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An expression is derived for the difference of the second-order term in the Z expansion of the unrestricted
and conventional Hartree-Fock energy. The unrestricted Hartree-Fock energy includes some of the inter-
actions with configurations with the same azimuthal quantum numbers, but differing in one principal
quantum number and having a different coupling scheme. A similar expression is derived for a quantity
related to the hyperfine splitting.

I. INTRODUCTION
'

PROPOSALS have been made from time to time to
relax the equivalence restriction in the standard

Hartree-Fock (HF) procedure, and allow electrons with
diGerent spins to have di6'erent radial functions. ' This
approach is referred to as the unrestricted Hartree-Fock
(UHF) method and represents a means of improving the
Hartree-Fock approximation. The results for some
speci6c cases' 4 indicate that the UHF method gives
better values of the total energy and the hyper6ne
splitting, though the improvement in the energy is smalL
In this paper the unrestricted and conventional Hartree-
Fock approximations are compared using the Z-expan-
sion approach suggested by Layzer' in which the wave
functions are expanded in terms of hydrogenic functions.
This, at the same time makes possible a comparison of
each approximation with the perturbation expansion of
the exact, nonrelativistic problem.

The types of con6gurations that will be considered are
those consisting of complete groups plus one incomplete
group, not more than half-filled, whose electrons all have
the same spin. In such cases the dependence of the radial
wave function on the spin can be attributed to exchange
polarization. The UHF method may also be applied to
con6gurations such as 1s' 'S, but in this case the usual
Z expansion no longer applies and a series expansion in
terms of Z '~' is required. '

The nonrelativistic Hamiltonian of an E-electron
system with nuclear charge Z is given in atomic units by

( Z 1
H= —Ql —,'6;+—+Q —.

r; '&~r;;

On the introduction of a new variable, p=Zr, this

becomes

where
H=Z'(Hs+Z 'V),

The latter is independent of y so that, according to first-
order perturbation theory for degenerate states, the
zero-order eigenkets must be such that the matrix
s((e)ySLl V

l (N)y'SL)s is diagonal. This condition de-
6nes a zero-order mixing of con6gurations with the same
principal quantum numbers but with different azi-
muthal quantum numbers. r Let l0) denote such an
eigenket and let l)s) represent an arbitrary eigenket of
Hp. Then

H, =—gl —;A,+—l, V=g —.
pr~ r&& pij

In this form it is evident that Z ' may be treated as a
perturbation parameter and that, by means of perturba-
tion theory, the properties of many-electron systems can
be expanded in inverse powers of the nuclear charge Z.
Furthermore the eigenkets of Hp can be constructed
from hydrogenic functions.

Let
l (n)&SL) and

l (ts)&SL)s denote antisymmetric
eigenkets of H and He, respectively, where (ts) represents
the set of principle quantum numbers (Nt, es, ~,n&)
and p represents any additional quantum numbers re-
quired to distinguish states with the same S and I..Then
the perturbation expansion

l (ts)ySL) =
l (rs)ySL)s+Z '

l (ts)ySL) t+0(Z ')

results in an expression for the energy in the form

E=Z'Eo+ZEt+Es+O(Z ')
with

E.=(oI VIO)
*On leave from the University of British Columbia, Vancouver,

British Columbia, Canada.' P. O. Lowdin, Phys. Rev. 97, 1509 (1955); G. W. Pratt, ibid.
102, 1303 (1956); V. Heine, sNtE. 107, 1002 (1957).' L. M. Sachs, Phys. Rev. 117, 1504 (1960).' D. A. Goodings, Phys. Rev. 123, 1706 (1961).

4 R. K. Watson and A. J.Freeman, Phys. Rev. 120, 1125 (1960).
~ D. Layzer, Phys. Rev. 132, 735 (1963).
6 A. L. Stewart, Proc. Phys. Soc. (London) 83, 1033 (1964);

C. A. Coulson, sbid. 84, 511 (1964);J. L. J. Rosenfeld and D. D.
Konowalow, J. Chem. Phys. 41, 3556 (1964).

and

, «lvl~)'
Es——S'' Ep(0) —Ep(k)

r D. Layzer, Ann. Phys. (N.Y.) 8, 271 (1959).
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where the sum 9' includes an integration over the
continuum and the prime indicates that states k, for
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which Es(0)=Es(k), are to be omitted. The structure of
E2 has been considered in detail by Layzer, Horak,
Lewis, and Thompson. '

For simplicity let us assume that ~0) is associated
with a single configuration speci6ed by the quantum
numbers (xrlr, esls, ,e~l~,ySI.), where y now indicates
the coupling scheme to be used in constructing

~
0) from

hydrogenic kets. Since V is a two-electron operator, the
quantum numbers for the state k may differ for at most
two electrons and, in order that Es(k)NEs(0), the
principal quantum number must differ for at least one
electron. These requirements allow a convenient classi-
fication of the intermediate states k:

(i) States differing in one principal quantum number
but with the same azimuthal quantum numbers and the
same coupling scheme;

(ii) same as in (i) but with a different coupling
scheme;

(iii) states differing in one principal quantum
number and at least one azimuthal quantum number;

(iv) sta, tes differing in two principal quantum
numbers.

Layzer has shown that the constant term of the energy
in the Hartree-Fock approximation, E2, consists pre-
cisely of the summation over states of type (i). In a
more recent paper, Layzer et a/. ' point out that the con-
tributions from intermediate states of type (i)—(iii) de-
noted by E&' involve a comparatively small number of
single sums and can therefore readily be evaluated,
whereas the remainder E2" involves a larger number of
triple sums.

In this paper an expression is derived for the differ-

ence, E2"H~—E2H~, when the configurations consist of
complete groups and q equivalent electrons all with
parallel spins. In these cases, the difference increases as
q' when no off-diagonal energy parameters are involved
in either scheme and consists of some fraction of the
summation over the intermediate states of type (ii). A
comparison with results derived by Layzer et al. shows
that for the is'2s '5 term, the unrestricted Hartree-Fock
method includes exactly one-third of this contribution.
The improvement in the energy is shown to be small
compared to the correlation energy, E2—E2

The unrestricted Hartree-Fock method has been Inore
successful in improving the agreement with experiment
in the case of hyper6ne splitting than in the case of the
total energy, particularly when the interaction of the
nucleus with s electrons plays a major role. The factor
directly related to the radial distribution of s electrons
is the contact term, p+—p, where p+ and p represent
the densities at the nucleus of electrons with positive
and negative spin, respectively. In this connection it is
convenient to define (f)=4m(p~ p) The Z-expa—nsion. s

of (f) in the UHF and HF scheme differ in the terms of
first order. An expression is derived for this difference

8 D. Layzer, Z. Borak, M. N. Lewis, and D. P. 'Thompson, Ann.
Phys. (N. Y.) 29, 101 (1964).

which turns out to be linear in g. Tables are included for
determining the erst-order difference for a variety ofconfigurations.

II. SECOND-ORDER ENERGY DIFFERENCE,
EUHF EHF

Consider a configuration of the type (nilr) &'(ns4) &'

X (m„l„)&'(el)', where the first r groups are all complete
and the nl group is at most half 611ed. If the electrons in
the incomplete group all have parallel spins, the energy
associated with the Slater determinant based on a set
of orthogonal, one-electron functions, p, (n, l,mt, m, ),
represents an approximation to the energy of the term
with highest multiplicity though it is no longer an eigen-
function of S'. However, Marshall' has shown that as
long as certain exchange integrals are small compared to
"promotion energies" the single-determinant approxi-
mation will result in better spin densities than a pro-
jected form. Furthermore, in the case of Li, Sachs' found
the single-determinant form to yield almost a pure
doublet. The single-determinant form will be assumed
here.

In the Hartree-Fock scheme the radial factors of the
one-electron functions depend only on the ml quantum
numbers, whereas in the unrestricted scheme they de-
pend on the spin as well. These two different assump-
tions result in two different expressions for the energy,
EH and 8 H~, respectively.

Let us denote the radial function by P (e;1,) in the HF
scheme and by P(e;l,+) and P(m, l; ) in the UHF
scheme. Without any loss of generality we may assume
the electrons in the el group all to have + spin so that
P(el )=—0.

In both schemes the energy can be derived by the
well-known determinantal method but in order to com-

pare the two it is convenient to consider separately the
following four types of interactions:

(1) interactions within complete groups,
(2) interactions between complete groups,
(3) interactions between a complete group and the

incomplete group,
(4) interactions within the incomplete group.

Table I summarizes the contributions to the energy of
the various interactions in the two different schemes.
Then

r
E"~=P qj(e;l~)+qI(el)+ VH~

where VH~ represents the sum of contributions from the
various types of interactions in the Hartree-Fock
scheme, and V I the same interactions in the un-

' W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961).
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restricted scheme. Since E is well known, E H~ can
be determined from Table I.

Both the Hartree-Fock and the unrestricted Hartree-
Fock equations can be derived formally by differentiat-
ing the energy with respect to each wave function in
turn and in each case setting the resulting integrand
equal to zero. At the same time Lagrange multipliers
must be introduced to satisfy normalization and ortho-
gonality conditions. If we denote the contribution from
V as BV/BP the equation for P(n, t~), for example, is

LP(n;t;)+
2q; BE(e;t;)

where

= e,,E(n;t;)+g' B(t;,t;)e;lP (n;t;),

1 d' 2Z t(t+1)
LP(mt) =—— + — E(lt) .

2 dr r

The Z-expansion method assumes the radial functions
can be represented as a series in inverse powers of Z
with hydrogenic functions as zero-order functions, so
that

P(n;t;; r) =Z'7'(P~(n, t, ; p)+Z 'Pr(n;t;; p)+O(Z '))
p= Zr. (2)

Then the Grst-order corrections are solutions of certain
differential equations. ' In order to emphasize the
difference among the various functions these equations
for the first-order corrections are written out in full.

TABLE I. Contributions to the total energy in the Hartree-Fock
and unrestricted Hartree-Pock approximation.

Type
of

inter-
action

Contribution
to EHF

Contribution
to EVHF

1 mq;(q; 1)FO—(n;1;,n;4)

A ~F1'(n;l;,n;l;)
2 A'F'(n;l;, n;l;)

B~G"(n;l;,n;l;)
3 A'&(n;l;, nl)

B'G'(n;l;, nl)
4 A I'F~(nl, nl)

—,'q P'(e;l;+ e;l; )+-,'q;(q; —2)
XPF'(n;1;+,n;l;+)+&(n;l;,n;l, )j

,'A~fF—"(n;l;+,n;l;+) jF"(n;l, ,n;l; )5
,'A'fF'—(n;l;+,n;1; )+F'(n;l;, n,;l;+)

+F'(n;l;+, n;l;+)+A(n;1„n;1; -)g-
;B'f—G"(n;l, +,n;l;+)+G" (n;l;,n;l; )j
'A'PP'(n-;1, +,nl+)+F0 (n;1;,nl+) j
B'G'(n;l, +,nl+)
A"F'(nl+, nl+)

mined by hydrogenic functions. In particular,

&
..(1)— "P~(N;t;)( BVHP ~~

dr.
p 2q; BP(e;l;)i

The off-diagonal energy parameters are such that the
series for P(n;t;) is orthogonal to first order to that of
E(n,t;), whenever t;= t,. From the fact that

e;;= 'A@/2q;, X;;=X;;,

where X;; is a Lagrange multiplier, it follows that for
qs& q~i

Err(nt )- BVnF -, e.

g P'UHF —II

l
L~+ IPr(n't. +)+

1

2r Pi 2q,+ BE(n;t;+)

=e;++"lP~(n, t;)+Q' B(tg,t;)er+ &'lP+~(n;t, ), (3.1)

q~
—qi o 2q; BE(n;t;)

P~ (I;t;) BVn~
dr.

2q; BP(rs;t;)

g P'UHF —II

I
L + IPr(&'t' )+

2nPJ 2q; BP(e;t; )

=e "&P~(n,t~)+P—.-'8(t; t;) e;—;-"'P~(nt )
j=1

BVHF - EE

lE,(n;t;)+
2BPi 2q; BE(N;t;)

When q, = q; the two groups are complete (at least for
the type of configurations considered in this paper) and
the orthogonality condition is satisfied with e;;(') =0. In
the UHF scheme, off-diagonal parameters occur only
between groups with the same spin and a complete

(3 2) group now consists of only (2t+1) equivalent. electrons.
Therefore in the UHF scheme, off-diagonal parameters
need not occur between s electrons.

The solution to Eq. (3.3), for example, can be ex-
panded in terms of hydrogenic functions so that

p, (n,t,)= S' ~.~~(mt;)/d„, „,
=„-oi ~(nt)+P'B(t;, t;)e;;o»"(nt) (33)

In these equations q,+=q;—=—',q;, i=1, , r and the
(r+1)st group is identified with the nt group so that
q,+i+=—

q and P(n„+it„+r )=—0. The superscript H indi-
cates that hydrogenic functions (or operators) are to be
used.

In these equations, the e('& matrix is completely deter-

"C.Froese, Proc. Roy. Soc. (London )A239, 311 (1957).

where
d„„=—(1/2n') + (1/2m')

and the summation includes integration over the con-
tinuum. Then

"Prr(mt ) BVH~
dr

e 2q; BP(n;t~)

b(m, l;)B(t;)l;)e; &'1—m~ m).
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TABLE II.The difference in the second order energy in the Hartree-
Fock and unrestricted Hartree-Fock approximation.

This result shows that the off-diagonal energy param-
eters merely modify certain terms in the sum. From now
on we will restrict our attention to configurations in
which off-diagonal parameters do not appear.

With the aid of Table I, the following relationships
can readily be veri6ed:

Com-
plete
gfoup

(ns)'

Incom-
plete
group

(n'l) &

Contribution to E2U ~—E2 ~

Lqs/2(21+1)sj s' pR'(ms ns; n'l n'l))s/d~~
if l=0, es&n'

t 1/2 (21+1)j S' PR'(ml nl; n's n,'s) jr/d
—,'q' s' pR'(m p np; n'p n, 'p)

+-,*R'(mp np; n'p n'p)$, '/d„
~eqs s' pR'(mp np; n'd n'd)

+ (9/35)R'(mP nP; n'd n'd) 5'/ d„

eq' S' f(9/3&)R'(mP nP; n' fn' f)
+ (4/21) R'(mP nP; n' f n' f)g'/d„

~q' s' p~R'(md nd; n' p n'p)
+ (3/7)Rs(md nd; n'p n'p) js/d„„

—,',q' s' LR'(md nd; n'd n'd)

+ (2/7)R'(md ml n'd n'd)

+(2/7)R4(md nd; n'd n'd)g'/d
—,',q' s' p(3/7) R'(md nd n' fn' f)

+(4/21)R'(md nd; n'f n'f)
+ (50/231)R'(md nd; n'f n'f)g'/d„

(1/2m')

gP'UHF -K — g t/ UHF - K - QPHF —K
(nl) 2 (2l+1)

*(np)'
SS
( 'np) eBP(n;l;)aP(n;l;—

)BP(n;l,+)

i=1 r (4 1) (np)' (n'd)&

gP'UHF —K ] — gP'HF —K g gt/ HF- K

2 BP(n;l;) 2 BP(n;l;)

(np)' (n'f) &

BP (n;l,+) (nd)" (n'p)

i= 1, , r (4.2) o (nd) 10 (n'd)&
—g P'UHF —K —

g t/r'HF —K

(4.3)
aP (nl)BP(nl+) (nd)" (n'f)'

where V3~HF is the exchange contribution to the inter-
action of type 3. Each of these relationships leads to a
relationship among the first-order corrections. By the
addition or subtraction of appropriate Eqs. (3.1)—(3.3),
these can be shown to be

Here d„= (—1/2n')+

This result shows that the differences consist entirely
of interactions with conlgurations with the same set of
azimuthal quantum numbers differing in only one
principal quantum number. In other words, it represents
a summation over intermediate states k, either of type
(i) or (ii). However, the Hartree-Fock approximation
already includes all of the contributions from states of
type (i) so this difference must represent a summation
over states with a different coupling scheme. In other
words the unrestricted Hartree-Fock method takes into
account some of the radial correlation but neglects
angular correlation which in the case of the energy, may
be of considerable importance.

When off-diagonal energy parameters have to be in-
cluded, additional terms are introduced. As a result the
differences in Eqs. (5.1) and (5.3) are no longer zero
and since these were responsible for a lot of the cancella-
tion, a general expression is quite complex. However, in
the special case of the conftguration (ns)'(n's), the off-
diagonal energy parameter, which occurs only in the HF
scheme, simply has the effect of eliminating the term
m= e' from the sum in addition to the term m=e.

Table II lists the specific contributions to E2"HF
—E2 for various complete and incomplete groups. An

Pr(n, l;+)+Ps(n, l, ) 2Pr(n—,l,) =0, (5.1)

Pr(n;l, )—Pr(n, l;) = S' cr;P (ml;)/d„, , (5.2)

where
"P~(ml, )-BV, »-s

dr,
2q; aP(n;l;)

(5.3)Pr (nl+) —Pr (nl) =0.

Es"»—Zm»=g S'ct Q R'(ml, nl; nln;l;)/d, „
But 8;~=q;qbj„where bj, 's are the exchange coeKcients
tabulated by Slater, "and from (5.2), it follows that

In the Z expansion of the total energy, Eo and El are
entirely determined by hydrogenic functions and there-
fore cannot differ in our two schemes. A straightforward
analysis shows that E& is obtained by replacing each
P'(ij) by R'(i'j;i~&~)+R'(i~j' i~j~) and each
Gh(ij) by Rh(i' j~;j~i~)+Rh(i~j';j~is) If now, .with
the aid of Table I, we form the difference E~ HF—E2H,
many terms cancel because of 5.1 and 5.3, the only place
where a nonzero difference appears is in the exchange
interaction of type 3 so that

Therefore

n;= q Q bt,R (ml, nl; nln;l;) .
t7t:

TABLE III. A comparison of the difterence, E2H —E2UH
with the correlation energy.

g2
E2U» —Z2H =P —S'(P q;bt, R'(ml;nl; nln;l;)/tl . )'

q,=l g~ m, It:

"J.C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc. , 1960), Vol. II, p. 287.

Configuration

(1s)«(2s) «S
(»)«(2P) «&
(1$) (2P) S
(1s)«(2s) «(2P) ~ 4S
(1s)«(2s)«(2p)6(3s) «S

—0.354549-0.469462—2.194064-4.955063—18.169309

-0.354811-0.469779—2.196922—4.961111—18.169572

0.000262
0.000317
0.002858
0.006048
0.000263

Q«UHF Q«UHF —Q«HR

0.0544

0.25
0.404
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TABLE IV. Values of o&*(N;s+) —op(n;s ) for diiferent outer Nl electrons.

2$ 3$

1$0.081811 —0.053897 0.022140 —0.011205 0.009064 —0.001540 —0.004191 —0.000786 —0.000018
2$ 0.149401 0.068024 —0.013685 0.022589 —0.025076 —0.004455 —0.000135 —0.005251
3$ 0.088925 0.059928 0.041730 —0.002018 0.001260 —0.003785

0.006597 0.059541 0.040940 0.016909

asterisk indicates that off-diagonal parameters have
been neglected.

In order to verify the relative unimportance of this
contribution to Ez, Eqs. (3) were solved numerically"
for a variety of configurations and from the solution,
E2HF and E2UHF were determined. The values for
1s'2s'S have already been computed by Sharma" by
analytic methods and our values agree to the six 6gures
quoted. The results are sumDiarized in Table III. Here
E2" =E2—E2 is the constant term in the Z expan-
sion of the correlation energy de6ned as the difference
between the exact, nonrelativistic energy and the
Hartree-Fock energy. Values of E2'"' were estimated
from the correlation energies published by Clementi. '4

It is obvious from Table III that the UHF scheme does
little to improve the energy.

III. MAGNETIC HYPERFINE STRUCTURE

Let a(n, l;) =P( ln;; r)/r, r —+ 0, then

(f)=P La(n, s+)s—u(n;s —)sf+8(l,O)a(nl+)'

=g La(n;s+)' —u(n;s )'j+8(l,0)/u(nt+)s —u(nl)'g

From Eqs. (4.1) and (4.2), it follows that

gP'UHF - H — gP'UHF - H - gP' HF- H3X

rlP(n;t;)BP(n,t; )—
and, therefore, substitution into the difference of Eqs.
(3.1) and (3.2) yields

u|(n;s+) —ui(n;s )= 2 S' o.„;a (ms)/d;
—

g 5' R'(msn;s; nlnl) a~ (ms)/d;
(2t+1)

for the type of conigurations considered here. In the
conventional Hartree-Fock treatment (f) is different
from zero only if an unpaired s electron is present.
Obviously

UHF HF

=—g 8(l;,0)R'(n;s ns; ns ns)u~(n;s)/d„„, .

Now, from Eq. (2) it follows that

a'(ns) =Z'Pu (nl)+Z ia, (ni)yo(Z ')j'-
and therefore

XS' R' (ms n;s; nt nl)a" (ms)u" (n;s)/d„, „
—28(l,0)Z' Q 8(l; 0)

or,
XR'(n;s ns; ns ns)a (n;s)u~(ns)/d„„, .+O(Z) (6)

8(l,O) b(n—;s,ns) ga" (n;s)+O(Z), (7)

where at*(n;s+) —at*(n,s ) is now the diGerence for a
single outer nt electron and the constant b(n;s, ns) in-
cludes the dependence on the off-diagonal parameters in
the case of an outer s electron. Equation (7) shows that
this difference is linear in q and sects the erst-order
correction.

Values of ai*(n;s+)—at*(n,s ) for a single outer elec-
tron are given in Table IV, and values of b(n;s, ns) in
Table V. The former essentially represents the contribu-
tions from the core. It is interesting to note that for an
outer s electron the contributions are all positive,
whereas, for other electrons some of the inner contribu-
tions are negative. These differences in sign agree with

TABLE V. Values of b(a;s, as)

If the outer electron is an s electron, the only terms
which contribute to Pt(ns+) —Pt(ns) are the off-
diagonal energy parameters associated with P&(ns).
These are of the form e„,„,,= R—'(n;s ns; ns ns), so tha, t

ug(ns+) —ug(ns)

~ Analytic solutions represented in terms of hydrogenic func-
tions have the advantage of allowing a physical interpretation but
for computational purposes it is simpler to solve the diBerential
equations numerically."C. S. Sharma, Proc. Phys. Soc. (London) 80, 839 (1962)."E.Clementi, J. Chem. Phys. 38, 2248 (1963).

1$
2$
3$

2$

0.016182

3$

0.000980
0.025758

0.000156
0.002251
0.029543
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those observed by Goodings. ' Unfortunately, the terms

O(Z) are still important as shown by Sharma"; in the
case of Li and Na, the above difference tends to over-
correct the Hartree-Fock result but for larger Z, the
agreement should improve.

ACKNOWLEDGMENTS

I am indebted to Professor D. Layzer for presenting
the problem to me and for discussing his papers on the
Z-expansion method with me. This research has been
supported by the National Science Foundation.

PH YSICAL REVIEW VOLUME i 40, NUMB ER 5A 29 If OVEM BER 1965

Theory of Sideband Production in Spectroscopic Experiments* )
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In many systems which are capable of coherent scattering of radiation, satellite lines appear at regular
frequency intervals about the center (carrier) line in the spectrum. Well-known examples include the Zeeman
sidebands in magnetic resonance spectra and the Stark sidebands employed in microwave spectroscopy.
In this paper a theory developed by Karplus to describe the latter case is generalized to cover a wider range
of phenomena. The results are discussed from the point of view of nuclear magnetic resonance.

I. INTRODUCTION

S IDEBAND production in spectroscopic experiments
was first studied theoretically by Karplus, ' who

described the sidebands produced about the microwave
absorption lines in molecular rotational spectra by
modulation of the Stark effect. Smaller, ' and Arnold
and Packards independently extended these results to
sidebands produced by Zeeman modulation in NMR.
Burgess and Srown4 checked some of the details of
Smaller's formulas experimentally. We have become
interested in this problem in connection with the possi-
bility of detecting alignment effects upon the nuclear
resonance spectra of polar liquids by modulating the
electric fields used to align the molecular dipoles. The
advantages of this technique have been discussed else-
where. ' For the analysis of this experiment, as well as
several others of interest, the theory of Karplus must
be extended. The following section presents a general-
ized form of that theory. We have followed the notation
of Karplus except for the differences indicated in
Table I.

~ One of the investigations submitted by J. D. Macomber in
partial fulfillment of the requirements for the Ph.D. degree in the
Chemistry Department of the Massachusetts Institute of
Technology.

$ This work was supported in part by the Joint Services Elec-
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TABLE I. Notation.

Karplus'

H(t)

0

Hp(t) —Hp

VcosL fp'co(t')dt'j

This paper

3C(t) —XR (t)

RQ

se'(t)

xg(t)

See Ref. 1.

II. GENERAL THEORY

Consider a system described by the following
Hamiltonian:

X(t)=Xp+Xt(t)+X'(t)+XR(t). (1)

GCO is the large static term which establishes the steady-
state energy-level differences, Itcp „.X&(t) describes the
interaction of the system with a radiation field of fre-
quency co, which causes transitions among the levels
of Xe. X'(t) is a modulation term, characterized by a
frequency co, and an intensity Ace' or by a more compli-
cated time dependence describable by a Fourier spec-
trum of such sinusoids. Xtt(t) represents the coupling
(assumed weak) to a heat bath, leading to a single
relaxation time v- for the properties of the system of
interest. The density operator for this system may be
obtained from the Hamiltonian by means of the
Liouville equation

t&(d/«) p(t) = LX(t),p(t)j (2)

Equation (2) may be solved by forming matrix
representations of the operators appearing in it, and
solving the corresponding differential equations for the


