as the presence of Ks in 8p. The v(n4K4 —n X4s)=—

I I Ry=l
term %42 is a rather expected one,"and is the second- 48& —5i k —33)
order perturbation energy for the Hamiltonian
X=Xp+n'Xs+ ~ .

which, when compared with the best available experi-
mental data, '6

vor=0. 98791(4) cm ';
vro=0. 076423(3) cm ';
vos= 1 06434(3) cm—',

(IV-3)

"For example, see Eq. (2) of Ref. 15.
~~ F. M. J.Pichanik, R. D. Swift, and V. W. Hughes, Bull. Am.

Phys. Soc. 9, 90 (1964).Also data given in Ref. 15.

show the differences of order 0.0001 cm '. This dis-
crepancy is due, at least in part, to the exclusion of
(Oln'K4IO)'s contribution to the interval. We should
be able to improve the theoretical data by including its
contribution to the interval.

Because the accurate calculation for (Oln4K4lo) is
outside the scope of this paper, we estimated it by

(1) using urp(rr)u, r(rs) as the unperturbed wave
function, where urp(rr) and u»(rs) are the hydro-
gen-type wave functions for 1S- and 2I'- states with
charges Z&=2, Z2=1, respectively;

(2) expanding 1/r" as 1/r"= 1/rs"+

(1) The convergence for the expansion 1/r~=1/rp+, is rather slow and the inclusion of terms of order
1/rs4 alone could affect our result significantly Lcould
even change the sign for vrs in (IV-4)j;
(2) the contribution from the mass correction, which
we did not consider, is of the same order of v(n4X4).

Therefore, we need a more accurate calculation for
v(n'K4) and the inclusion of the contribution from the
mass correction to v before we have a definite con-
clusion; but at least we now have an expression for GC4

to work with.
In summary, we re-emphasize that what we have

accomplished in this work is quite some distance short
of a complete calculation of the a' Ry terms in the
helium fine structure. We envisage a plan for such a
complete program as consisting of three major parts:
First is a proper setting up of the problem starting from
the full Geld theory of electromagnetic interactions;
second is a reduction of the results of the first part to
an effective Schrodinger Hamiltonian; and third is the
evaluation of the expectation value of this Hamiltonian
with good atomic wave functions. In this paper we have
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not attempted to attack the Grst part of this program
and have made only a very crude attempt at the third
part. What we have presented here is what we believe
to be a useful working out of the form, and many of the
details, of the extensive algebra associated with the
second part of the program described above.
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APPENDIX A

XO (1/48)+v+2 (Pl +P2 ) i j l Pl+ 002 P12 ~

Xl/2 2 [(Pl)A 1)++ (P2)A 2)+g.

Kl= Kl&'&+Xl&'&;

X,&»= '[P H,P,-+P~„P$;
Xl&'& =-,'(A 12+A 22) .

X8/2 K8/2 +X3/2

X8/2&'& = 28[( G1P1XA 1)d+ ('G2P2XA 2)d];

X/28 —4 [(Pl,&f&A 1)++(P2,&~,A 2)+j.

X2——K2&'&+
7

X2&1&=—[—2(P&T0P1+P2T0P2)+2P1 P2 g ~

X5/2 X5/2 +X5/2 +K5/2 + ' ' '

X5/2"'= 28[('G1P1XA 1)d+ ('G8P2XA 2)dj )

X5/2&'& =——,'[(Pl, To,A 1)++(P2,T0,A 2)+];

K5/2 4[(P2)A 2)+Pl + (PlyA1)+P2 j ~

X8——X8&'&+ ~ ~ .

X8 =—4{[(G1P1(001—0212))d&Pl)

+[(G2P2(002 @12))dP2J-) ~

K4= X4&1&+X4&2&+

X4"'=—
4 {[('G1Pl(&P1—q 12))d,P1j

+[(G2P2(&02 0212))d)P2j—) y

X4 — 4 (P1T2P1+P2T2P2)+8 [ 1T0 1+ 2T0 2j

10 [P1P2TOP2P1+ (P1T0Pl)P2 )+

+ (P2T0P2 Pl )+j ~

Notice here that

P—=o"y; P=P; A=—48 A; PXA= eP xA;—
(4&&,y,P)P=&2yP—+Pyn; T0= B0+V; T2= B2.

"( )d" indicates the limit of the differential operator.
Also notice in X0 that we included the 1/48 order term.
Because the unperturbed wave function should be of
the order no= 1, this simpli6es the perturbation theory.

APPENDIX B

Bo—(0 I Ko I 0); Bl——0; B2—(0 I
(K2"' Xl/2'Rl Kl/2) I 0);

B8 (0) (K3/2 Rl Kl/2+H, c, X3"')
) 0) )

B,= (0) [X4&»—(X,(,&»0R11X,(2+H.c.—K4&'&+K3/2&'&'Rl'X3/2&'&)

+ (X2&'&Q0'Kl(20R11K1(2+H.c.—X2&'&Q0'K2&'& —Xl/20R1'Xl(2Q0'Kl/20R1'Kl(2)g

+ [K4&'&—[(K5(2" +K5(2"')'Rl'Kl(2+H. c.j—Kl/2 Rl'Kl/2

+ (Xl R2 Kl/2 Rl Kl/2+H. C B1X1/2 Rl Kl/2+Kl/2 Rl Kl Rl Kl/2)

+Xl/2 Rl Kl Rl Kl/2+ (K8/2 Rl Kl/2+H c )][0) ~

N'otjce here that we only considered terms which contribute to the 6ne structure. Many terms which diverge but
are spin independent have been omitted. As for Bl, its exact expression is Bl——(0 ~X1' & ~0) and it diverges but is
spin independent, hence is omitted (i.e., B1=0). However, when we calculate B4, we have to use the exact ex-
pression for Bl. Fortunately, it turns out that the spin-dependent diverging term —Bl(0(K&/20R12X1/2)0) cancels
out in 84.


