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known, discussion of the electron and hole properties
in the breakdown region must be based on the experi-
mental observations. The behavior of the Hall voltage'
"saturation" appears to be fit, qualitatively, by a
treatment including the influence of the holes produced
in breakdown, as mentioned above, over the range
100—1000 V/cm for the applied longitudinal field. In
such a treatment, the electron average mobility was
assumed to remain unchanged as the current increased.
The quality of the ht indicates that this assumption
needs only slight modi6cation.

Thus, we have suggested in this paper that in
strong electric and magnetic fields, carriers may have
sufficient energy in the E x B direction to cause impact
ionization —what we call "transverse breakdown, "
leading to a "saturation" of the Hall voltage. This
suggestion has been reinforced by a simple classical
phenomenological calculation showing that, for a crystal
in which the electron scattering time decreases with
energy, electrons of such large energies can occur at
applied electric 6elds lower than in the absence of a

magnetic field. Experiments have been performed which
show that breakdown is initiated at the point where
the Hall voltage saturation occurs and that this Hall
field is equal to the required breakdown field for the
same magnetic fields but in a geometry which shorts
out the Hall field. These results are in agreement with
the predictions of the theory.

A better understanding of the impact ionization
process requires calculations of the distribution func-
tion and experimental tests of its form. W'ithout such
a calculation, we cannot treat the magnetoresistance
properly, and thus cannot calculate the change in the
total breakdown field due to the magnetic 6eM. It is
hoped that the considerations presented here will
stimulate further more rigorous theoretical treatments
of this problem.
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Investigations of the piezoresistance of heavily doped a-type germanium were made to determine (1) the
nature of the carrier scattering mechanisms in degenerate materials and (2) any modiacation of the conduc-
tion-band edge resulting~from the large number of impurity states. Stresses large enough to alter the re-
sistivity well beyond the range of linear piezoresistance were applied; saturation of the resistivity at the
larger stresses was attained in samples with as many as j.0" carriers per cc. Resistivity was measured with
extensive parametric variation of dopant, carrier concentration, temperature, and applied stress. The Hall
coefficient was also measured as a function of stress for several concentrations. The data are interpreted
qualitatively by a four-valley model with a parabolic conduction-band edge, and deviations from this model
are discussed. Electron-electron interactions and the temperature dependence of screening contribute
significantly to the temperature dependence of the resistivity. The variation of the screening with the relative
population of the valley must be considered in interpreting the results of the piezoresistance experiments;
in the case of arsenic doping, intervalley scattering is also significant. The mobility anisotropy for screened
Coulomb scattering in one valley, as determined from resistivity measurements on antimony-doped samples
with large (111)stress, varies with concentration from 5.5 at 1X10' per cc to 3.8 at 1X10's per cc. Evidence
for the existence of tail states extending =0.04 eV below the conduction-band edge is presented.

I. INTRODUCTION

HE discovery of the tunnel diode by Esaki' in
1958 has given impetus to both theoretical and

*The experimental portion of this investigation was performed
at IBM Research Laboratory-Zurich, Ruschlikon ZH, Switzer-
land.

1' William Bayard Cutting Traveling Fellow, Columbia Univer-
sity.

f. Present address: Los Alamos Scientific Laboratory, Univer-
sity of California, Los Alamos, New Mexico.' L. Esaki, Phys. Rev. 109, 603 (1958).

experimental investigations of the properties of heavily
doped, degenerate semiconductors. Such investigations
attempt to answer two questions:

(1) What is the nature of the band structure of
semiconductors so heavily doped that the usual simple
hydrogenic model for the impurity states no longer holds
because of extensive overlap of the ground-staf e
orbitals; and:

(2) What is the nature of the scattering mechanism
dominant at such high dopingsP



A 1324 M AU R I CE J. KATZ

Intuitively one expects a large modiication of the
nature and density of the states in the vicinity of the
conduction-band edge. For pure germanium' the
conduction-band edge consists of four valleys degenerate
in energy; light doping with group-V donor impurities
causes the formation of localized impurity energy states
=0.01 eV below the conduction band. Heavy doping
increases the spatial density of the localized levels; their
overlap causes broadening of the impurity levels until
they and the original conduction band all merge into one
new continuum. It is then that the material is said to
be a degenerate' semiconductor; the activation energy
between impurity states and conduction band no longer
exists, and electrons are in the conduction band at all
temperatures. In this way the degenerate semiconductor
resembles a metal. At low temperatures degenerate
Fermi-Dirac statistics will apply, and transport meas-
urements should give detailed information on the
energy dependence of the scattering mechanism without
the usual Maxwell averaging, i.e., at low temperatures
the conductivity of degenerate semiconductors depends
on the value of the relaxation time at the Fermi level
and not on the functional dependence of the relaxation
time on energy as in the usual semiconductor case.

Various theoretical and experimental investigations
which elucidate the above questions have been reported.
Band-structure calculations for disordered lattices, 4

infrared-absorption experiments, ' ' measurements of
resistivity, ' Hall effect, ~ magnetoresistance, —' linear
piezoresistance" and ultrasonic attenuation" " have
all been carried out in heavily doped Ge. High-strain
piezoresistance data'' " which show a saturation of
resistivity have also been reported. It is the aim of the
present work to report more complete measurements
of high-strain piezoresistance and Hall effect together
with the temperature dependence of resistivity at
various strains and to show their usefulness in explain-
ing the properties of degenerate germanium through
simpli6ed models of band structure and scattering
mechanisms.

Cf., R. A. Smith, Semiconductors (Cambridge University Press,
London, 1959), Chap. 10.

s Cf. , S. H. Koenig, Proceedings of the International Conference
on the Physics of Semiconductors, Exeter 196Z (The Institute of
Physics and the Physical Society, London, 1962), p. 5.

4 Cf., Chapter on Disordered Semiconductors, Ref. 3, p. 205.
' C. Haas, Phys. Rev. 125, 1965 (1962).
6 W. G. Spitzer, F. A. Trumbore, and R. A. Logan, J. Appl.

Phys. 32, 1822 (1961).' Y. Furukawa, J. Phys. Soc. Japan 16, 687 (1961).' Y. Furukawa, J. Phys. Soc. Japan 18, 1374 (1963).
'H. Roth, W. D. Straub, W. Bernard, and J. E. Mulhern,

Phys. Rev. Letters 11,328 (1963).
'e M. Pollak, Phys. Rev. 111, 798 (1958).
"M. Pomerantz, R. W. Keyes, and P. E. Seiden, Phys. Rev.

Letters 9, 312 (1962).
~ W. P. Mason and T. B. Bateman, Phys. Rev. Letters 10,

151 (1963).
3W. P. Mason and T. B. Bateman, Phys. Rev. 134, AI387

(1964).
'4 H. Fritzsche and M. Cuevas, Ref. 3, p. 29.
'5 M. J. Katz, Helv. Phys. Acta 25, 511 (1962).
"M. Cuevas and H. Fritzsche, Phys. Rev. 139, A1628 (1965).

The large value of certain piezoresistance and piezo-
Hall-effect tensor components in germanium is due to a
change in the relative populations of the four valleys as
they shift in energy as a function of applied stress of a
particular symmetry. ' For example, a compressional
stress applied in the (111)direction causes three valleys
to move to higher energy relative to the fourth, with
the result that carriers accumulate in the lowest valley.
%e expect the resistivity to stop changing when the
three raised valleys are above the Fermi level for all the
carriers in the lowest valley.

The measurement of large-strain piezoresistance is
particularly suited for investigating the properties in
which we are interested. The anisotropy of the conduc-
tivity may be measured directly in one valley by remov-
ing the other three valleys with a large compressive
stress in, the (111)direction. In the one-valley case the
carrier density may be determined directly from the
Hall effect without knowledge of the scattering anisot-
ropy as is necessary in the four-valley case." In
addition, the behavior of the resistivity and Hall
coefficient as they approach their anal values should
yield information on the density of states near the band
edge of the upper three valleys.

An outline of the experimental procedure is given
in Sec. II. Results of measurements of resistivity as
a function of dopant, carrier concentration, tempera-
ture, and stress together with certain piezo-Hall-effect
measurements are presented in Sec. III. In Sec. IV, we
discuss the analysis and interpretation of the data and
attempt to apply various models to explain the experi-
mental results. A summary is presented in Sec. V.

II. EXPERIMENTAL PROCEDURE

Measurements were performed on samples cut from
single-crystal germanium pulled from the melt. The
samples contained either arsenic or antimony impurities
with densities in the range 1X10"to 2)(10"per cm'.
Resistivity and Hall effect were measured as a function
of temperature on unstrained samples. In addition,
three different types of piezoresistance experiments
were performed at helium temperatures:

(1) Longitudinal measurements: Resistivity in the
(111) direction and Hall voltage perpendicular to
the (111)direction were measured as functions of (111)
compressional stress using samples of type (1) (see
Fig. 1).

(2) Transverse measurements: Resistivity perpendic-
ular to the (111)direction was measured as a function of
compressional stress applied in the (111)direction using

type (2) samples.

(3) (110) measurements: Resistivity in the (110)

'7 Cf., S. H. Koenig, I'roceed&sgs of the Irlterrratiorial School of
Physics "Enrico Fermi, " Course XXII (Academic Press Inc. ,
New York, 1963).

"C.Herring, Bell System Tech. J. 34, 237 (1955).



HEAVILY DOPED n —TYPE GERMANIUM

I

I

I

I

I

I

I

IJ.

I

I

I

I

I

I

I

I

I

I

x,J
&III)

XsJ

&Iio&

E„~N,
(I)

LONGITUOiNAL
(Rl

TRANSVERSE
(3)

&Iio&

Fro. 2. Sample shape and contact arrangements for the three
types of measurements made. Typical sample dimensions are
1.5 mmX1. 5 mmX10 mm for types (1) and (3) and 6 mmX1 mm
X4 mm for type (2).

direction was measured as a, function of (110) stress
using type (3) samples.

In many of these cases the maximum stress applied
was just below the breaking stress, corresponding to a
strain of =sr%. In addition, the temperature depend-
ence of resistivity and Hall voltage at several large
stresses were measured on some samples.

Brick-shaped samples able to withstand compres-
sional stresses greater than 9000 kg/cm' were prepared
according to the technique described by Hall. "Despite
careful preparation it was impossible to construct
samples to withstand the stress needed to transfer all
carriers to one valley in samples with carrier density
greater than about 10" carriers per cm'. Contacts were
made to the sample using pure tin solder dots. Hall
effect was measured using a dc current reversing tech-
nique. -"' Corrections"-' to the Hall coefFicient due to
contact geometry were negligible. It was found that
most samples had a carrier density inhomogeneity of
5—10% along the length of the sample.

The experiments were performed in an apparatus
similar to one described by Hall" with one important
modification. Because of the large number of measure-
ments to be made, it was necessary to rapidly measure
the resistivity as a continuous function of the applied
stress. This was accomplished using a constant current
supply for the sample current, applying the voltage
along the sample to the y axis of an x-y recorder and a
voltage proportional to the applied stress to the x axis.
The stress voltage was obtained from a commercial
load cell in the apparatus between the push rod and
the hydraulic system supplying the force. See I'ig. 2.
A small correction had to be made due to the weight of
the push rod. The Hall voltage measurements were
made at fixed stresses. A 10-kG magnetic field was
produced by a 9-in. Varian magnet powered, by a motor-

generator power supply. A Kiethley Model 149 Milli-
microvoltmeter was used to measure the Hall voltages,
and all data were plotted on an Electro-Instrument
x-y recorder.

For both resistivity and Hall effect absolute measure-
ments were reliable to 2% while relative resistivity
measurements, as a function of stress, were better than
0.5%. Because of poor stability of the power supply
the magnetic field was only good to 1%.

Temperature measurements were made with gold-
2.1 at.% cobalt to copper thermocouples and with rro-W
Allen Bradley resistors calibrated by such thermo-
couples. The accuracy over the range of temperature
measurements was 5%.

III. EXPERIMENTAL RESULTS

A. Resistivity of Unstrained Samples: Dependence
on Carrier Concentration

CONTROL VALVE~ COMPRESSED
AIR

!
.~LOAD CELLPRFSSURE

l30INB

E .~SEAL

Fzo. 2. Apparatus
showing method of
producing contin-
uously variable ~

stress.

.~DOU B LE -WALLED
JACKET

f„l
PUSH ROD

SUPPORTS (3)

HELIUM SPACE

~NITROGEN SPACE

MAGNET
POLES

In Fig. 3, the resistivity of unstrained samples p4 at
4.2'K is shown plotted against the carrier density n as
determined from the Hall constant at saturation strain.
The Hall effect in unstrained germanium depends on
the mass and scattering anisotropies of the carriers. ""
On the other hand, if we measure the Hall effect in
germanium under conditions such that all carriers are
in one valley, i.e., under large compressional stress in the
(111)direction, the Hall coefficient Rrr is readily shown
to be independent of mass and scattering anisotropies;
Rrr=1/rse where e is the charge of the electron in
coulombs, and RII is measured in cm' per coulomb.

'9 J. J. Hall, Phys. Rev. 128, 68 (1962).
~ S. J. Angello, Phys. Rev. 62, 372 (2942).
~ I. Isenberg, B. R. Russell, and R. F. Greene, Rev. Sci. Instr.

19, 685 (1948). sm C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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F&G. 3. Experimental data for resistivity of unstrained material,
(a) and (b), versus carrier concentration together with curves
calculated from models discussed in Appendix A. Experimental
errors are indicated by the sizes of the points.

ferring all the carriers into the lowest valley. When the
Hall voltage, measured as a function of the applied
stress, stops changing we assume that all the carriers
have beeri transferred to the lowest valley. The sample
is then said to be saturated. The resistivity also
approaches a constant value at high stresses. For
antimony-doped material the 6nal resistivity is reached
at the saturation stress, but in arsenic-doped material
higher stresses are needed. p3, the anal resistivity paral-
lel to the (111) direction (the axis of rotation of the
lowest valley), may be measured using longitudinal
samples. The final resistivity perpendicular to this
axis p& may be measured using transverse samples.
Results of such measurements made at liquid-helium
temperature are shown in Figs. 4 and 5.

The helium-temperature data for pa and p~ are
similar to those of p4. In all cases, p varies approximately
inversely as e, with the resistivity of the arsenic-doped
material from 1 to 2 times as great as the antimony-
doped material, this ratio increasing for increasing
e. Following Eq. (1), we find in the pr case, a(vi;)
~ vi ("+"ifor antimony doping and a(vv) ~ vr,

for arsenic doping. In the ps case a(v~) ~vv " for
antimony doping and a(vi, ) ~ vz 's for arsenic doping.

Implicit in using this e is the assumption that the total
carrier density is independent of stress.

The experimental data in Fig. 3 show that the
p4-versus-n behavior for both arsenic- and antimony-
doped samples are similar in the region of e= 10"-10"
cm ', with p~e~' but differ by a factor of about 1.6
over that range, the resistivity of the samples doped
with arsenic being greater than those with antimony.
The resistivity ratio p4 a,/p4 sb increases slightly with
increasing e.

The resistivity and the mobility p, are related as
p= (ried) ' and in an independent-scatter model

C. Resistivity of Unstrained Samples: Temperature
Dependence

The resistivity of unstrained material was measured
as a function of temperature in the range 4.2—250'K for
Ave antimony-doped samples and seven doped with
arsenic. Typical results are shown in Figs. 6 and 7.

(a) P3„A slope -I.O
(b) P& sbavg. slope=-l. 2
(c) P& G

slope*-l. p
(d) P& BHovg. slope=-.7

where eJ is the Fermi velocity and the concentration of
scattering centers is assumed equal to the carrier
concentration. For a temperature of O'K the Fermi
velocity is proportional to e+'" and the isotropic
Rutherford scattering model" predicts a(vv) ~ vs '.
From the Fig. 3 data, we find for antimony doping a(v&)
~vs &"~') and for arsenic doping a(vv) ~vv &s s+"i.
(The exponent in the arsenic case differs somewhat from
that found by Koenig' because in the present work n is
determined from the saturation-stress Hall coefficient. )

K Resistivity of Saturated Samples: Dependence
on Carrier Concentrations

As stated above, large compressive stress in. the (111)
direction raises three of the valleys in energy, trans-

~ Cf., N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949), 2nd ed. ,
Chap. III.
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together with curves calculated from models discussed in Appendix
A.

For all samples, the resistivity initially increased with
temperature even at the lowest temperatures. The
samples with the least impurities showed a hump in the
p4(T) curve at about 70'K which is below the degen-
eracy temperature, i.e., the temperature equivalent of
the Fermi level for an ambient temperature of O'K.
More highly doped samples showed resistivity increas-
ing even at temperatures higher than the degeneracy
temperature.

It is informative to present the p4(T) data by plotting
Ap4/hp4(0) =Lp4(T) —p4(0) j/p4(0) versus T/TD, where
TD is the degeneracy temperature. At low temperatures
T~ corresponds to the energy of the carriers involved
in transport. The data thus reduced are shown in Figs.
8 and 9. It is seen that the Ap4/p4(0) versus T/Tn
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Fn. 7. Resistivity versus temperature for unstrained
arsenic-doped samples.
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Morgan'4 has recently observed that the temperature
dependence of resistivity in degenerate semiconductors
is proportional to the Bose-Einstein distribution func-

behavior is fairly consistent over the range plotted for
all concentrations of a given dopant, the increase in
resistivity being slightly higher for the Sb-doped
material.
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samples versus temperature normalized to TD.
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tion. In the region 0.1(T/T77(0.5 our data for arsenic
doping satisfy the relation

D. Resistivity of Saturated Samples: Temperature
Dependence
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The temperature dependence of p3 and p~ was meas-
ured at various stresses including those at and above
the stress needed for depopulation of the higher three
valleys at T=O. The data for various samples at the
greatest stresses for which measurements were made are
plotted as p/p(0'K) versus T/Tn in Figs. 11 and 12.
It is seen that in all cases the resistivity decreases
with increasing temperature and for a given dopant at
a given T/Tn the relative resistivity increases for
increasing carrier concentration.

Resistivity as a function of temperature at various
post-saturation stresses on a given sample was also
measured. In the p3 case, the measurements showed the
ps(T)/ps(0) behavior to be initially the same at all
post saturation stresses. As temperature increases a
temperature is reached where the ps(T)/ps(0) curve for
a given stress begins to decrease more rapidly than the
common curve for all higher stresses. An example of
this behavior is shown in Fig. 13. It was also possible
to apply two unequal but very high stresses to a given

+
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Fro. 11.Longitudinal resistivity at high stress versus T/T&. Fzo. 13. Longitudinal resistivity versus T/Tn at high stresses.
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FIG. 14. Transverse resistivity versus T/Tn at high stresses.

sample such that the ps(T)/ps(0) behavior was the same
for both throughout the range of measurement.

The pt (T)/pt (0) data showed similar behavior except
that departures from the common high stress curve of
the lower strain data was in the direction of increasing
resistivity. See Fig. 14.

E. Piezoresistance Experiments in
Antimony-Doped Material

(a) I.ortgitmdi1sat Measlremertts

Using samples of the longitudinal type, the resistivity
pl, and Hall coeKcient R~ were measured at 4.2'K as
functions of stress for 5 samples with dopant concentra-
tions between 1.1 and 9.1X10' per cm'. Saturation
was achieved in all cases. Stress as high as 9000 kg/cm'
(=9)&10' dynes/cm') corresponding to a strain of
about 0.5% was successfully applied without sample
fracture. The Hall voltage measured near both ends of
the sample indicated inhomogeneities in carrier concen-
tration between 1 and 10%.As expected, in all samples,
the stress needed to saturate the Hall coeKcient was
higher at the end with higher impurity concentration.

The resistivity as a function of stress is plotted in
Fig. 15; the Hall coeKcient in Fig. 16. The resistivity
and both Hall coeKcients as measured for a particular
sample are plotted in Fig. 17. All samples similarly
reached their final resistivities at stresses close to the
saturation stress for the more highly doped end. All
measurements are normalized to their zero-stress
values.

By sliding the logarithmic resistivity plots over one
another along the stress axis, it may be shown that the
curves all have the same shape, except for their behavior
near saturation; the ratio of final to initial resistivities
being smaller for higher dopings. The Hall-coefficient
data, on the other hand, show the same behavior
throughout, initially decreasing, passing through a
minimum, increasing, and finally all of them saturating
at a value of 1.15 times the initial one.

The results of the longitudinal measurements are
summarized in Table I.

(b) Traesserse Measurements

The resistivity pz was measured as a function of
stress at 4.2'K using samples of the transverse type.
Data were obtained for four samples in the range
1-8)&10' carriers per cm' and plotted in Fig. 18. Hall
efI'ect was not measured; the doping was determined
from the zero-stress resistivity.

The curves show similar behavior in all cases,
decreasing initially, passing through a minimum and

I I 1

S
(a)
(b)
(c)

(e)

2-

O.f 112

5- Sam
(a) I„(
(b) R~

(c) R„(O
~%. 3
x

2-

, .4,.6,9 I I

X(IO~ kg/cm~)
,4

I.2 o
—I.I

-I.O x
—0.9 a-

1@2 ,4,.6,.8 II,2
X (Io' kg/cm~)

14 16 18

FxG. 15. Longitudinal resistivity versus stress for antimony-
doped samples. Curves shown are reduced copies of the data as
plotted on an X-F recorder.

FIG. 17. Resistivity and Hall coefEcients measured near both
ends of a longitudinal antimony doped sample versus stress.
The resistivity curve is traced from a recorder plot. The Hall-effect
curves are smooth curves drawn through the data points (not
shown).
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TABLE I. Summary of data for longitudinal piezoresistance measurements on antimony-doped samples.
Two values in one column refer to measurements near different ends of the sample.

Sample

12-1
13-1
14-1
5—4
6-10

p(0) (ma cm)

4 74
3.85
1.63
1.12
0.695

n(SO«cm-I)

1.04—1.15
1.31—1.41
3.53—3.55
5.07—5.22
8.95—9.33

( kg)
Xfinsll 108

cm' j
2.2
2.6
3.3
4.5
6.6

6.04
5.65
4.70
4.25
3.75

( kg)x„,l
103—

l

cms&

2.35 2.7
3.3 3.3
4.3 4.6
6.3 6.8

Rlr (sat) /Rlr (0)

1.15 1.15
1.14 1.15
1.15 1.16
1.15 1.16
1.15

increasing until the final resistivity. The saturation is not
as sharp as in the pl. case and samples 14—2 and 6—11
reach their anal resistivities at stresses higher than those
expected from the pl„data. This is most probably due
to clamping of the sample ends which created a stress
perpendicular to the (111)direction which, due to the
shortness of the sample, creates additional strains in
the region of measurement such that higher (111)
stress is needed for complete valley depopulation. In
addition, the contact geometry for resistivity measure-
ments is poor in this case and a systematic error that
gives higher resistivity values, thereby implying lower

doping and saturation stress, may have been introduced.
In any event, the 6nal resistivity ratios are reliable.
Transverse data are summarized in Table II.

(c) Measurements on (110) Sarnptes

Resistivity of (110) samples was measured as a
function of stress at 4.2'K in Gve samples with carrier
concentration in the range 1-9)&10"carriers per cm'.
The Hall coeKcient for these samples was measured
at zero stress only and the concentration determined
from similar data in the longitudinal case. Data are
plotted in Fig. 19 and summarized in Table III. As in
the longitudinal case, all curves have the same behavior
except near saturation where the 6nal resistivity ratio
decreases as the carrier concentration increases.

F. Piezoresistance Measurements in
Arsenic-Doped Material

(a) Longstudinal Measurements

Measurements of the type described in Sec. III. E(a)
were made in arsenic-doped material. Satisfactory data
for pl, were obtained for 7 samples in the range 1—15
X10" carriers per cm', however, saturation was not
attained in all samples. The major difference between

TABLE II. Summary of data for transverse-piezoresistance
measurements on antimony-doped samples.

the p~ curves in the arsenic and antimony data is that
for all antimony samples pz, (X) shows a peak at a stress
about 20% below the saturation stress. The final resis-
tivity, which would be achieved at a stress well above
X„~, was not attained in the antimony case and both
pg;„,~ and Xg;„,~ had to be extrapolated from the lower
stress data.

With the exception of one sample, the ratio of peak
resistivity to zero resistivity decreases with increasing
doping. The final resistivity ratio also appears to be
decreasing. The value of the stress at the peaks, X~„~,
increases with increasing doping. What seems most
strange is that the final resistivity is reached long after
saturation, as determined by thy Hall coefIicient, is
attained. In addition, the 6nal Hall-coefficient ratio
increases from a value of 1.04 for e= 1.1&(10"per cm'
to 1.11 at /)(10".

Data for these measurements are shown in Figs. 20,
21, and 22 and summarized in Table IV.

(b) Transverse Measurements

Measurements of pz as a function of stress were
made at 4.2'K for seven samples in the range 1.4-15
X10"carriers per cm'. As in the longitudinal case, peaks
were found in the resistivity versus stress data. The
behavior of all the curves was similar, initially decreas-

ing, passing through a minimum, increasing to a peak,
and decreasing toward a anal resistivity. The final resis-
tivity, however, was not attained in any of the measure-
ments. As in the longitudinal case X~„q increases and
with one exception the ratio p„,q/p(0) decreases with
increasing doping. Aside from peaking the main differ-
ence between the behavior of p& in the antimony and
arsenic cases is that the final resistivity ratio for a given
dopant concentration is significantly lower in the
arsenic case.

TauLE III. Summary of data for (110)piezoresistauce measure-
ments on antimony-doped samples. Two values in one column
refer to measurements near different ends of the sample.

Sample p(0)(mDcm)

12—2 =5.34
13-2 =4.23
14-2 =1.70
6-11 =0.76

n(10«cm ')

=1.00
=1.25
=3.40

8.00

Xfi~mi (10 kg/cm ) pfiQQi/p(0)

2.1 1.143
2.5 1.127
3.7 1.098
7.5 1.014

Sample p(0) (mOcm) n(10" cm ')

12-4 4.97 0.99—1.02
13—3 4.34 1.19—1.20
14-3 1.79 3.08—3.23
5—5 1.15 5.20—5.23
6-12 0.81 8.11—8.14

1.4
. 1.85
3.0
4.0
5.1

2.12
2.10
2.05
1.99
1.94

Xr; i(10' kg/cm') pi; i/p (0)
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l.30

I.20—
O

& l.lo-

1.00-

Sample

(a) 12-2
(b) I3-2
(c) l4-2
(d) 6-I I

I I I
I

T=4.2 K

(a)

strained material was to small to be measured with our
equipment. However, a definite negative magneto-
resistance was observed in the one-valley case. The data
are given in Table VIII.

IV. DISCUSSION

.90 .2
I I

.4 .6 .8 I 2
X (10~kg/cm2)

I I

4 6 8 A. Resistivity of Unstrained Material: Deyendence
on Carrier Concentration at 4.2'K

FxG. 18. Transverse resistivity versus stress for antimony-doped
samples. Curves shown are traced from X-F' recorder plots.

Data for these measurements are shown in Fig. 23
and summarized in Table V.

At the present time, there is no quantitative explana-
tion of the p-versus-e data. No one model is available
that fits all the aspects of the physical situation. Scatter-
ing models that have been extensively discussed usually

(c) (110) Measurements

These measurements were made on 6 samples with
carrier concentration in the range 1-14)&10"per cm'.
As the other arsenic data, these too showed a peak. All
curves showed similar behavior and by shifting the log-
rithmic axes could be brought into conjugance, except in
the region of the peaking. X~„),increases with increasing
doping and p„,I,/p(0) decreases. Data at very high
strains were not taken in this case and, therefore,
pf;, ~ and Xf;„,~ were not determined. Data for these
measurements are shown in Fig. 24 and summarized
in Table VI.

G. Linear Piezoresistance

O

X

O.l

Sam
(a) 7-
(b) I5-
(c) 9-
(d) IO-
(e)
(f) II-
(g) 8-

I+2

I I I

l.4 l6 I8 II
X(IO~ kg/cm~)

I2 I4 ,6 I8

2.4

2.0—
O

f.6—x
A
O

~v l.2—

0.8 .2

I I I

T=4.2 K (a

I I I I.4 .6 .8 I

X(lo'kg/cm )

I

4 6

Fro. 19.(110l resistivity versus stress for antimony-doped samples.
Curves shown are traced from X-F recorder plots.

Although the apparatus was not designed for this
purpose, it was possible to obtain values for the linear
piezoresistance in some of the longitudinal and (110)

Fxe. 20. Longitudinal resistivity versus stress for arsenic-doped
samples. Curves shown are traced from X-I recorder plots.

assume that the scattering centers scatter independ-
ently. Since from Fig. 25, the de Broglie wavelength of
the carriers in the range of interest is greater than the
average interimpurity distance, any postulated com-

pletely independent scatterer model is unjustified.
Collision theory usually discusses two extreme cases,
those for which the product of the carrier's wave
number and the effective distance at which the potential
is cut off is either very much greater than or very much
less than unity. Figure 26 shows that for our case neither
condition is satisfied. It is nevertheless instructive to
examine the p-versus-e behavior for the various models
considered in the literature.

samples by measuring the initial slope of the p(X)/p(0)
data. This was not possible in the transverse case.
Values for Lp(X) —p(0))/p(0)X are given in Table VII
(X is negative for compressional stress), and are good
to better than 10%.

H. Magnetoresistance

I.4

~ I2O

OC

x I.O

Sample
7-3

+ 15- I

~ 8-5

1 I I

s.k~~~+~

T = 4.2'K

Even though the sensitivity of the apparatus was
not good enough to yield quantitative results, an
attempt was made to measure and'compare the trans-
verse magnetoresistance in unstrained and saturated
longitudinal samples. The magnetoresistance in un-

0.8
.I .2

I

.4 .6 .8 I

X(IO kg/cm )

I I I

4 6 8 IO

Fzo. 21. Hall coe%cient versus stress for arsenic-doped samples.
Experimental points are connected for clarity.
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TAsLE IV. Summary of data for longitudinal-piezoresistance measurements on arsenic-doped samples.
Two values in one column refer to measurements near different ends of the sample.

Sample

7—3
15-1
9—1b

10—3
3—4

11—5
8—5

.(0)
(mQ cm)

6.96
4.07
2.38
2.02
1.58
1.00
0.87

n
(10» cm-~)

1.10—1.30
1.95—2.06
3.81—4.20
4.72—4.96
5.99—6.95
=11—=14

~15

Xp ai
(10' kg/cm')

2.00
2.57
3.79
4.34
5.00
8.20
8.54

I (0)

7.67
7.08
6.61
6.32
6.51
5.94
6.24

XfinaI
(10' kg/cm')

6—7
6.5—6.6
7.5—9

Q7
&8
&8)9

Pf inal

I (0)

6.0—6.5
5.8—6.0
5.4—5.7

&5.5
=5.5

X,ag
(10' kg/cm')

2.1 2.4
2.8 3.2

=4.5 4.5

62 &6

&8 &8

R~(sat)

RH (0)

1.04 1.05
1.05 1.07
1.07 1.08
1.08
1.11

The data shown in Fig. 3 were taken at T=4.2'K.
Assuming parabolic conduction bands with the density-
of-states mass appropriate to the pure material, the
degeneracy temperature for four-valley germanium is
in the range 80 to 350'K for doping concentration
between 10" and 10' carrier per cm', see Fig. 27.
Therefore, it is appropriate to assume complete Fermi
degeneracy of the carriers in the conduction band. In
addition, the low ambient temperature excludes the
possibility of a signiicant contribution of lattice
scattering, the lattice mobility being orders of magni-
tude greater than those we measure. "The main scatter-
ing mechanism we need be concerned with is that of
ionized impurity scattering —the concentration of
ionized impurities being the same as that of the carriers,
since none of the doping was compensated during
growth.

Two extreme cases of ionized impurity scattering
have been discussed in the literature. They depend on
the ratio of the de Broglie wavelength of the carriers to
the range of the scattering potential. Let 4 be the
carrier wave number and u be the range of the scattering
potential. The case for ka))1 has been discussed classic-

I I I I

Sample l5
(a) ~,(X)/~(0
(b) RH(X)/Rs

(c) R„(X)/R„

O

x

I.IO

o
x Loox

.90

I I I

Sam pie
(a) 7 2 (e) 5-5
(b) I5-5 (f) II -6
(c) 9-2 (g) 8- 4
(d) IO- I I

(a)
T= 4.2'K

(g)

ally by Conwell and Weisskopf, "who used the Ruther-
ford scattering-formula cut off for small-angle scatter-
ing, and independently by Brooks, and Herring, '7 and
Dingle, '8 who use the Born approximation and a
screened Coulomb Geld. The case for ha&&1 was treated
by Csavinszky" and by Gulyaev. ' Both authors used a
screened Coulomb potential to determine the s-wave
phase shift by variational techniques. Higher order
phase shifts were neglected.

All the above authors assumed isotropy of the band
structure, spherical energy surfaces, and an isotropic
scattering potential in their calculations; the anisotropy
and many-valleyed nature of the conduction band were
neglected. We have repeated the calculations and
included the effective mass tensor and four-valley
geometry appropriate to germanium. To do this, one
erst considers an incoming wave along a principle axis
of the mass tensor and transforms to a "spherical"
space with the density-of-states mass. The scattering
potential, though spherical in the original coordinates is
ellipsoidal in the "spherical" space. This does not
effect the calculation in the Born approximation except
to complicate the integrations. On the other hand, the
method of partial waves depends on a spherical scatter-
ing potential. However, for ka(&'1 the de Broglie
wavelength is much larger than the range of the

}2

- 12 (=I

-I.Q x
K-0.9 a

.80
.I .4 .6 .8 I

X(IO kg/cm )

I I

4 6 8

FIG. 23. Transverse resistivity versus stress for arsenic-doped
samples. Curves shown are traced from X-F recorder plots.

X(IO~kg/cm )

Fzo. 22. Resistivity and Hall coefhcients measured near both
ends of a longitudinal arsenic-doped sample versus stress. The
resistivity curve is traced from a recorder plot. The Hall-effect
curves are smooth curves drawn through the data points (not
shown).

"Cf., S. H. Koenig, R. D. Brown, III, and W, Schillinger,
Phys. Rev. 128, 1668 (1962).

"E.Conwell and V. F. Weisskopf, Phys. Rev. 69, 258 {1946);
77, 388 (1950).

"Cf., P. P. Debye and E. M. ConweO, Phys. Rev. 93, 693
(1954).

"Cf., R. B. Dingle, Phil. Nag. 46, 831 (1955).
s9 P. Csavinsky, Phys. Rev. 126, 1436 (1962};131,2033 (1963);

135, AB3 (1964).
~Vu V. Gulyaev, Fis. Tverd. Tela 1, 422 (1959} I English

trsnsl, : Soviet Phys, —Solid State 1, 381 (1959)g.



A i333,R» Nl™ED pE GEHE AVIL Y

remen s on arsenic -doped samPles.- iezoresistance measuof data «f transverse-P'APLE ~y SummaO'

p„..i/~(o)

p 98—1.10
0'99 ]..00'

~095
~p 93
gp 97
(0.85
(093

~„.„,(10& kg/cm )

5—7
5 5—6.5

&6
&6.5
&6.5
&9.5
&90

p...~/p(0)

112
1.08
1.00
p 99
1.02
p 95
p 95

(103 kg/cm')

1.82
2.13
3.18
3.81
4.p3
5.33
7.44

„(gps cm- )(0) (mQ cm)

5 94
4.78

=2.48
1.85—1.66

=1.16
=0.81

14
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14.
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the correction to the effective-mass value" of the
center of gravity of the lowest energy states. The ratio
of the intravalley scattering time due to the core to
the intervalley scattering time is then

&intravalley-core
A 2

AiTinter vdlley

"W. Kohn, Solid-Stake Physics, edited by F. Seitz and D.
Turnbull (Academic Press Enc. , New York, 1957), Vol. 5, p. 257.

36 A may be determined either from purely optical data (Ref. 34)
or by using an optically determined 5 and a value for the ground-
state ionization energy determined from the temperature depend-
ence of Hall coefficient (Ref. 25). These two methods yield the
same results in the Sb case, but in the As case the purely optical
method yields a value of h. much larger than that given by the
other case. The latter A. is appropriate to our case, the large value
in the optical case presumably being due to the Franck-Condon
principle.

The value of d for Sb given by Reuszer and Fisher (Ref. 34),
d =0.08 meV does not agree with that of Fritzsche (Ref. 37)
6=0.14 meV. We chose to use the 0.08 value because it satisfies
the intervalley scattering-time data when used in the formula
Ti v Sb/Ti. v As=+As/+Sb ~.. .

'7 H. Fritzsche, Phys. Rev. 120, 1120 (1960).
'8 P. Csavinszky, J. Phys. Soc. Japan 16, 1865 (1961).
'ii T. Morimoto and K. Tani, J. Phys. Soc. Japan 17, 1121

(1962).

where the factor 3 comes from the fact that there are
three times the density of final states for intervalley
scattering than for intravalley scattering. Given the
measured" intervalley relaxation time and the matrix
elements"" ~ and h., we may calculate Tinterva11ey-core

The appropriate values are: for Sb, A.=0.7&2, 6=0.08
&0.01, and for As, h.=0.2+0.2, 6=1.06, in units
of meV.

Applying Eq. (2), we find that the intravalley scatter-
ing due to interactions with the impurity core may be
neglected for As doping by not for Sb doping. Starting
with the total relaxation time for Sb scatterers, remov-
ing the intravalley impurity core scattering, and adding
the intervalley scattering for As doping, we may predict
a resistivity ratio psb/pa, if we assume the relaxation
times add strictly as' r '=P, v—, ' At 10" and 10"
concentrations the values of psb/p~, thus calculated are
0.94 and 0.85, respectively, while the experimental
values are 0.68 and 0.57. %'e have shown, in qualitative
agreement with experiment, that intervalley scattering
increases the resistivity of As-doped material over that
doped with Sb and that the resistivity ratio increases as
doping increases from 10" to 10" dopants per cm'. A
more complete discussion should include the increase of
the mobility ratio psb/pa with increasing carrier
concentration due" to the change of the Thomas-Fermi
screening but our present knowledge does not warrant
this.

Morimoto and Tani" have proposed that the
interference of the strain scattering, due to impurities
having atomic radii different from those of the host
atoms, with the Coulomb scattering due to the screened
ionized impurities can explain the difference between
the resistivities of As- and Sb-doped germanium.

Applying their model to our case, we found that this
e8ect is negligible in degenerate semiconductors at low
temperatures.

B. Resistivity of Saturated Material: Dependence
on Carrier Concentration at 4,2'K

Since in the saturated case all carriers are in one
valley, for a given impurity concentration the degen-
eracy temperature is 4'~' times the value in the un-
strained case. It is, therefore, even more appropriate
to assume complete Fermi degeneracy at 4.2'K in
the saturated case.

As in the unstrained case, it is possible to calculate
resistivity according to the Brooks-Herring, Conwell-
%eisskopf, and Gulyaev models. The formulas for pa
and p~ derived from these models are given in Appendix
A; results are plotted in Figs. 4 and 5.

As in the case for unstrained material the Brooks-
Herring model predicts resistivities closer to the
measured values than those predicted by the other
models, however, the e dependence is more closely
given by the Gulyaev model.

Contrary to the four-valley case, we may no longer
use the intervalley scattering to explain the higher
resistivity in arsenic-doped material than in that doped
with antimony at a given carrier concentration. . In
fact, following the discussion of the previous section and
using the data of Mason and Bateman" and that of
Reuszer and Fisher'4 to compute intravalley scattering
due to that part of the core potential that causes inter-
valley scattering, one 6nds that in all cases the intra-
valley scattering time for arsenic is greater than for
antimony. This predicts a greater resistivity for the
antimony case in disagreement with the data. To explain
the greater resistivity in the arsenic-doped one-valley
material on an independent-scattering model, we may
only use the qualitative argument of Csavinszky" that
the deeper core potential in arsenic must somehow
yield a lower mobility.

C. Resistivity Dependence on Temperature

The temperature dependence of the resistivity of
unstrained material has been a subject of speculation
for some time. '""Though an increase in resistivity
due to enhanced lattice scattering for increasing
temperature is expected, this can account for but a
small part of the observed increment.

The contribution of lattice scattering in degenerate
materials may be determined from that in "pure"
materials as follows: The lattice scattering relaxation
time varies with the inverse of the square root of the
carrier energy4' which for pure material introduces a
factor of the gT into the denominator of the mobility.

~ T. N. Morgan, Bull. Am. Phys. Soc. S, 224 (1963).
D. Long, J. D. Zook, P. W. Chapman, and 0. N. Tufte,

Solid State Communications 2, 191 (1964).
~ Cf., Ref. 2, p. 146.
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TABLE VII. Values of the slope of the resistivity-versus-stress
curves in the range of linear behavior.

Antimony doping
Apl,

(10 4 cm'/kg)
Sample pX

Arsenic doping
b,pL,—(10 4 cm'/kg)

Sample pX

12-1
13—1
14-1
5 4
6-10

—8.6—6.3—3.0—2.4—1.5

15-1
10—3
3-4

11-5
8—5

—5.3—2.6—2.3—1.4—1.3

12-4
13—3
14—3
5—5
6-12

~p& Qo)—(10 4 cm'/kg)
px —6.6—5.9—2.5—1.6—1.3

7~
15-5
9-3

11—9
8—6

~P (110)
-(10 4 cm'/kg)

—6.1
47—2.1—1.6—0.8

This must be modified for degenerate material. So long
as the ambient temperature is small as compared to the
degeneracy temperature the carrier energy may be
taken as the Fermi energy. The above shows that

1tlatt. deg. (a XTl TD) platt. pure. ~ (3)

where

and
f(x) = ln(1+x) —x/(1+x)

The lattice mobility for pure material has been meas-
ured at low temperatures by many authors. Using the
data of Koenig et td." and Eq. (3), it is easily shown
that, in the first place, at liquid-helium temperature
the lattice scattering contribution to the resistivity is
less than 0.3% for all concentrations considered —hence
negligible, and secondly, at T=0.3 T~ the contribution
is less than 5% for even the worst case (highest doping)
and cannot account for the observed values of about
13 to 15% (Figs. 6 and 7).

Mansfield~ has derived the temperature dependence
of conductivity due to screened ionized impurity scatter-
ing in the case of a spherical effective mass m* to be

comes from the temperature dependence of the screening
length and the kT spread about the Fermi surface.
The four-valley nature of the germanium case can be
accounted for by dividing the x function by 4, but the
mass and scattering anisotropies are not easily in-
corporated into this model.

Using the density-of-states mass for the conduction
band of pure germanium, hp4(T)/p4(0) may be cal-
culated. The results of this calculation are given in
Table IX. It is seen that though for lower dopings the
temperature dependence of screened ionized impurity
scattering contributes significantly to the observed
increase in resistivity, it does not explain the large
effect in the more highly doped material.

It has been proposed by Morgan" that interband
carrier-carrier scattering is significant in degenerate
semiconductors and could account for the otherwise
unexpected large increase of resistivity with tempera-
ture at low temperatures. It is shown in Appendix B
that carrier-carrier interactions may be significant in
the four-valley case but they can have little or no effect
on the one-valley case. This is consistent with the
measurements as no increase of resistivity with tempera-
ture is ever measured in the one-valley case.

Koenig' has suggested a mechanism to give a positive
temperature coefFicient at low temperature due to
scattering by a dipole created by the inability of the
electron cloud to follow the thermal vibrations of the
ionized impurity. Though this mechanism yieMs the
appropriate temperature dependence in the four-valley
case it predicts similar behavior in the one-valley case;
this is not observed.

The data of Figs. 6 and 7 show a hump in the p4(T)
curves for the samples with lowest impurity concentra-
tions. None of the above-mentioned mechanisms predict
such a dependence. In Appendix A it is pointed out that
the method of calculating the total scattering cross
section depends significantly on the product ka, where
k is the carrier wave number and a is the screening
length of the scattering potential. If ka))1, the Born
approximation is valid and the Brooks-Herring and
Conwell-%'eisskopf treatments are appropriate within
the spirit of the independent particle approximation.
The Mansfield model discussed above is based on this

where q satisfies

t) (kT)"'eh

e'(2'*)'~ f,it'(t1a)
TABLE VIII. Change in resistivity in longitudinal samples in

various states of strain on application of a transverse magnetic
field.

(t1—3) exp(t1 —ga) = t1+3. Sample &/&"t I:~~(77)—w(0) j/pr, (0) IH 10 kQ

S is the concentration of scattering centers, e is the
dielectric constant, p* is the reduced Fermi energy and

ft and fi~t are Fermi integrals, defined in the usual
way. " The temperature dependence here calculated

~ R. Mansfield, Proc. Phys. Soc. (London) B69, 76 (1956).~ Cf., J. McDougall and E. C. Stoner, Phil. Trans. Roy. Soc.
A237i 67 (1938)

7-3
0.0
0.9
1.7

0.0
1.0

0.0
1.0

—0.001&0.003—0.007&0.003—0.011~0.003

0.000&0.003—0.006~0.003

—0.001~0.003—0.005a0.003
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TABLE IX. e4p4(T)/p4(0) calculated according
to Mansfield (Ref. 43).

1X10'&
5X 101&

10X101&

T=0.1TD

0.05
0.00
0.00

T=0.3TD

0.15
0.05
0.02

assumption. If ka((i the s-wave scattering cross section
is valid and the Gulyaev treatment is appropriate.
From Fig. 26 it is clear that neither extreme case is
strictly satisfied in the cases that concern us, however,
the lowest ku in the region of interest is for the four-
valley case of the samples with least impurity concentra-
trations. Using the s-wave scattering treatment of
Gulyaev, Long et al." have shown that a resonance
scattering mechanism is predicted that yields a hump
in the temperature dependence of the resistivity and to
that extent it is possible to interpret the measured
temperature dependence in the n = 1X10"/cm' samples
to be due to resonance scattering. )Note added in proof
The results of more accurate measurements of the T
dependence in unstrained samples and their implications
are discussed in a forthcoming communication by M.
J. Katz, S. H. Koenig, and A. A. Lopez. )

At stresses so high and temperatures so low that the
edge of the upper three valleys is more than a number of
kT above the Fermi level the conduction band of the
material can be considered to be a single valley because
no carriers will be in the higher valleys.

As shown in Appendix 8, electron-electron scattering
cannot affect the resistivity in this case. It remains to
examine the temperature dependence of resistivity
predicted by Mansfield's equation. Results of this
calculation of p(T)/p(0) are given in Table X, together
with the measured values. There is agreement in the
sense that the model predicts a reduction of resistivity
of some percent, monotonic over the temperature range
considered. On the other hand, the model predicts a
lower resistivity ratio for higher doping at a given
T/TD and, in fact, the data show the opposite. This is
because we have left out the eGect of lattice scattering.
At a given T/TD the material with higher TD will have
a larger contribution of lattice scattering which raises
the resistivity above that of the lower doped sample.
The lattice contribution may be calculated from the
data of Koenig et at."by using Eq. (3). This technique
gives very good results when comparing the pr(T) data
for 1)&10" and 3.34X10' Sb per cc, where such a
calculation predicts an increase of 1% in the resistivity
ratio for the more highly doped material at T=0.1T&.

To understand the p(T) behavior for a given sample
at various post saturation stresses we argue as follows:
the common curve for the higher stresses gives the true
p(T) behavior for the one-valley case. The lower stress
curves diverge from the one-valley curve when a
sufhcient number of carriers are excited into the upper

valleys; the lower the applied stress the lower the T//Tn
at which this e6ect begins to contribute. In the p3 case
the resistivity is being measured in the low mobility
direction of the lowest valley and exciting carriers to
the upper valleys allows a contribution from the higher
mobility directions and reduces the resistivity. In the p&

case the opposite is true and the resistivity is increased.
In analyzing the data of Figs. 13 and 14, we find that,

while the argument given above is qualitatively correct
using the mobility anisotropies determined from the
piezoresistance data, it is necessary that the mobilities
in the upper valleys be approximately the same as those
in the lowest valley. At low temperatures the kinetic
energy of the carriers in higher valleys is significantly
lower than that of those in the lowest valley and,
reasoning from Rutherford scattering, we might expect
them to have a lower mobility. On the other hand, the
number of carriers excited to the higher valleys is very
small so that the screening will still be determined by
the carriers in the lowest valley alone. In the case of
the low carrier energy this screening length will domin-
ate the scattering cross section (see Appendix B) and
consequently the mobilities in the upper valley will be
closer to those of the lowest valley than otherwise ex-
pected.

TABLE X.p (T)/p (0) in the one-valley case calculated according
to Mans6eld (Ref. 43) compared with measured values for
longitudinal samples.

Theory
T=0.1') T=0.3TD

Experiment
T=0.1') T=0.3')

1X101&

5X10'&
10X10'&

0.97
0.97
0.96

0.87
0.82
0.77

=0.93
=0.98

&0.8
=0.88

5 C. S. Smith, Phys. Rev. 94, 42 (1954).
4' Cf., R. W. Keyes in Ref. 35, Vol. II, p. 149 (1960).

D. Piezoresistance Experiments

(a) Initial Stress Dependence

The results of the various piezoresistance experiments
described in Sec. III. E, F, and 6 can be understood
qualitatively in terms of the piezoresistance tensor4' and
the deformation potential model. 4' Following Smith's4'

notation it is easily shown that application of a small
stress X in a (111)direction in a cubic crystal results in
a linear change in the resistivity parallel to that direc-
tion given by

8pL/pX= -', LIItr+211gs+ 211 j,
where pz, corresponds to the resistivity measured in our
longitudinal samples and II;; are the components of the
piezoresistance tensor. Similarly it may be shown that

bpr/pX = —'LIItt+ 211ts 11447.

For the stress applied in a (110) direction the approp-
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riate relation is 0.0

7)p(1IO)/pX [1111+1112+1144]~ (6)

The above depends on cubic symmetry only and. is true
for any cubic crystal.

To calculate values for the piezoresistance tensor
components and thereby to predict the results of
resistivity measurements, it is necessary to assume a
model for the band structure of the material in question
and its transport properties which includes the aRects
of strain.

Since the material in question is heavily doped e-type
we need only concern ourselves with the nature of the
conduction band; In the pure material the conduction
band edge is well known. ' Ke will take as our model for
the conduction band of degenerate germanium the set
of four valleys appropriate to the pure material with
the density of states determined by the pure material
eRective mass. This model has a sharp conduction band
edge. We expect to detect any deviation from this model,
e.g., tailing of the band edge, from our experiments.

As we have seen above and in Appendices A and 8,
any even fairly reasonable picture of the scattering
mechanism in degenerate material must depend on the
screening length and be a complicated function of the
carrier energy. Transport equations are further com-
plicated by the anisotropic mass tensor of the germa-
nium valleys. In order to simplify the model for the
transport mechanism we will let the mobility tensor
components for a given valley, p, » along its axis of rota-
tion and p~ perpendicular to it, be independent of
energy. (The symmetry of the crystal demands that the
mobility tensor be an ellipsoid of revolution. ) Compar-
ing Figs. 4 and 5, we see that all of the models dis-
cussed would predict p~& p&t.

To describe the affect of strain on the conduction
band we will use the deformation potential model and
assume that valley motion due to strain is the same as
that in the pure case. For a compressional stress X
applied in a (111)direction the valley associated with
that direction moves down in energy while the other
three move up together. The energy split between the
edge of the lowest valley and that of the other three is
given by4'

~(111) (4/9) (~u/+44)X(111) y (7)

where C44 is an elastic stiffness constant, ™the deforma-
tion potential is positive and AE is positive for compres-
sional (negative) X.

For the case of stress applied in a (110) direction two
valleys are raised and two lowered and the energy split
between the respective band edges is easily calculated
to be

++(1to) s (Zen/C44)X(110) ~

"Equation (7) may be derived from Rei. 18, Eq. (C6). Details
of the derivation are given in Ref. 17.

'o -5o

J

~00 I I I I I I I I I I I I I I

0 50 100 l50
Ef (ev ')

FIG. 28.Dps/pX versus reciprocal Fermi energy, in the linear range.

In the case of stress applied in a (100) direction the
deformation potential model yields no separation of
valleys, the motion being the same for all four. There-
fore, as far as our model is concerned their will be no
change in resistivity for such an applied stress. Smith4'
in his contact arrangements A and 8 has shown that
piezoresistance components II11and II12 are proportional
to changes in resistivity components due to an applied
stress in the (100) direction, therefore, for our model
we may conclude that

II11 +12

and that Eqs. (4), (5), and (6) reduce to

5pI/pX= ssII44,

&p(rro)/pX= II44/2.

Therefore, we predict that

~P(110& ~PI
=0.75.

pX pX

Comparing the longitudinal and (110) data of Table
VII, we 6nd experimental values of the ratio to be
between 0.65 and 0.85, in agreement with the model to
within the experimental error. Though the magnitude
of the piezoresistance in the transverse case could not
be accurately measured it is opposite in sign to the
others and extrapolation of the pz data shows it to
agree with the model to within a factor of 2.

Application of stress and the consequent shifting of
valleys causes a change in the resistivity for two reasons.
The redistribution of electrons from higher to lower
valleys changes their eRective mobility because the
mobility (1) is anisotropic and (2) depends on carrier
velocity in general. If we assume the mobility anisotropy
E=p&/p» to be constant and the intrinsic velocity
dependence to vary a,s s~ [see Eq. (1)j the model yields

8P (111) E—1
(/+3)

pX 9 c44Zg 2/+1
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1 3(2+E)
~H

ne (1+2E)'
(12a)

in agreement with Herring's" formula. In the saturated
conditions nz= n, nzz

——0 and Eq. (11) reduces to

Rzz ——1/ne (12b)

as discussed in Sec. III A. For a compressional stress in
the (111) direction nz increases and nzr decreases
(their sum remaining constant) such that for typical
values of E, E~ shows an initial decrease for slight
population shifts, in agreement with the data in Figs.
16 and 21.

(b) High Stress Depende-noe of Resistiz/ity in
Antimony Doped Sanzples-

If we attempt to evaluate the high-stress data in
terms of the model that includes only the velocity
dependence of the mobility (and neglects intervalley
scattering) we predict a final resistivity ratio of

[(2E+1)/3]4—~/s (13)

in the longitudinal case. If we use this expression to
determine E from the data, we get values of 20—30—
much larger than those determined by the more
accurate methods used below. Though the model

' H. Fritzsche, Phys. Rev. 115, 336 (1959).
4'R. Ito, H. Kawamura, and M. Fukai, Phys. Letters 13, 26

(1964).
~ J. J. Hall, Phys. Rev. 137, A960 (1965).

for degenerate statistics. Ef is the Fermi level in the
four-valley case. For Jwe will take the value determined
from Eq. (1) for the four-valley case, viz. , J=2.7.
Values" ""for „reported in the literature vary from
=16 to =20 eV.

Plotting Apr/pX versus Ey '(see—Fig. 28) and measur-
ing the slope we calculate values for E between 3.2 and
18 because of the large uncertainty of „and the strong
dependence of E on the slope. If we choose the higher
value of ™,we get E in the range 3 2 to 4 9. In any
event, the initial independence of p on stress is of proper
sign and reasonable magnitude in all three types of
piezoresistance experiments.

The initial stress dependence of the Hall coefFicient is
similarly explained. Using the same model but neglect-
ing the explicit energy dependence of mobility we get
the following formula for the Hall coefficient:

1 E[nr+nrz (5/9+4E/9) g
+II

e [nr+nzz (1/9+ SE/9) j[nzE+nrr (5E/9+4/9) j
(11)

where ez is the carrier concentration in the lowest valley
and ezra is the total carrier concentration in the three
upper valleys. In the unstrained case e~ ——4e, e~~= ~as,

and Eq. (11) reduces to

4-
O
x3-
LLj

CI
~2-

(a) Model
(b) I3-l
(c) 5-4
(d) 6-IO

= 4.2
(b)

(a)

(c)f" (d)

O.l I 02 , .4,.6,.8 ll

hE/Ef
,4,6,8

Fro. 29. Calculated resistivity ratio versus energy splitting
/curve (a)j together with data shifted horizontally to show the
at to Eq. (14) (cf., associated discussion).

including J is satisfactory, in fact necessary, in explain-

ing the linear piezoresistance data it would appear to
be inappropriate to the present case. In the case of
linear piezoresistance small changes in the energy of
some carriers are involved and signihcant changes of
the screening length are not anticipated. Under such
conditions we must use the J dependence. In the case
of high stress and large population shifts between
valleys, the carrier energy and screening length change
drastically thereby changing the scattering picture in
a complicated way (see the discussion below). Under
these conditions the model must be augmented to
include the dependence of the screening length on the
relative valley populations, the effect of which tends to
nullify the effect of including J.

Empirically, we have found it a better approximation
to take a constant E and energy independent mobilities
although even this model needs modi6cation in the pz

and p(pro) cases. Using the model of constant E, and
energy-independent mobilities, and still neglecting
intervalley scattering, we derive the equation

pr, (X) 2E+1—
nrr (X) &

-(E—1)
3 n 9p(o)

(14)

for the longitudinal case, where nrr/n is the fraction of
carriers remaining in the upper valleys. The parabolicity
of the density of states curve requires that nzz/n satisfy

( nzz) s/s (nzz) s/s

E3&
(15)

where Ey is the Fermi level for unstrained material and
DE the energy splitting between the lowest and upper
three valleys is given by Eq. (7).

If Eq. (14) is plotted versus AE, i.e., linear with
stress, for various values of E it turns out that except
for the fact that curves for lower values of E cut off, i.e.,
saturate, at lower 6nal resistivity ratios, all such curves
have the sam. e shape and may be brought into con-
gruence by adjusting the scale AE. The "shape" of
these curves is independent of E and determined by
the parabolicity of the density of states. In Fig. 29 we
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TABLE XI. The mobility anisotropy as determined from
longitudinal- and transverse-resistivity measurements on one-
valley antimony-doped samples.

n(10" cm ')

1.10
1.36
3.54
5.15
9.14

pc(sat)

pr(sat)

5.5a0.2
4.9a0.2
4.6a0.2
3.6~0.2
3.8&0.2

E= pr, (sat)/pr (sat) . (16)

The results, given in Table XI, show that E decreases
from 5.5 at 1.1X10'8 to 3.8 at 9.1X10" carriers per
cm'. The modified Gulyaev model described in Appen-
dix A gives values of pI, (sat)/pr(sat) decreasing from
7.9 at 1X10"to 3.4 at 10X10" The modified Brooks-
Herring treatment yields pr, (sat)/pr (sat) values decreas-
ing by a factor of 4 over this range but the values
are about an order of magnitude higher than those
measured.

If we want to modify our model to include the
mobility dependence on energy and screening length,
we use the two equations in Appendix B. For example,
if we use the values of Fig. 25 in Eq. (B1) and then
calculate the mobility anisotropy from the pr, (sat)/p(0)
data we find E=2.4 for e=1X10"cm '. Recalling the
values obtained when the J dependence alone was
included (20-30) we find that including the screening

plot pr/p(0) versus hE/Er for several antimony-doped
samples. The abscissas are shifted to coincide with the
plot of Eq. (14) for E=7. Good agreement is evident
at low strain and is maintained until deviations from
parabolicity and inhomogeneity of the sample begin
to affect the shape of the curve.

Equation (14) predicts a final resistivity ratio of
(2E+1)/3. Using this formula to calculate E from the
antimony data we find E varies monotonically from
8.5 at 1.1X10" carriers per cm' to 5.2 at 8.5X10'
For the arsenic-doped material E is in the range 9.5 at
1.2X 10' to 7.5 at, 6.5X 1Pis There is no correction for
intervalley scattering in the antimony case; for the
arsenic case, the E values would be increased 15%.

The above determination of the mobility anisotropy
is highly approximate in that it makes no allowance for
the change of mobility with carrier energy or scatterer
screening length. To obtain the best value of E for
screened ionized impurity scattering, we should simply
compare pr, (sat) and pr(sat) for antimony-doped
material. In the saturated condition, where neither
electron-electron nor intervalley scattering can con-
tribute, the mobility components may be measured
individually and at comparable Fermi levels. Inter-
polating the pr(sat) data to Fermi levels appropriate to
the pr, (sat) data we find E from

effect may reduce the anisotropy by a factor of 10.
The true value, from pr, (sat)/pr(sat), is found to be in
between the extreme cases.

An equation for pr(X)/p(0) may be derived for our
model along the lines of Eq. (14). This treatment
predicts a final resistivity ratio of (2E+1)/3E which
for any reasonable E is less than 1, a condition not
satisfied by the data for antimony-doped material.
The reason for this is that as stated above the energy
and screening length dependence must be included.
When this is done the measured final transverse resis-
tivity ratios are consistent with the other data.

The simple model predicts a final resistivity ratio
of (2E+1)/(2+E) for the (110) data. As in the
longitudinal case the measured final resistivity ratio is
higher, by a similar amount, because of the energy
and screening length dependence of the scattering
mechanism.

The Hall coeKcient measurements also yield a value
for E calculated from the ratio of Kq. (12a) to Eq.
(12b). The value for E thus obtained from the data for
antimony-doped material is 5&1 the large error due to
the weak dependence of Eq. (12a) on E and the poor
accuracy of the Hall coeKcient measurements.

(c) Energy Shift AE and Saturation

Using Eq. (7) and the parabolic density-of-states
model it is possible to predict a value for saturation
stress depending on ™„.The positions of all but the
lowest experimental saturation stresses for antimony-
doped samples lie at points between those predicted by
the highest and lowest „values reported and no conclu-
sion can be drawn except that at low dopings the
conduction-band edge is probably less sharp than in
more heavily doped material.

The arsenic-doped material, on the other hand,
shows a late saturation for all concentrations and
agrees with the lightest doped antimony sample. It
appears as if a „of 15 eV or less were appropriate
in the arsenic case.

(d) High Stress Dependenc-e of Resistivity in
Arsenic Doped Samples-

In all resistivity versus stress data taken for arsenic-
doped samples a peak in the resistivity occurred. In the
longitudinal case the peak was about 20% higher than
the final resistivity and occurred at a stress about 20%
less than the saturation stress. In the transverse case
the peak was 5—10% higher than the final value. In
addition, the longitudinal resistivity did not cease
changing at X„~but continued decreasing for stresses
up to 2 and 3 times the saturation value. Since inter-
valley scattering is very large in arsenic-doped material
we qualitatively interpret the peaking effect as follows:
Throughout the resistivity-versus-stress curve the
intervalley scattering contributes significag. tly to the
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resistivity. A maximum in the resistivity will occur at a
stress near but below saturation when the increase in
resistivity due to transfer of carriers to the lowest val-
ley becomes less important than the decrease in the
density of 6nal states in the upper three valleys to
which carriers may be scattered by the intervalley
scattering mechanism. When saturation is reached the
upper three valleys are depopulated and the Hall
coefficient stops changing. If there are states below the
conduction band edge" that are accessible to intervalley
scattering but which may not be sufFiciently occupied
so that raising them above the Fermi level does not
change the Hall coeS.cient, then the resistivity will

continue to decrease at stresses above X„&, until no
more such "tail" states are available. The length of the
tail below the conduction band edge as determined by
Xf' f is from 0.03 to 0.04 eV.

The existence of states that may be available for
intervalley scattering though not contribute to the Hall
effect may be understood by considering the case of the
lattice with one donor. The donor introduces an
available state under each of the conduction band
valleys, however, if one of those states is occupied the
others may not be, i.e., the possibility of occupying a
given state depends on the occupancy of other states.
Realizing that many of the states in the lowest valley
are impurity type states it is felt reasonable that
occupancy of tail states under the three upper valleys
may be contingent on the occupancy of states in the
lowest valley though they are still available for inter-
valley scattering from the lowest valley states. A more
precise argument is not available at present.

Small peaks, are also discernable in the longitudinal
data for antimony-doped material, ranging from a peak
value 1.7% above pfjngf for sample 14—1 to peaks on
the order of tenths of a percent in other samples. (This
is a real effect. The correction due to geometrical strain
effects has the opposite sign. ) If we consider the
additional scattering in the peak over the final resistivity
value to be indicative of the strength of intervalley
scattering then the ratio of intervalley scattering in our
arsenic and antimony samples is of the same order of
magnitude as that measured by Mason and Bateman.

V. SUMMARY

We have shown that independent scatterer models
are useful in interpreting the carrier concentration
dependence of resistivity in heavily doped e-type
germanium even though the assumption of independent
scatterers is not appropriate. Electron-electron scatter-
ing and the temperature dependence of screening length
both contribute to the temperature dependence of
resistivity in unstrained material. In the saturated
case electron-electron scattering does not affect the
resistivity.

The results of all the piezoresistance experiments are
qualititively understood in terms of a simple aniso-
tropic scattering model, provided that the energy
dependence of mobility and the variati orl, of the screening
are taken into account. A large effect due to intervalley
scattering was found in arsenic-doped samples. The
initial stress dependence of the various piezoresistance
experiments may be understood in terms of the piezo-
resistance tensor and deformation potential models.

The mobility anisotropy for scattering in one-valley
antimony-doped germanium has been measured and
found to vary from 5.5 at 10"to 3.8 at 10"carriers per
cm'. A tailing of the band edge that extends on the
order of 0.03 to 0.04 eV into the forbidden energy gap
has been found for dopings in the range 10" to 10"
per cm'.
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APPENDIX A

(e) Mageetoresistaece

The negative magnetoresistance in the one-valley
case cannot be explained by conventional transport
theory. Negative magnetoresistance has also been
measured in unstrained material" but no satisfactory
explanation has been given. Our results indicate that the
negative magnetoresistance coeKcient is from 5 to 10
times larger in the one-valley case than in the unstrained
material.

"Cf., M. Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958);
Cf., also Ref. 4.

Calculation of the Relaxation Time Tensor for
Ellipsoidal Energy Surfaces

The usual discussions of the scattering problem"
assume spherical energy surfaces at the very outset.
For the case of a tensor mass, the wave equation,
choosing the Cartesian coordinates in the characteristic
directions of the mass tensor, is

8%' A'( 1 8' 1 8' 1 8'
ih =——

~

— +— +— 0+V(r, t)% .
8$ 2 4@1~g2 y~2 ~ym yea asm

"Cf., L. I. SchiG, QNantlm 3fechanics (McGraw-Hill Book
company, Inc. , New Pork, 1955},2nd ed. chaps, V and VII.
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Using the usual de6nition of the probability current respectively. It is easily shown that
density S,"

cos8
8

8t y

it is easy to show that in the anisotropic case

where the operator 0 has components

(Ala)

p'= y and cos8'=
(mg/mz)sin'8+cos'8

The scattering amplitude f(8', q') is to be determined
from the nature of the scattering center as it appears in
transformed system.

To find the scattering cross section we must erst
calculate the radial current in the unprimed coordinates.
This is done by taking

Sradia =S~'+So'+S,',
8

mi BXi
(A1b)

where Xi=z, y, s for i = 1, 2, 3.
Our aim is to compute the scattering cross section

appropriate to the anisotropic case. Since we are
interested in energy surfaces that are ellipsoids of
revolution (appropriate to the band structure of Ge)
we need only consider incoming waves in the transverse
(x or y) directions or longitudinal (s) direction to get
the entire conductivity tensor. Consider an incoming
plane wave in the s direction:

ikzzeZ, iR

where E=6'k, z/2m, is the energy of the particle. The
incoming current, in the s direction is by Eq. (A1)

S,= lzk, /m, = (2E/m, )'". (A2)

In calculating the scattered Aux an outgoing spherical
wave of the form

where the S,, are found by applying (A1) to (A4).
Results, for real scattering amplitudes or for the s-wave
scattering amplitude, which are the only ones we need
consider, are best expressed in the form

This expression together with (A2) yields a differential
cross section of

do = (mz/md)
~
f(8', y')

~
'(r'/r")dQ. (A5)

To obtain the scattering cross section appropriate for
transport (AS) must be multiplied by a factor'4

1—cos8sca,g &

where 8„,~ is the angle between the incoming and
scattered waves, and integrated over the surface of the
unit sphere. For an incoming wave in the longitudinal
direction cos8„,&——cos8. For the transverse direction
cos8„,&=sin8cosy. For an incoming wave in the ith
direction the scattering cross section is then given by

0- «=f(8, ~)(o'""/r)
(1—cos8„,&)do.. (A6)

is normally assumed, but this may be done only where
the energy surfaces are spherical. Ke may, however,
transform to a primed coordinate space in which the
energy surfaces are spherical by the transformation

x,'= (m;/m, )x;; (A3)

and 8' and q' are the inclination and azimuthal,

"Cf., Ref. 52, p. 23.

the kinetic energy operator in primed space becomes

—(k'/2m&) (V') &

and has spherical symmetry. Here md= (mzm2mz)'~' is
the usual density-of-states mass.

The scattered wave in primed space may then be
written

0-. =f(8', ~')(o'" "/ '),
where

)2I,B)"'k'=
i

p; '= rze'r;(Eg)/m;, —
(AS)

where e now refers to the carrier density which we
assume to equal the number density of scatterers, and
e is the electronic charge. For the case of unstrained
germanium the cubic symmetry yields a total resis-
tivity" of

'4 Cf., Ref. 2, p. 95."Cf., Ref. 2, p. 99.

tN f rz
I2—+-

35m, m,
(AO)

The relaxation time in the ith direction r, is found
from the formula

r;= 1/zzn, o.;,
where v; is the velocity of the incoming particle in the
ith direction and cr; is the corresponding scattering
cross section. e is the number density of scatterers.
Since the r's that interest us will be functions of E only,
the resistivity, for the case T=0 will be given by
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For the one-valley case the longitudinal resistivity is

p3 o=27.4(1+cot'80(1))X '~' mQ cm (A13)

and the transverse resistivity is

pg o=1.39(1+cot'80(1))X '"mQ cm,
V(r) =—(e'/er)e-"'~, (A10) wher

The relaxation time components depend, in general, on
the nature of the scattering potential and the approx-
imation made in determining the scattering amplitude
from the potential. In the Brooks-Herring and Gulyaev
treatment of impurity scattering the screened Coulomb
potential is used, i.e.,

where E. is the Fermi-Thomas screening length cal-
culated by Dingle. ' If we use the density-of-states mass
appropriate to germanium and include the number of
valleys t, we 6nd that at T'=0

&=7.8X10-'e"'E '"t '" cm

where E is in units of 10"/cm'. In the Conwell-Weiss-
kopf case, the unscreened Coulomb potential is used.

Case I:ha&(l Gulyaev Treatment of Ionized
Impurity Scattering

In this case, we would like to make a partial-wave
expansion and neglect all but the zeroth-order phase
shift. " However, the partial-wave expansion is only
appropriate where the scattering potential has spherical
symmetry and the V(r) given by (A10) does not have
spherical symmetry in the primed system. This de.culty
is avoided by taking a spherical potential as outlined
in the text. S-wave scattering yields

) f(8', q&')
~

'= sin'80/k" (A11)

where sin'50 may be determined from Gulyaev's
formula (3.2). Applying (A5)—(A9) to the unstrained
case yields

cot80(1)= 2.18)(10-'X' 'e'+7 45)(10 E' 3c

+1.21)&10 'X' 'e'2 —2.071V ' 'D ' '+0.638.

Case 2: Aa))l The Brooks-Herring Treatment
of Ionized Impurity Scattering

Following the Brooks-Herring formulation, we use
the Born approximation to calculate the scattering
amplitude for the screened Coulomb potential. Applying
Merzbacher's" formula (12.36) to the screened Coulomb
potential in the primed coordinates yields

2tplg( e ) 1
(A14)

e J L2k" (1—cos8„„)+R—'j
where R is the Fermi-Thomas screening length. Follow-
ing (A5)—(A9) yields

39.36- '
p4 nH= 338 5 + S'I'e mQ cm (A15)

J3' Jg4

for the unstrained case; the longitudinal and transverse
resistivities for the one-valley case are given by

where
p4 o=3.24(1+cot'80(4))X 't' mQ cm, (A12)

and
p3 pH ——]79.fJ3~g~/~g —2 mQ cm

(A16)
pygH9$0J]g

cot80(4) = 2.16&(10 'E'~'c'+4. 70&& 10 '1P~'e

+4.80&& 10—'E"V~'—5.12'—'~'e 'h+2. 55. respectively, where

(1—cos8) sin8d8dy(0. 0813 sin'8+1.60 cos'8) 'I'

4~ L(E/t)'~ '{1—cos8/(0. 0508 sin'8+ cos'8) 'I'}+8.558 (t't 'E'I '/e) g'

(1—sin, 8 cosy&) sin8d8dy(0. 0813 sin'8+1.60 cos'8) 31'

L (S/t)'I'{ 1—sin8 cos y/(sin28+ 19.68 cos'8) '~'}+8.558 (t I'1V'I'/e) ]'

(A17)

Case 3:Convrell-Weisskopf Treatment of Ionized
Impurity Scattering

In this case the Rutherford scattering cross section
is assumed, i.e.,

2e ) (8„ g

i
f(8', q') ['=4

i
csc4i

eZ) k 2

where for an incoming particle in the longitudinal

"Cf., Ref. 52, p. 106.

direction cos8„,&'=cos8' and for a transverse direction
cos8„,~'= sin8' cosy'. In addition, small-angle scattering
is excluded from the integral (A6), i.e., the scattering
of incoming particles whose impact parameter is larger
than one half the interimpurity distance is neglected.
The results are the same L(A15) and (A16)$ as the
Brooks-Herring treatment except for a change in

the integrals J~' and Js'. In the Conwell-Keisskopf

57 K. Merzbacher, Quantum 31echunics (john Wiley 8z Sons
Inc. , ¹wYork, 1961), p. 227.
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approximation length is down by a factor of 4"'. The E' term then
becomes the important one and a negative temperature
coefficient results.

and

APPENDIX 0
2(1—cos8) sin8(0. 0813 sin'8+1. 60 cos'8) '/'

X The Fermi distribution function for an isolated
I (1V/t)'/'{1 —cos8/(0. 0508sin'8+cos'8)i/')j' system conserving energy and momentum may be

written"

min (tt)

// e p'p e/r

f(e)=i e +1
ZT

(Ci)

APPENDIX 3
The Mansfield model predicts a decreasing resistivity

in the one-valley case (Table X) and an increasing
resistivity is anticipated in the four-valley case (Table
IX). This can be understood as follows:

The differential scattering cross section for a screened
Coulomb potential is proportional to"

(1/(It'+o '))', (81)
where E' is proportional to the energy of the carrier
and g is the screening length. For an increase in temper-
ature from O'K the average carrier energy increases,
thereby decreasing the scattering cross section and
resistivity. The square of the inverse screening length,
on the other hand, is given by"

1 Ã6'e'(2m )eP/'(kT)'/'
8 fi/p'(it*) (82)

and decreases for an increase in temperature from O'K
and tends to increase the resistivity. (The number of
valleys t is not found in the original expression. ) The
relative sizes of E' and u ' in the four-valley case for the
impurity concentrations under consideration are such
that the temperature dependence of the inverse screen-
ing length dominates the affect and the temperature
coefFicient of resistivity is positive. In the one-valley
case, however, the average carrier energy is 4' ' times
greater than for the corresponding doping in the four-
valley case and the square of the inverse screening

"Cf., Ref. 52, p. 170.

2(1—sin8 cos&p) sin8(0. 0813 sin'8+1. 60 cos'8) P/'

X
P(X/t) '/'{ 1—sin8 cos q /(sin'8+ 19.68 cos'8) '/') ]'

where
cos0;„ t2/3

=cos 2 arctan 8.67
L0.0508 sin'8;„+cos'8;„)

alld
(sin'8+ 19.68 cos'8) '/'

pp;„(8)=arc cos
sino

t2/8

Xcos 2 arctan 8.67
Ei/'el

where e and p are the carrier energy and momentum,
respectively, and ep, the Fermi energy, and p are
constants. In the case of small I//, i.e., )ti~&&~ pp~,
Eq. (Ci) may be written

f(e) =fo(e) —
V p(Bfp/Be), (C2)

where fp(e) = {expL(e—ep)/kTj+1) 'is the usual Fermi
distribution function. Using Eq. (C2) itis easy to show
that the vector p corresponds to the drift velocity of
the system in equilibrium.

Now consider the electron gas under the influence of
a small external electric field E and a dissipative scatter-
ing mechanism described by a relaxation time v-. In the
usual relaxation time approximation the distribution
function for the system is

f(e) = fp(e) reE —(V~e) (Bfp/Be)

and for the case of one-valley germanium

(C3)

V,e= P, (P;/m;) i;, (C4)

where the Cartesian basis vectors z; are chosen along
the principal axes of the valley. This yields

f(e) = fp(e) —0 y(Bfp/Be),

where the components of 0 are given by

0,=erE;/m, . (C6)

5'This may be shown using the methods of D. ter Haar,
Elements of Statistical Mechanics (Rinehart and Company, Inc. ,
New York, 1954), Chap. 4.

Comparing with Eq. (C2) we see that the distribution
(C5) is an equilibrium distribution of the system, with
drift velocity 0, and consequently will not be relaxed
by interactions between the electrons. Therefore,
electron-electron interactions cannot contribute to the
resistivity in the one-valley case.

In the four-valley case the valley geometry changes
Eq. (C4) and consequently, the simple form of (C5) is
destroyed. The resulting distribution is not an equili-
brium distribution if electron-electron interaction are
allowed and the resistivity is affected.

It remains to be remarked that any anisotropy in 7-

will have the symmetry of the valley and is easily
accounted for in Eq. (C6). Also, under typical exper-
imental conditions p ~

= 10 cm/sec and
~
p~

~
)10'

cm/sec so that ~ti ~&& pp
~

is indeed satisfied.


