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Conductivity of a Degenerate Electron Gas*
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The high-frequency, wave-vector-dependent conductivity of a degenerate electron gas near equiliblium
is calculated by taking into account the zero-, the first-, and two of the second-order diagrams in the
effective interparticle interaction. Approximate formulas are derived for the case when the frequency co of the
electromagnetic wave is high and its wave vector k is small, i,e., co»kpF jm, where pr is the Fermi mo-
mentum of the electron gas.

I. INTRODUCTION

HE conductivity of the electron plasma, a system
of charged particles interacting through a Cou-

lomb field, has been calculated for the electromagnetic
waves whose frequencies are high compared to the
electron-collision frequency and whose wavelengths are
very long compared to the Bohr radius. ' ' The
wavelength-independent conductivity has been com-
puted for the electron-ion plasma'4'; it corresponds to
the situation of a spatially uniform wave in the p1asma.

%e now wish to give approximate formulas for the
frequency- and wave-vector-dependent conductivity for
the case when the frequency is high compared to the
electron-collision frequency and the wavelength is
sufFiciently long. These coefFicients are necessary to de-
scribe the weakly nonuniform waves in plasma.

The problem has been considered in various approxi-
mations. In particular Xakajima and Katabe' con-
sidered the approximation valid when the frequency is
low and the wavelength is not too long. DuBois and
Gilinsky' have considered the case of a high-frequency
and long-wavelength wave in a hot electron gas and did
focus attention on the limit of classical statistics. They
have been using a modern technique not based on the
Kubo formulation of the conductivity coefficients. 22

Here we want to give formulas for the leading terms of
the electron-gas conductivity, both frequency- and
wave-vector-dependent, for the case when the frequency
is high and the wavelength is long.

d&c(j (k 'r —ih&c) j„(—k, 0)), (1)

where ~ is the frequency and k is the wave vector of the
electromagnetic wave. The space Fourier transform of
the current operator is, in the Heisenberg representation,

(k i) —eiHclkf (k 0)e cHI/o— (2)

with H the total Hamiltonian and

j~(k 0)= (e&/~)Zn P~cz~»z'czc »z. -
The thermal average of any operator 0 is

(0) Tr(ee=&'" ~&O)/Tr(ee'"" ~&) (4)

where P=1/IcsT, with k» the Boltzmann constant and
T the absolute temperature; p is the chemical poten-
tial; and V is the number operator. Integrating (1) by
parts we can write, following closely Ron and Tzoar, 4
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G. CALCULATION OF THE CONDUCTIVITY

1. General Formulation

Ke start from the Kubo formula for conductivity" "
oo

a„„(k,cd)= — dre' '
V 0
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= (ie'rc/(um) b„, (i/cd)M„„+(k—,cd) . (5)

Here n is the average particle density. %'e write for any
function f(z) of the complex z

f~(co) = lim f(z)» —+ 0+.

In order to compute the function M„„+(k,c0) of Eq. (5)
by perturbation expansion we write first the current
operator

j„(k,l) =e"~j„(k,0)e "~

"P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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FIG. 1. The zero-order dia-
gram for the calculation of
the wave-vector-dependent con-
ductivity.

and introduce the average of the time-ordered product

M„.(k,u) = (1/V)&T( j„(k,u) j„(—k, 0)})
= (e'h'/qzz'V) 2 P~p'&U(P))o '&2'(aq+z/z(u)

is given by"
Uq(n )=4m.e' 'q i-[1 4z—qe"q 'Q-q(-n )] '.

Here Q, (n ) is the polarization operator" '"'

1 1
Qq(-. ) = 2—-2 G~.»(t i+n )G. „.0z)

V uP

d p un+q/z zzz q/q-
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n„=fee'q»+1] '
q =h' p'/2l

and G„0i) is the electron propagator

(12)

(14)

Xa~q/z(u)a~ k/z'(0)a, +q/z(0) U(P) ) )q (&).

Here ( )p denotes the average with respect to the eigen-
state of the Hamiltonian of the noninteracting particles,
and

U(P) = exp — du Hr(u)

The Coulomb interaction between the electrons has to
be renormalized. '4 The eRective interaction Hamil-
tonian is

Hi(u)=(1/2V)g U, (u) P a~, /'( )
g J qP

&&aq, , /z (u)a„.+q, z(zz)a„q, , zg/(u). (10)

The Fourier transform of the eRective, screened, inter-
action potential

U„(n„)= du e" U (u)

n„=2qriqzz/P, qzz=0, &1, &2, .

Gn(h)=(h —qn)
' iz=u+(2t+1)z~/P,

1=0, a2, +2, . (15)

Following the standard. procedure"" one now de-
fines 3f„,(k,s) as the analytical continuation of the

M„.(k,zq.)= du "e""M„,(k, )u

0

from the infinite set of points zq = 2zrizz/P(zz&0) on the
positive imaginary axis of s to the upper half-plane of s.
This gives the last form of Eq. (5).

2. Calculation of Dxagrams

The evaluation of the perturbation expansion of
/M„„(k,zq„) can be done by using the rules given by
t.uttinger and WardI~ and Perel and Eliashberg. ' In
accordance with the latter authors we consider, besides
a diagram of zero order in the interparticle potential
(Fig. 1), the diagrams 1—5 shown in Fig. 2. We write
down the contributions

M„„(k,qq ) = p 3I,„"&(k, )=zq(e'h'/ Vq/)zzQ p„p„' Q iran„„."'(k,zq„),
j'~0 pp' i 0
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(17)

We now perform summations over 3 and l'.
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The matrix element of zero order in the interparticle potential is

e2h2 p+ /

M„,(q&(k,Q)„)= — Q p P„P„
fS'V E~k/2 —Ep k/2

—(0„

The longitudinal conductivity can be expressed, using Eq. (13), as"

M Pl Z ia) 4xe2
o ('&(k Q)) = ——M ('&+(k Q)) =— Qk (ha))

0751 M 4Ã
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The calculation of the matrix elements corresponding to the diagrams of Fig. 2 requires evaluation of the follow-

ing sums:
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For k=0 the matrix element of Eq. (19) vanishes
and the sum of corrections given by Eqs. (21) vanishes
too, as should be the case for a uniform homogeneous
system. It is this cancellation of contributions from
diagrams 1, 2, 3 on one hand and 4, 5 on the other hand,

which led to the choice of the diagrams 4 and 5 from
among the second-order diagrams. '4 By the same
reasoning, if one took into account all the second-order
diagrams, one would have also to take some from among
the third-order diagrams to achieve cancellation at k =0.
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3. Simplifying Approw'~ation

In Eqs. (21) the integrations over p and p' are dif-

6cult (see Refs. 1, 6, 8—10, 13, 18, 19).There have been
several attempts to calculate the multidenominator ex-

pressions with distribution function in the numerator,
and various approximations have been tried. We will

follow here the simplest approximation used by Tzoar
and Klein, ' which eliminates the multiple denominators
altogether. We will approximate a11 the denominators
whose frequency is co„, and which do not contain
e +or„, by ~„. For co„diferent from zero and k su%-
ciently small, and for any finite p and q, these energy
denominators can be developed into a power series in

k/co„:

L&y—q+k/2 &p-q—k/2&An] = [(p q)k is j(d„]
1 (p—q)kh' P(p —q)kk']'

(22)
mes„ 2 7S Art

2 3

Using this development, one drops out all the poles
corresponding to zeros of these denominators. There-
fore the resulting formulas will be useful only for fre-

quency cv sufIiciently high and wave number k su%-
ciently small. For a degenerate electron gas with the
Fermi momentum pi, the inequality co)&kpp/m ensures
that the contribution of the neglected poles will be small,
since e„goes to zero for large p and also the interpar-
ticle potential U, (n ) goes to zero for large momentum
transfer q, thus making small any contribution from re-
gions of large q's in sums of Eqs. (21).

We will not write down the terms arising from the
first and second powers of k in the development in
k/co of the denominators exhibited in Eq. (22): these

2.

Fn. 2. The fIrst- and second-order diagrams contributing
to the high-frequency conductivity.

terms can be written down straightforwardly, ' and we
omit them for reasons of brevity only. Thus our final
formula will be incomplete. But the enumerated omis-
sions are our only approximation.

4. The Final Formula

In Eqs. (21) the summations over the index m can be
rewritten in terms of a principal value integration fol-
lowing the device described by Perel and Eliashberg. '
The sum of contributions given by Eqs. (21), in the
approximation described in the preceding paragraph,
can be writ ten in the form

1 5 e2h2 6' +" d (t
a~„,(k,~)=—P M„"'+(k,~)= — dz2 coth(J3&/2) (V.q.F'(*)Q'(*)—U. (*)Q. (&)

gQ) j i Go m 2x' (2s)'

+~a'(~+ fi )LQ.+~'(*)—Qa+~ (&))—L&.+(*)—~. (~)]Q.+.+(&+&~) l

+(2v.&+2v &.+v.c) t~'a+~ +(*+ f )Qe +~+(* +&~)L f/+(*)Q. +(*) ~e (~)Qe —(*)7
—I/.+(~+ fi )Q'(&+ ~)L~~"(&)Q~~'(*)—~.+~ (~)Q.+~ (*)])
—(q.+&,)(q.+&.) [&.+~+(*+~)L~.+(*)(Q.+(*))'—~. (*)(Q. (*))']

Thus in our approximation the corrections to con-
ductivity are described in terms of quadratures over the
same functions U, (x) and Q,(x) as in the case of a uni-
form electron-ion plasma. ' ' In Eq. (23) the screened
interaction potential U,+~ is not developed into powers
of k. If one approximates screening by the Thomas-
Fermi screening constant, one can develop U,+I, into

"T.Ho1stein, Ann. Phys. (N. Y.) 29, 410 (1964).
"N. Wiser, thesis, University of Chicago, 1964, and Phys. Rev.

13S, A452 (1965).

powers of k at every q. The corresponding development
of the function Q,+i contains the first derivative which
has a logarithmic, and thus integrable, discontinuity.

Evaluation of the formula (23) requires a fourfold
integration which can be done numerically only.

The above formulation of the corrections due to inter-
particle interactions gives a first approximation for the
conductivity coeScients in the case of a spatially weakly
nonuniform wave in a degenerate interacting electron
gas, whenever the zero-wave-vector conductivity alone
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does not sufFice for description of the wave propagation.
The skin efFect in metals is an instance of a situation in
which the formulas derived here are needed to take
account of the electron interaction.

A generalization of the above calculations to more
realistic and more complicated systems of interacting
particles can be carried out, in principle, along the same
lines, though this appears to involve considerable labor.
One should first consider systems of different species of
particles, '4 the electron system with impurities pres-
ent '""electrons interacting v ith phonons, """and

2 J. S. Langer, Phys. Rev. 127, 5 (1962).
2' M. L. Glasser, Phys. Rev. 129, 472 (1963).
"V. L. Gurevich, I. G. Lang, and Yu. A. Firsov, Fiz. Tverd.

Tela 4, 1252 (1962) LEnglish transl. : Soviet Phys. —Solid State
4, 918 (1963))."N. Tzoar, Phys. Rev. 132, 202 (1963).

'4 A. Ron and ¹ Tzoar, Phys. Rev. 133, A1378 (1964).

the electron propagators with the damping included in

the electron self-energy. "
Concluding we can say that the equations presented

here constitute an initial step in the efFort to take into
account spatial nonuniformities in the calculation of
conductivity of an interacting electron gas.
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The ranges of 0.66- to 1.64-MeV C" atoms in aluminum have been determined by the stacked-foil catcher
technique. Monoenergetic C" recoils were produced from the interaction of 3.94- to 6.96-MeV protons with
thin 8" targets in the reaction 8"(p,n)C". The results are compared with previous data and theoretical
calculations, and are in agreement with the semiempirical calculations of NorthcliGe.

INTRODUCTION

HE stopping of heavy ions has recently been the
subject of renewed theoretical interest. ' The

accumulation of reliable experimental data is essential
for continued progress in this field. I urthermore, this
information is required. in the analysis of data from the
recoil-range type of experiment for investigating the
mechanisms of nuclear reactions.

The values of the recoil ranges of low-energy C"
nuclei were necessary for the analysis of an investigation
of the mechanism of the C"(p,pe) C" reaction. Although
theoretical and semiempirical range-energy curves are
available, '' there have been no direct experimental
checks of the data in the energy region of interest
(0.5—1.5 MeV). Moreover, a dependence of the observed
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range on the crystalline nature of the absorber has been
noted, ' and it was felt advisable to calibrate the com-
monly used aluminum-leaf catcher foils.

In the present study, C" ions of known energy were
produced in the reaction 8"(p,n)C". Protons with
energies between 4 and 7 MeU from a tandem Uan de
GraafF generator initiated the reaction, and the C" ions
recoiling in the forward direction were caught in thin
aluminum foils. The range of the C" ions was deter-
mined from the distribution of 20.5-min C" activity in
these foils. The energy of the recoiling C" ions is readily
calculable from the kinematics of the reaction.

EXPERIMENTAL PROCEDURE AND DATA

The target used in this work consisted of 8" evapo-
rated onto a gold foil by means of electron bombard-
ment. The boron deposit weighed 0.3 pg and was spread
over an area of 5 cm'. The thickness of the gold foil was
37 pin. corresponding to a surface density of 1.8 mg/cm'.
The target was supported on an aluminum frame per-
pendicular to the beam direction, with the boron
deposit facing downstream (see Fig. 1).

' G. R. Piercy et a/. , Phys. Rev. Letters 10, 399 (1963).


