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electrons in rare earths and we attribute the observed
peak to transitions from the 'So level.

It is interesting to compare' the levels observed for
the 4f' configuration of Pr'+ in the vapor (E„) phase
with those found in single crystal (E,). If our value for
the 'So level in CaF2 crystals is compared with the
calculated' value for the vapor, it is found (Fig. 3) that
the relation is described by a simple expression:
Z,—Z.~ Z„3&2, or Z,=Z.—SO-3 5 Z.3I2.

1Vote added irt proof For. tunately, the 'Se level of Pr'+
sits conveniently on the short-wavelength side of the
first 4f +5d b—and in fluorides. Otherwise, it might be
dificult to distinguish the 'So absorption from the zero
phonon line of 4f +5d tr—ansition at low temperature,
although the former is a weak and the latter is a strong
transition. The absorption spectrum of 0.015/o Pr'+ in

CaF2 at liquid nitrogen temperature shows a weak. 'So
peak at 2120 A and a strong zero phonon peak at

2240 A, both being conveniently located on the
opposite sides of the 4f —+ 5d band with apparent peak
a,t 2200 A.
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Theory of Rotational Excitation of Homonuclear Diatomic Molecules by
Slow Electrons: Application to N, and H, t
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A distorted-wave theory of rotational excitation of homonuclear diatomic molecules with Z ground states
by slow electrons is given. The assumption is made that distortion of only the l =0 and l =1 partial waves
is significant and a simple semiempirical model is used for the potential. Results obtained for H2 and N~
using the most recent theoretical and experimental values for the electric quadrupole moments and polariz-
abilities appear to remove, or very nearly remove, the discrepancies which have existed between theory and
the analysis of swarm experiments.

I. INTRODUCTION

T has been well known for many years that for
- - electron energies below vibrational threshold the
observed electron energy losses in homonuclear diatomic
molecular gases greatly exceed those due to elastic
scattering alone. Early theoretical calculations' ' of the
cross section for rotational excitation considering only
the short-range electron-molecule interaction yielded
energy loss rates smaller than the observed ones. How-
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~ P. M. Morse, Phys. Rev. 90, 51 (1953).
s T. R. Carson, Proc. Phvs. Soc. (London) A67, 909 (1954).

ever, in 1955, Gerjuoy and Stein (G. S.)' showed that,
for the low energies of interest, the long-range part of
the electron-molecule interaction is dominant in deter-
mining the rotational excitation cross section. Assuming
the electron-molecule interaction to be the r ' pure
electric-quadrupole interaction for all r and using the
Born approximation, they obtained an expression for
the rotation excitation cross section which is propor-
tional to Q', where Q is the electric-quadrupole momen. t
of the molecule. Using reasonable values for Q (which
was not precisely known in most cases), approximate
agreement with observed energy losses was obtained.
However, with increase in the precision of the analysis
of swarm experiments, ' some discrepancies became

3 E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955);98, 1848
(1955).

4 L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962).
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apparent. Furthermore, an inadequacy in the G.S.
theory results from the fact that a slow electron
polarizes the molecule. An account of the resulting r 4

polarization interaction was 6rst included by Dalgarno
and Moffett in a Born-approximation calculation of
the cross section. ' This failed to account completely
for the discrepancies between theory and experiment.
However, the central part of the polarization potential
is large enough for one to expect distortion of the
electron wave function to be of some importance.
Moreover, although the long-range r ' and r 4 inter-
actions are dominant in determining the cross section,
some account should be taken of the proper short-range
part of the interaction. This is especially important in
determining the e6ect of distortion. Recently, several
authors have reported work along these lines. '—"In
Ref. 7, it was found that for N2, using the now fairly
well-established value Q= —1.1 (in units of caps), and
a reasonable approximate form for the short-range
interaction, a distorted-wave calculation yielded essen-
tially perfect agreement between theory and
experiment.

In the present paper, the theory used in Ref. 7 is
given in more detail" and application is made to N2
and H2. In the case of N2, use is made of the new
experimental values for the polarizabilities recently
reported by Bridge and Buckingham. "The results do
not alter the conclusions reached in Ref. 7. For H2,
using the recent theoretica, l value Q 0.49 of Kolos
and |A'olniewicz" and the values ep= 2.75 and n2 ——0.69
based on recent theoretical'3 and experimental' values
for the polarizabilities, we obtain results for the case
of one short-range form for the interaction [Eq. (13)
below) which appear to be very nearly in complete
agreement with the analysis of swarm experiments. ' "
However, the computed cross section is still too small
when another form [Eq. (11) below) is used for the
interaction at small distances. Additional reasons are
given for preferring use of the former, Eq. (13), in the
case of H~. Some discrepancies between the results

' A. Dalgarno and R. J. MoRett, Proc. Natl. Acad. Sci. India
A33, 511 (1963).' R. C. Mjolsness and D. H. Sampson, Bull. Am. Phys. Soc. 9,
187 (1964).' R. C. Mjolsness and D. H. Sampson, Phys. Rev. Letters 13,
812 (1964).

K. Takayanagi and S. Geltman, Phys. Letters 13, 135 (1964).
P A. Dalgarno and R. J. W. Henry, Proc. Phys. Soc. (London)

SS, 679 (1965), and (private communication).' K. Takayanagi and S. Geltman, Phys. Rev. 138, A1003
(1965).

"This theoretical model was erst presented by the authors at
the Sixteenth Gaseous Electronics Conference in October, 1963
(unpublished).

"N. J. Bridge and A. D. Buckingham, J. Chem. Phys. 40,
2733 (1964). They recommend (private communication from
A. D. Buckingham) that the results for the asymmetrical polariza-
bilities (ntl —ay) be lowered about 1%.

'3W. Kolos and L. Wolniewicz, Bull. Am. Phys. Soc. 9, 103
(1964); L. Wolniewicz (private communication).' A. G. Engelhardt and A. V. Phelps, Phys. Rev. 131, 2115
(1963).

obtained by us and those obtained by Takayanagi and
Geltman" are discussed.

V(r, s) = f (rr . .r„,s) V&(r,rr. r„,s)

XP„(r, r„,s)d'r, d'r„s-'ds. (1)

Here r~ r„are the positions of the e bound electrons,
r is the position of the free electron relative to the center
of mass of the molecule, and s is the internuclear sepa-
ration. For the conditions that rotational excitation is
of importance, "ns" generally refers to the electronic-
vibrational ground state. If the electronic-vibrational
wave function f p(rt r„,s) for the isolated molecule
is used in Eq. (1), one obtains the effective static
interaction'

V, (r,s)= P '"V,P 'd'rt. d'r s'ds

f~(r) = eC~/r'+' r&R, —
=E f~(r)P~(r ~), (2)

ZM

(3)

where C~ is the /th electric moment of the molecule and
R is the approximate radius of the molecular charge
cloud. For neutral homonuclear diatomic molecules,
CO=0 and C2~+~=0 for all /. Hence, to good approxi-
mation,

Qe Qp

V, (r, s) — Ps(r s), Q=
r3

.&R. (4)
880

As required for the validity of our approach, the
principal electron-molecule interaction takes place in
a time short compared with the rotational period. On
the other hand, the free electron moves very slowly
relative to the bound electrons of the molecule. Hence,
the bound electrons adjust almost completely to the
instantaneous position of the free electron as though
it were stationary. Thus, one should not use the isolated
molecular electronic-vibrational states f ' in Eq. (1)

II. EFFECTIVE ELECTRON-MOLECULE
INTERACTION

In the case of homonuclear diatomic molecules, such
as H2, N2, and 02, which have 2 ground states, the
molecular wave functions separate approximately into
a product of electronic-vibrational states f (rt r„, s)
and spherical harmonic rotator states V, (s). Then,
for the calculation of the cross section for rotational
excitation by low-en. ergy (&1 eV) electrons when no
change in electronic-vibrational state occurs, the
molecule behaves approximately as a rigid rotator,
with states V, (s) and effective electron-molecule inter-
action energy U(r, s) given by the total electron, -

molecule interaction U, (r,rr r„,s) averaged over the
electronic-vibrational state
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V, (r,s) =—8 COQO 8 CO@2
Ps(r" s); r&2R, (6)

rrp p (rrll+2rrr) y rrs s (rrI I rrr)

Here o.&f and cx~ are the polarizabilities, in units of ao,
of the molecule along the direction 8 and a direction
perpendicular to s, respectively. Note that our O.o and
n2 have half the values used by some authors.

In the present paper, the form adopted for the
potential is

V(r, s) = Vp(&)+ Vs(~)Ps(t"' ~)

where

8 Coorp

Vp(r) =— G(r), Vs(r) =-
r'

cpa p'Q

D(r), (9)
r3

D(r) = 0(r)+ (~s~p/Qr)G(r), (10)

G(r) = r'/(rps+r')s, nonexponential cutoff, (11)

e(r) =1, r& r,
=0, r&r, . (12)

The factor G(r), Eq. (11), is familiar from atomic
scattering theory" and is expected to take into account
approximately (at least for r &If) the weakening of the
polarization attraction, Eq. (6), due to exchange effects
and the change in the response of the bound electrons
for intermediate and small r. We also make calculations
using the form"

G()=(1—eel:—(/ o)'3) (»)
(exponential cutoff). The free parameter rp is chosen
to rnatch experimental elastic scattering data, as
described more fully in Sec. V, and does not have the
same value for the nonexponential cutoff, Eq. (11),
and the exponential cutoff, Eq. (13).The value chosen
for r„ the abrupt cutoff in the static interaction, is
based on the approximate knowledge available to us
on the particular molecules being studied.

We note that when ro and r, are set equal to zero,
Eq. (8) reduces to Eq. (5) with the long-range forms,
Eqs. (4) and (6), for V, (r, s) and V~(r, s) being used for

"M. N. Klein and K. A. Brueckner, Phys. Rev. 111, 1115
(1958).

"This form was suggested to us by C. F. Curtiss.

but rather should use those corresponding to the
molecule in the presence of the free electron, i.e., the

should depend parametrically on r. The result of
this can be written

V(r, s) V„(r,s)+ V, (r,s), (5)

where V„(r,s), called the polarization interaction, is the
result of polarization of the molecular charge cloud and
exchange effects. For large distances for which the effect
of exchange is insigni6cant,

all r. This is the interaction used by Dalgarno and
Moffett. ' When r„e&, and alt are set equal to zero,
Eq. (8) reduces to the interaction used by Gerjuoy and
Stein' LEq. (4) for all r].

For r&R, the terms proportional to higher order
Legendre polynomials in the true expression for V(r, s)
are not completely negligible. However, they are ex-
pected to be large only for a fairly narrow range of r
near s/2. Moreover, they contribute to different
rotational transitions than Vs(r)Ps(f' s) does. Thus,
we expect that use of the form given by Eq. (8) is a
good approximation. (This is born out by the recent
calculations for Hs in Ref. 9.) However, the correct
Up(r) and Vs(r) also differ from our choice, Eqs. (9)—
(13), for r(R. They are large in magnitude

l
especially

Vs (r)$ for r s/2, while lim„p Vs(r) =0 and lim„p Vp(r)
=const. Nevertheless, with our choice we have elimi-
nated the singularities in the interaction at r= 0
resulting from use of the long-range forms, Eqs. (4)
and (6), for all r. Also, by choosing rp by matching to
the elastic scattering, we can hope with some justifi-
cation that the interaction is fairly well represented
for the important range of r. The fact that the main
contribution to rotational excitation comes from
L=L'=1 scattering and L=L'=0 scattering gives no
contribution, where IA and I'h are the initial and final
electron orbital momentum, reduces the importance
of the small r region. For these reasons, we expect that
our choice of interaction is probably good enough to
enable us to obtain fairly accurate results for e & 0.4
or O.S eV, where e, is the initial free-electron energy.
However, the importance of the region r&R increases
rapidly with e, so that results obtained for e &1 eV,
without use of the approximately correct interaction
for r&R, are of little value. The work done and being
done by Dalgarno and Henry' should lead eventually
to fairly good results for these higher energies, at least
for H2 where they are most likely to be important.

III. GENERAL METHOD OF CALCULATION
AND VALIDITY CRITERIA

The method used to calculate the cross section in this
paper can be regarded as an approximation to the
method of distorted waves. Recall that the inelastic
differential scattering cross section according to the
method of distorted waves is given by' "

kb( m )'
r(u, k.~f, k,)=—

l

u. k2 Pi

X dsrF p( —k p, r) V (rp)F, (k„r) . (14)

'
¹ F. Mott and H. S. W. Massey, The Theory of Atomic

CofHszoes (Oxford University Press, London, 1933), 2nd ed. ,
p. 146.' M. J. Seaton, in Atomic used 3folecllur Processes, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), p. 3g6.
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Here F,(k„r) and Fp(kp, r) are the solutions of the
differential equations

is to be valid, "i.e.,

(2o)

PV,'+k, s (2—m/Ii') V,;(r))F;(k;,r) =0, i= a, b, (15)

with asymptotic forms for large r of plane waves plus
outgoing waves. V~ is the matrix element of the
electron-molecule interaction energy taken between
initial and final molecular states a and b. In the present
problem, where the effective electron-molecule inter-
action energy V(r, s) is given by Eq. (8) and the
molecule behaves as a rigid rotator with states Y, (s),

Vp, (r) = Vp(r)5;„.,5„, .
+Vs(r)(jp, mpIPs(r e) I j„m,). (16)

In obtaining Eqs. (14) and (15), i.e., in using the
method of distorted waves, one truncates and decouples
the infinite set of coupled differential equations for the
free-electron wave functions by neglecting all off-

diagonal matrix elements of the interaction energy,
except the one connecting the final state to the initial
state. Thus, in the present problem where Eq. (16)
applies, a criterion for the validity of the method is

I Vo(r)+Vs(r)(j. m. IPs(r ~) I j m. )I
» I VQ(r)( jp, ms IPs(r s) I j„m,) I

jp, m pN j., m. . (17)

F,(k„r)=g (2l+1)i'N, i'(r)Pi(k, r), (21)

where u i'(r) satisfies the equa, tion

where Jis is the total angular momentum of the system,
electron plus rotator (molecule), compounded out of
electron orbital momentum lh and rotator angular
momentum jA.

It is interesting to note that, when approximation
(18) is made, Eqs. (14) and (15) can be regarded as
giving the inelastic scattering cross section according
to first-order perturbation theory with Vp(r) included
in Ho. Ke have preferred to regard the method as an
approximation to the method of distorted waves because
then the above criteria are readily available for the
validity of the approach. Application of these criteria
is made in Sec. VI.

Since the potential entering Eqs. (15) is spherically
symmetric when approximation (18) is made, there is
no azimuthal dependence in the decomposition of
F (k,r) and Fp(kp, r) into partial waves. Thus, we

make the expansion

In our calculations, we make the additional approxi-
mation

d' 2 d 2m l(i+1)—+——+V— Vp(r)—
dr' r dr

N, i'(r) =0, (22)

V..(r) V pp (r) Vp(r) . (18)

As seen from Eq. (16), the criterion for the validity of
this approximation is

IVo(r)I» IVs(r)&j. m. lPs(r e)l j m )I (19)

e"i vri

sin k.r—+bi I.
2

lim N. i'(r) =
kr

and has the asymptotic form for large r

(23)

The utility of this latter approximation is that the
potential entering Eqs. (15) is then spherically sym-
metric and independent of molecular states. This
simplifies the calculation and shortens the required
computing-machine time. Condition (17) may tend to
be an overly severe criterion for the validity of the
method of distorted waves, because the coupling terms
neglected in obtaining Eqs. (14) and (15) involve
products of the off-diagonal matrix elements of V(r, s)
with electron wave functions which are either small in
amplitude or out of phase with the wave functions
entering the retained part. A more precise criterion
which takes the approximate average over r effect of
this into account can be obtained from S-matrix
theory. "' The true S matrix is unitary and symmetric,
while in the method of distorted waves the diagonal
elements of the S matrix have an absolute value of
unity. Thus, the sum of the squares of the nondiagonal
elements must be small if the method of distorted waves

"A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc. (London)
A256, 540 (1960)."C.S. Roberts, Phys. Rev. 131, 209 (1963).

Since the plane-wave decomposition is

we can write

F,(k„r)=e'"~'+g (21+1)i'N, i(r)Pi(k, r) (25)

where

Similar expressions apply for Fp(kp, r) with b replacing
a everywhere. The separation in Eq. (25) is convenient
because it leads to the Born approximation to the cross
section plus corrective terms due to distortion involving
various products of the N~.

IV. REDUCTION OF THE CROSS SECTION

We consider now the explicit form taken by Eq. (14)
in the present problem. For homonuclear diatomic
molecules, the rotational cross section is generally small
in comparison to the elastic cross section and makes
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little contribution to the Inomentum transport cross
section. For this reason, rotational excitation of such
molecules is of practical importance only in deter-
mining the electron-molecule energy exchange rate.
This depends on the total rotational cross section
o.(j,~ jb) for the transition j—,+j b averaged over
initial and summed over final azimuthal quantum
numbers m and mb. Hence, we calculate only
~U. ~jb):

E,'Eb

3(E 2+5K 2) (K 2 K s)2

2E,4Eb'

E,+EbXln, (33)

3Eb

3 —3—K,4+22K,'Eb' 1—5Eb'

f-(a,b) =—
40

g„(a,b) = (—(3E,'+SEbs)hs+Sh4
a(i.~i b) = Z Z dfll(a, j.~ b, jb), (27)

2jr+1 ma ~b

+dp'I —(7K.'+5Kb') h4+hb tl), (34)

8trQ'app kb (j.+2) (j.+1)
&08(i ~ jb)

15 k, (2j,+3)(2j,+1)
for jb——j,+2,

8trg'ap' kb j,(j, 1)—
15 k, (2j,—1)(2j,+1)

for jb= j,—2, (28)
and the auxiliary quantities

r,' 3(E,'+Ebs)
f„(a,b) = 2— E.'

Sap' 4E,'

which l is qI somewhat easier than calculating
I(a, j ~b, jb). This is,

,

'done using Eqs. (8), (14),
(16), an.d (25) and making the approximation that
distortion of the partial waves with l&1 can be neg-
lected. Appropriate ordering of the angular integrations,
use of the identities satisfied by the spherical har-
monics, ""and replacement of the dQ integration by
an integration over k, where k= ~k,—kb~, leads to the
anal expression for the cross section after a long but
straightforward calculation. Details are given in Ref.
23. The result is conveniently expressed in terms of the
Gerjuoy-Stein value' for the cross section

in which

3Ets+Ess 5Et4+10E'isKss+Es'
hg= —, kg=

SEg3Eg

5E'—E'
h4=

5Eg'

35Eib+ 14KtsKss Ks'—
, (35)

35E&'

105Kb'+189Et'Ks'+27Et'Es' Ks'—
21E13

while
E~ CQk~ p Eb QQkb ) (36)

c=0.3, d= 0; exponential cutoff, (39)

for the short-range forms for the polarization inter-
action given by Eqs. (11) and (13), respectively, p is
introduced to account for the slight energy dependence
of rQ.'

P= Lrp(")+«(eb) j/2ap. (40)

Et=max(E'„Kb), Ep= min(E'„Eb). (37)

The quantities c and d are constants. They have the
approximate values

c=0.8, d= 0.3; nonexponential cutoff, (38)
an(i

3(E,'—Ebs)' K,+K,
ln

g (a,b) =hi hpKb' cPE.'+—dP'fhs —Ebsh4 j, —

2r,' 9 E.'+Kb'
f„(a,b) = — E,Eb+

5uQ' 10 E,Eb
00

U(a, b) =3 —D(r)tb, p(r) js(kbr),
p r

(41)
(E,'—Eb')' K,+Kbln, (31) 00

V(a, b) =3 —D(r)l, i(r) ji(kbr),
Q

2E,'Eb'
(42)

12E~Eb
g„(a,b) = [,'h, ,'cp+d p'h4$, -——

5
(32)

00

W(a, b) =3 —D(r)l, i(r) jp(kbr),
p r

(43)2' M. E. Rose, Elemeetary Theory of Angljar 3IIomerItum (John
Wiley R Sons, Inc. , New York, 1957), pp. 60 and 61."P. M. Morse and H. Feshback, 3IIethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 622.

"R.C. Mjolsness and D. H. Sampson, General Electric Com-
pany TIS Report R65SD22, 1965 (unpublished).

00

X(a,b) = 3 —D(r)N. ,(r)tbbt(r),
p r

(44)

Also we use the quantities f„(b,a), , g„(b,a), defined
similarly, except that E and Eb are interchanged and
Ei and E& unchanged in Eqs. (29)—(35). Of course,

(30) f„(a,b) and g, (a,b) are seen to be symmetrical in a and
b. Finally, use is made of the radial integrals
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and U(b, a), V(b,a), and W(b, a) defined by Eqs. (41)—
(43) with a and b interchanged.

With these deinitions, partial cross sections can be
expressed as follows:

o, r s(E,'+Eg') 3nns
=1— +

OGS Suo' gQ

rs
~

hi cP(E—'+Ess)+ 'dP' — lh
10a,'1

(3mns)'
E '+E s 2cph,—+ps(2d+c')

k 16Qi
10

X I
E44+ Es'E—a'+Ea4 (45)

3

33CX2

f-(a,b)+ a-(a, b)
S

&&ReU(b, a)y l U(b, a) l' + La b7, (46)

05 6
=-lX(a,b) l',

~GS
(5o)

where the symbol La ~ b7 entering Eqs. (46) and (47)
denotes the preceding term with u and b interchanged.
Finally, the total rotational cross section is given by
the sum

o 0+&1+ns+&8+&4+&4 ~ (51)

0'0 is the Born approximation to the total cross section.
It reduces to the Dalgarno-Moffett result when r,=0
and c=d= 0 (corresponding to rs ——0). The other partial
cross sections give the corrections due to distortion. 0-~

gives the correction due to distortion of the initial and
6nal s waves and cr2, 0-3, 0-4, and 0.5 the corrections due
to distortion of the initial and final p waves. In most
cases, the dominant effect is the positive contribution

0'2 3' tX2

j„(a,b)+ g„(a,b) ReW(b, a)+)a& &b7-
~GS

37''CE2

+ f.( b)+ a.(,b)
SQ

)&$ReV(b, a)+ReV(a, b)+ReX(a, b)7, (47)

g~ 6
=-I V(,b)+V(b, ) l'

OGS
9

+-{
l w(a, b) [s+

l w(b, a) le}, (48)
5

04 6
=—(X(a,b) )V(a,b)+ V(b,a)7*

~GS
+X*(a,b)LV(a, b)+ V(b,a)7}, (49)

arising from the last term in o-2. However, the 0-~ con-
tribution, which is negative, dominates for near-
threshold energies where l=2 to l'=0 scattering be-
comes of importance. Also, for high energies, the con-
tribution (6/5)ous l

V (a,b)+ V (b,a)+X(a,b) l

' arising
from tT5, 04 and the first term in 0.3 becomes significant.
The terms involving the Ws are never of much im-
portance. The X(a,b) contribution becomes relatively
unimportant at small energies, but is comparable with
the contribution of the V's at high energies.

V. NUMERICAL PROCEDURES

o. = sin'(bs —8i)+2 sin'(Bi —8,)+3 sinsbs (52)

gave agreement with the values for 0- measured by

44 T. F. O' Malley, Phys. Rev. 130, 1020 (1963).

A wave-function code and a cross-section code are
used to obtain numerical results for particular initial
electron energies and rotator transitions. The former
code gives numerical values for k,rm, i'(r) exp( —ib, i)
using a series solution for the 6rst nonzero point and
a Runge-Kutta integration using two mesh sizes for
succeeding points. It was hand checked, was able to
generate correct free wave functions, and at low ener-
gies gave l= 1 and l= 2 phase shifts in agreement with
the O' Malley asymptotic formula. '4 The assignment of
the correct multiple of m. to the coInputed phase shift
was made by fitting our potential to the soluble ex-
ponential potential and using Levenson's theorem. This
was verified by choosing a typical ro value and a small
energy and computing phase shift as a function of Np.

The wave functions and phase shifts were put on
tapes and used as inputs for the cross-section code.
Integrals were done via Simpson's rule using two mesh
sizes. The partial contributions due to the static and
the polarization interactions were output, allowing one
to compute results for a variety of ns and Q values
using only one set of integrations. In addition, all the
coefTicients Eqs. (29)—(34), the total cross section, the
Born approximation, and the partial cross sections due
to the polarization and to the static interactions were
output. The program was hand checked. Detailed
outputs are given in Ref. 23.

About 1.5 min on an IBM 7094 were required. per
cross section at high energies and about 4 min at low
energies. The purely numerical errors in the results are
expected to be somewhat under 1/o, in all cases, partly
because our method separates off the essentially exactly
known Born value from distortion effects. At low ener-
gies, the distortion effects are hard to calculate ac-
curately, but they are also small.

The parameter ro was determined by assuming the
momentum transfer cross section 0- is entirely due to
elastic scattering and varying ro until use of the com-
puted phase shifts in the equation
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Txnr, x I. ro/ae as a function of electron energy.

e (eV) 10 ' 10 ' 0.03 0.05 0.1 0.2 0.4 0.6 1.0

rp/op (¹&nonexponential cuto6)
re/aa (Hs nonexponential cutoff)
ro/oo (Hs, exponential cutoff)

1.256 1.251
0.9436 0.9396
1.1763 1.1700

1.250
0.9368 0.9364
1.1649 1.1638

1.245
0.9389
1.1667

1.236 1.217
0.9421 0.9455
1.1697 1.1692

1.190
0.9485
1.1676

0.9565
1.1655

VI. RESULTS AND DISCUSSION

In plotting results for the cross section versus initial
electron energy e„we find it convenient to plot
o (j ~j+2)/o os (j -+j+2) rather than o (j ~j+2),
where oos is given by Eq. (28). This ratio also gives
the value for de-excitation o (j+2 -+ j)/oo s (j+2 -+ j),

TABLE II. Phase shifts for electron scattering by H2.

e (eV)

1.0
0.2
0.05

Nonexponential cutoB
Bp

2.6004 0.07592
2.9298 0.01632
3.0478 0.00419

Exponential cuto6'
Bp

2.6434 0.1098
2.9323 0.01922
3.0481 0.00456

"A. G. Engelhardt, A. V. Phelps, and C. G. Risk, Phys. Rev.
135, A1566 (1964).

s6 A. V. Phelps (private communication).

Phelps and co-workers. 4' 2"' The parameters input
into the calculation are

ere=2 75 fo.r Hs and ere=5.93 for Ns. (53)

The value for Hg is a coInpromise between the recent
computations of Kolos and %olniewicz" and the
slightly different new experimental value obtained by
Bridge and Buckingham. "The value for N2 was used
before the value up=5. 96, based on the recent experi-
mental results of Ref. 12, was available, and the
difference was considered too small to be significant.
This procedure is tested by requiring the variation of
rp with electron energy to be small. As seen from Table
I, this condition is well satisfied. For N2, no reasonable
fit to 0. was possible above a=0.3 eV using the ex-
ponential cutoff. Hence, only the nonexponential cutoff
potential was used in calculations. Both potentials are
used. in calculations for H~, since both potentials lead
to a good. 6t; however, the exponential cutoff gives
smaller deviations in rp. Values of the rotational cross
section are insensitive to the energy variation of fp

and, in test cases, change by less than 2% if a constant
rp is used.

In Table II, phase shifts for l=0, 1 waves in the H2
case are given for the two potentials. The bp values are
quite similar, but the differences in 5& values are of
importance for the rotational excitation cross section,
which is primarily determined by l= l'=1 scattering.
A few values for the N~ phase shifts are bp

——2.9238,
8y=0.1131 at a=0.6 eV, and bp=3.0495, by=0.01824
at t.=0.1 eV. For all cases treated here, 82 is very small
and is given by the O' Malley asymptotic formula. '4

except that t., must then correspond to the final electron
energy.

The results for N2 for the transition j=4—+ 6 are
given in Figs. 1 and 2. This transition was chosen for
the purpose of making comparison with the analysis
of swarm experiments given in Ref. 25. However, it
also gives the value for o/oos for other transitions for
the range tested (0(j&30) to within somewhat better
than 1%, except for a slightly larger deviation very
near the transition thresholds. This approximate inde-
pendence of j is due, in part, to the small value
Bp=0.249&(10—' eV for the rotational constant for N2
and, in part, to the fact that the variation with j of
the Born cross section is mostly canceled by the vari-
ation with j of distortion effects. Figure 1 is similar to
Fig. 1 of Ref. 7, except that here we use the new
experimental value o,2= 1.57 based on the measurements
of Bridge and Buckingham" in place of the old. v'lue''"
ns ——2.09. The choice Q= —1.1 has been well established
recently experimentally' "and verified as to sign and
approximate magnitude theoretically, as well. ""The
difference between the two solid curves gives an
indication of the uncertainty resulting from an im-
precise knowledge of the interaction at short range. It
is seen that this difference is small below the vibrational
threshold at 0.29 eV. As mentioned in Ref. 7, one finds
for almost any choice of charge distribution which leads
to a negative value for Q that the static part of Us(r)
changes sign after appreciable penetration into the
charge distribution. For this reason, we expect that for
negative Q the contribution from the static interaction
part of Us(r) for r(R mainly cancels out and the
choice r,=2.1up~R gives the best results for the
rotational excitation cross section for N2. The dashed
and. dotted curves in Fig. 1 are the Born approximation
results when Eqs. (4), (5), and (6) are used for all r and
when our modified interaction, Eqs. (8)—(12), is used,

2' J. O. Hirschfelder, C. I". Curtiss, and R. B. Bird, 3folecllar
Theory of Gases aad Ligsssds (John Wiley gr Sons, Inc. , New York,
1954).

~' J. A. A. Ketelaar and R. P. H. Rettschnick, Mol. Phys. 7,
191 (1963).

~ J.D. Poll, Phys. Letters 7, 32 (1963).
's D. R. Bosomworth (private communication) and thesis,

Physics Department, University of Toronto (unpublished).
"A. D. Buckingham (private communication). (This is the

only experimental work that gives the sign of Q.) The method
used is given by A. D. Buckingham and R. L. Disch, Proc. Roy.
Soc. (London) A273, 2'/5 (1963).

+ P. Cade, K. D. Sales, and A. C. W'ahl, Bull. Am. Phys. Soc.
9, 102 (1964); and (private communication). They obtain
Q= —1.091 for internuclear separation 8=2.068ap. More extended
calculations giving Q =Q(E) are to be published.

3' R. K. Nesbet, J. Chem. Phys. 40, 3619 (1964).Here the same
sign but lower magnitude Q= —0.9 is obtained.
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Fze. 5. Rotational excitation versus initial electron energy for
the j=1—+ 3 transition for H2 for various values of Q using the
exponential polarization cutoB, a static cuto8 at r,= up F2=0.69,
and ~p ——2.75.

deviation from the corresponding results for Q=0.49.
The results in Fig. 5 correspond to r,=co, which we

estimate to be approximately the best choice for the
cutoff in the static interaction part of V2(r). Charge
distributions which lead to positive Q can be chosen
such that this static interaction either does or does not
change sign within the charge cloud. However, the
calculations presented by Dalgarno and Henry' in their
Fig. 1 indicate that the sign does not change. In fact,
it would appear perhaps that even a smaller value of
r, should have been chosen for H2. However, it can be
argued that this might be compensated for by an
overestimation of the polarization contribution to V2(r)
resulting from choosing ro too small when we neglect
the static contribution to Vo(r) for r&R. In Fig. 3, the
effect of distortion and polarization on the rotational
excitation cross section is shown for various choices for
the short-range form of the interaction. In Fig. 4, the
variation of o/oos with e, is shown for various tran-
sitions when r,=ao and the nonexponential cutoff is
used. For the same conditions, except that the ex-

ponential cutoff is used, the results have a very similar
behavior for small initial electron energies and a slightly
greater spread with j for high energies. For example,
at t' = 1 eV, results for o'/oos for the exponential cutoff
are 4.259, 4.188, 4.113, and 4.038 for the j=0~2,
1 —+3, 2 —&4, and 3 —+5 transitions. When e,=0.35
eV, the exponential cutoff results for o./o.os for the same
transitions are 1.991, 1.927, 1.855, and 1.769.

The important transitions for H2 for the conditions
studied by Engelhardt and Phelps'4 are j=0—& 2 and
j=1~3.They found that 0-0& should be multiplied

by a factor 1.73 in order to give agreement with swarm
experiments. Since Q=0.473 was used, this means that
the average value for o./~os for these transitions in Figs.

3 and 4 and for Q =0.49 in Fig. 3 should be (0.473/0. 49)'
&1.73=1.61. For r,=ao, this value is obtained for
e,~0.23 eV for the exponential cutoff and e,~0.4 eV
for the nonexponential cutoff. A second test is provided
by plotting the ratio of our distorted-wave value for a-

mor these transitions with r, =co, Q=0.49, and o.2 ——0.69
to O-DM, the value given by the Dalgarno-Moffett Born
approximation with no short-range cutoff and with
Q=0.473 and n2 ——0.486 (approximately the value used
in Refs. 5 and 14). This is done in Fig. 5 of Ref. 23. The
average value of this ratio should be 1.54 in order to
obtain consistency with swarm experiments according
to Ref. 14. This value is obtained at e, 0.28 eV for the
exponential cutoff and e, 0.8 eV for the nonexponential
cutoG. Of course, the energy dependence of 0- is quite
different than it is in the case of the Born approxi-
mation. However, it is noted in the footnote on p. 2122
of Ref. 14 that a steeper rise in 0- with energy than the
Born approximation would give better agreement with
experiment. The negative e8ect of distortion near
threshold is probably not too significant because it
occurs principally only when kt/k, is small, and hence
the excitation cross section is small. Thus, it would

appear that the positive effect of distortion plus the
increases in 0. due to the new larger values 0.49 and
0.69 for Q and n2 are probably sufhcient, or very nearly
so, to bring theory and experiment into complete agree-
ment when the exponential cutoff, Eq. (13), is used for
H2. However, when the nonexponential cutoff, Eq. (11),
is used, the results for a. are still too small to remove
completely the discrepancies between theory and the
analysis of swarm experiments.

In addition to the fact that the results for the ro-
tational excitation cross section for H2 are better when
Eq. (13) rather than Eq. (11) is used, there are other
reasons to prefer Eq. (13). The variation of ro with e

is smaller (see Table I). Also, although the larger hump
in the interaction for r~r~~oo obtained with Eq. (13)
probably overestimates the polarization and exchange
effects in this region, it probably better compensates
for the static contribution to Vo(r) (which we have
neglected) and the large static contribution to V2(r)
for r ao indicated by Fig. 1 of Ref. 9. For these
reasons, we think Eq. (13) leads to the better repre-
sentation of the total potential for H2.

We consider now some of the discrepancies between
our results and those of Takayanagi and Geltman' who
use a single cutoff for both static and polarization inter-
actions, as given by their Eq. (Sa). We think our cutoff
procedure is better and should lead to more accurate
results because it softens the potential to larger dis-
tances than theirs and allows for the loss of polarization
for an electron closely approaching the charge cloud.
It also permits a closer fit to the experimental elastic-
scattering cross section at the low energies relevant for
the rotational excitation process. Moreover, we can
separately choose the static cutoff, which is essentially
(completely in our approximation) independent of the
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elastic scattering, on the basis of independent knowledge
of the molecule. However, we certainly do not claim
that our procedure is completely satisfactory.

Their cutoff procedure, which gives a fairly large
static contribution to V2(r) for r(R is undoubtedly
primarily responsible for the large hump at fairly high
energies shown in their Fig. 10 for N2. As mentioned
in the discussion of N2 results, we think that the net
static contribution to V2(r) for r(R should be approxi-
mately zero instead. Hence, we expect that the hump
in Fig. 10 of Ref. 10 is nonphysical, although the un-
certainty in the interaction at small distances is too
great to be certain that no hump occurs. On the other
hand, it is dificult to see how their cutoff procedure
can be completely responsible for the fairly large
negative distortion effect they obtain for intermediate
and low energies (e,&0.1 eV), where the rotational
cross section is relatively insensitive to the short-range
form of the potential. This effect is in contrast to the
positive distortion effect shown for most of this energy
range in Fig. 1 of the present paper, or in Fig. 1 of
Ref. 7. Another qualitative difference in results for N2
is that 0/Oos computed from Table II of Ref. 10 is not
so nearly independent of j for the conditions 0& j&30
and e,&0.6 eV as we have found.

In the case of H2, it is dificult to make a detailed
comparison of results on the basis of comparison with
Fig. 9 of Ref. 10. Hence, we have computed o/oos from
Table I of Ref. 10. The results for the j=0—+ 2 tran-
sition together with our results for the same transition
are given in Fig. 6. Their results pertain to Q=0.464,
n2=0.625, and uo= 2.664, while ours pertain to Q= 0.49,
n2=0.69, and no ——2.75. The principal Q dependence is
factored out in dividing by O-G&, as indicated by our
Fig. 5. However, with the larger Q.2 relative to Q and
the larger no used by us, our results should be a little

0 TAKAYANAGI AND GELTMAN,

CUTOFF AT r ~ I.2 p p

~ TAKAYANAGI AND GELTMAN,

CUTOFF AT r I.Sap

a SAMPSON AND MJOLSNESS rc ape
EXP. POLARIZATION CUTOFF

~ SAMPSON AND MJOLSNESS. rc o ~

NONEXP. POLARIZATION CUTOFF

0
0 ~

I wQi i 0 (

.04 .06 .I l.5

PgG. 6. A comparison between results for the ratio of the ro-
tational excitation cross section to the value given by the Gerjuoy-
Stein theory versus initial electron energy for the j=0 —+2
transition for H2.

TAar.E III. Contributions of various partial-wave transitions to
the Born-approximation value for the rotational cross section.

Type of
interaction l =l'=0

Transition
l=o, l'=2

and
l=2, l'=0 l=l'=1 l =l'=2

Pure quadrupole
Pure polarization

0 12 SFo 6'7 ~Fo 8.937o
0 28 44Vo 68 27'Po 1.66 jo

higher than theirs, especially at high energies where
the effect of polarization and distortion are greatest.
The relatively rapid increase in their values with energy
at high energies probably results from the fact that
their Vo(r) is significantly stronger than ours for r
or 2ao. For this reason, their potential (especially for
the cutoff at r= 1.2ao) is probably closer to having:i
negative ion /=1 bound state than ours. This would
lead to somewhat larger /= 1, /'= 1 distortion effects at
high energies.

Near threshold it appears that we obtain a slightly
larger negative distortion effect. Since our negative
distortion comes through the /=2, l'=0 partial wave
transition, it could also be argued that our neglect of
/= 2 distortion affects our near-threshold results. How-
ever, it is very unlikely that this is true, as seen by
considering the near-threshold case for which 0./Oos in
Fig. 6 was computed. Here e,=0.05 eV and &~~0.00476
eV. In this case, the l=2 phase shift is 82(0.05) 6X10 4,

while the effective /=0 phase shift still has the much
larger value m —80(0.00476) 2.72)&10

At high energies, /=2 distortion is thought to be
unimportant, as well, because the relevant phase shifts
are still small and the l= 2 waves do not contribute very
heavily to the cross section. This is indicated by the
results in Table III where the percentage contributions
of various transitions to the total cross section are
computed analytically in the Born approximation with
pure quadrupole and pure polarization interactions,
Eqs. (4) and (6) for all r, using the Arthurs-Dalgarno"
formalism and assunung e,= ei, (a good approximation
at the higher energies for H2 or almost all energies for
N,).

Finally, we use the validity criteria Eqs. (19) and
(20) to test the validity of the approximation made to
the diagonal matrix element of the potential and to test
the validity of the method of distorted waves. For this
purpose, it is again convenient to use the Arthurs-
Dalgarno formalism. "Their formalism could, of course,
have been used for the entire problem, but it would
have been necessary to compute additional angular f2
integrals LEqs. (54) and (55) below7. In addition, the
present formalism facilitates accurate numerical calcu-
lation by explicitly separating the Born terms.

Condition (20) may be tested using l= 1, since
l=/'=1 distortion dominates the inelastic scattering.
For this case, the left-hand side of Eq. (20) has a single
term whose value is less than 0.01 for the conditions
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treated in this paper. Thus, the distorted wave approxi-
mation should be good.

As seen from Eqs. (30) and (44) of Ref. 19, the
condition for the validity of Eq. (18),our approximation
to the distorted-wave method is actually

V2(r)f2(j~ j~ ~)

Vo( )
(54)

where f2 is the matrix element of P2(r" s) for angular
momentum states of the total system and has been
tabulated for some values by Percival and Seaton. "
Since f(j0; j0; J)=0, Eq. (18) is exact for 1=0. For
3=1, 1- j j+1

f(j1;j1;J)=— 5;,g~g+ 8g,+g . (55)
5 2j+3 2j—1

Its magnitude is less than unity and approaches the
value 1/10 for large j. Since no—F2 for both N2 and
H~, neglect of the angular-dependent part of the
polarization interaction contribution to V (r) is a good
approximation. However, it is possible that the quad-
rupole contribution, which always dominates at large
r, might be significant. Using f2=0.1 in Eq. (54), we
6nd that the left-hand side (0.2 for r&10ao for H2
and r&12ao for N2. This is expected to cover the
important range of r except at very low energies, where
distortion is not very significant. For H2, small j is
needed and Eq. (54) is not as well satisfied; however,
Eq. (18) is probably still quite a good approximation.
This is indicated by the results of Dalgarno and Henry'
who Gnd using only the pure quadrupole interaction for
large r and the static contributions to Vo(r) and V2(r)
for small r that the maximum eBect of distortion in H~
for e,&1 eV is only 12% Although f2(j2; j2; J) is a

35 I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (1957).

little larger than f2(j1;j1;J), the conclusion that l= 2
distortion is small and can be neglected need not be
altered.

Our conclusions are that the various approximations
made in the present paper lead to little error in results,
with the possible exception of the models used for the
short-range form for the potential. This has little eBect
on results for low-electron energies (e,&0.1 eV), but is
increasingly significant as e, is increased. Nevertheless,
by Gtting the central part of the potential to the
elastic-scattering data and making use of the knowledge
that the static interaction contribution to V2(r) must
change sign for small r for Ng (which has a negative
value of Q) and by making some use of the computations
of Dalgarno and Henry' for the static interaction for
H2, we have obtained approximate forms for the inter-
action at small r which probably mock up the total
potential sufficiently well, in both cases, to lead to
fairly accurate results for the energies considered. Some
indication of this is given by the fact that, with the use
of the latest values for polarizabilities and quadrupole
moments, we have obtained results which appear to
lead to good agreement with the analysis of swarm
experiments. However, computations of rotational ex-
citation based on more precisely calculated values for
the potential at small r in which polarization and
exchange eGects have been accurately included would
be desirable. This is particularly true for H2 where the
calculation is most feasible and where rotational ex-
citation might be large enough to be signi6cant relative
to vibrational excitation above 1 eV.
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