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tion of the validity of our suggestion on uniform
m.agnetization in relaxation. This means that our results
are valid up to temperatures of T&)Tc(tsM/kTo) t~.

%hen Tg 10' 'K, 3I 10'; this would mean that
T))To/100. The results on correlation times in. a
ferromagnetic spin system, as obtained in experiments
on inelastic magnetic scattering of neutrons, "also are in
favor of uniform distribution, Eq. (6), at T(Tc.

Uniform precession of the 3f vector in ferromagnets is
known to be related also to the alternating-field value.
H. Suhl has shown that instabilities tending to disturb
uniform precession' will arise in a spin system at high
values of the alternating field. This effect, treated by

Suhl on the basis of the phenomenological spin-wave
theory, is due to transfer of energy from uniform to
some other type of precession, resulting in an increase in
the latter's amplitude and disturbance of the magneti-
zation uniformity. The effect appears to be unimportant
when the alternating-6eld amplitude is lower than a
certain critical value. According to Suhl the critical
value of this Geld is about 10% of the linewidth, i.e.,
considerably higher than the alternating-field values
used in experiments other than those investigating the
above-mentioned instabilities. This means that our
results will be valid until the alternating-field amplitude
is below the critical value.
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The electronic structure of the 3d band in Fe is calculated in the tight-binding approximation; the energy
values in the Brillouin zone and the density-of-states curve are evaluated. A comparison with other theo-
retical results suggests that the approximations and hypotheses used do not influence the results markedly;
a comparison with the results previously obtained with the same method for Cr does not support the rigid-
band hypothesis. The spin-orbit interaction matrix is reported for a general direction of magnetization,
and the e6ect of spin-orbit coupling on the structure of bcc transition metals is investigated.

1. INTRODUCTION
' "N previous research" the electron energy was calcu-
& ~ lated for Cr as a function of the wave vector k; the
density-of-states curve g(E) and the Fermi surface were
consequently determined. As part of a systematic
investigation on the electronic structure of bcc transi-
tion metals, the present paper is concerned with Fe.

The previous calculations were made with the tight-
binding method for two different orders of approxima-
tion: (AI), in which only the nearest-neighbor interac-
tion was taken into account; and (AII), in which the
second-neighbor interaction was added and proved to
be not negligible, and was such as to remove some
accidental degeneracies present in the erst case.

Calculations of this kind are quite sensitive to the
chosen assumptions and approximations; it is therefore
useful to compare both results obtained with the same

method for different materials and results obtained for
the same metal but with different assumptions and
approximations.

Concerning the first kind of comparison, results were
reported by Mattheiss'. It can be seen that the energy
curves along A line in the k space have a quite similar
behavior for metals with the same lattice, which sup-
ports the rigid-band model, but the results are not com-
plete enough to draw precise conclusions.

In the present work we have calculated, with the
same method (AII) previously applied to Cr, the be-
havior of E(k) and g(E) for Fe, for which a comparison
with other calculations' — is also possible.

Subsequently, some results have been obtained by
introducing into the Hamiltonian a spin-orbit interac-
tion term which is responsible for the anisotropic be-
havior of the magnetic energy of I'e. Such a term is

~ Present address: Institut fur Theoretische und Angewandte
Physik der Technischen Hochschule, Stuttgart, Germany.' M. Asdente and J. Friedel, Phys. Rev. 124, 384 ('1961); ibid.
126, 2262{K) (1961).

2 M. Asdente, Phys. Rev. 127, 1949 (1962).

' L. F. Mattheiss, Phys. Rev. 134, A970 (1964).' J. H. Wood, Phys. Rev. 117, 714 (1960).' E. F. Belding, Phil. Mag. 4, 1145 (1959).
J. Callaway, Phys. Rev. 99, 500 (1955).

7 F. Stern, Phys. Rev. 116, 1399 (1959).
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probably more important for the elements of the II
and III series if the less conspicuous magnetic charac-
teristics of these elements as well as other differences
are to be ascribed to spin-orbit interaction, for instance,
diGerences in the de Haas —van Alphen effect.

2. METHOD OF CALCULATION

Let us briefly summarize the most important as-
sumptions and approximations:

(1) The s and d electrons are treated separately. The
s electrons are considered free, while for the d electrons
the energy matrix is written in the tight-binding ap-
proximation. As already pointed out by Mott, this
approach is particularly useful for treating the ferro-
magnetic state, because it allows one to ascribe a dif-
ferent exchange energy to the s and d electrons. After-
wards, the hybridization can be carried out separately
for the two bands with opposite spin.

(2) A 3d' 4s configuration is assumed, as suggested
by Stern's calculations on the cohesion energy7 and by
the behavior of some physical properties of iron metal
and its alloys. ' '

(3) The effect of the exchange interaction is treated
in the usual approximation as an additional energy ~6,
the sign depending on the spin orientation of the single
electron. In other words the eigenfunctions were sup-
posed to remain unchanged and the off-diagonal ele-
ments of the exchange-interaction operator to be
negligible.

(4) A set of Bloch functions @„has been constructed
from the 10 normalized functions f„belonging to the
tenfold-degenerate d level of the single atom:

fp, . (1/1Vi)yzf——(r)n,

f4, -= (1/&p) (~'—X')f(r)~,

(5) The lattice potential V(r) has been constructed
from a set of atomic potentials. Around each lattice
position E~ it was taken that

V(r) =5 3L(1/Ir —R~l) —(1/(d/2))j «r Ir—R~l ~ &/2'

V(1') =0,

It was further assumed. that

V(r) —Vp ——0,

for
l
r—R ( l

)(g/2.

for lrl &-',d;

V(r)—Vp ——V(r), for
l
rl )-,'d,

d being the nea, rest-neighbor distance, Vo the potential
of the atom at the origin, and the coefficient 5.3 the
eBective nuclear charge obtained from Slater's rule. "

where the indices e and m range from 1 to 5, as there is
no dependence on the index a of the spin eigenfunction.

E{K)
ll

"iz
0.2

3. ENERGY MATRIX

A. SIIin-Indejpendent Terms

The Hamiltonian for the single electron takes the form

B= (p'/2m)+pi V(r—R)).

Using Ritz s variational principle and the tight-binding
approximation, we obtain the following secular equation:

l
II„„(k)—E(k)b„„l=0,

C, (r,k) = 1V '"P i exp (ik Ri)f, (r—Ri),
v=1, 2, 3, 4, 5,

where n is the spin eigenfunction, k is the wave vector
and Ri the distance between the origin and the atom
position characterized by the index l. A suitable linear
combination of the above Bloch functions has been
taken for the wave function of the d electrons in the
crystal:

O„(r,k) = Q A„„(k)C„„(k).

Kx

Assuming that the overlapping of functions centered
on different atoms is negligible, and choosing E equal
to the total number of atoms, we find the functions (1)
are orthogonal and normalized.

8 N. F. Mott, Advan. Phys. 13, 325 {1964).
L. R. Walker, K. G. Wertheim, and V. Jaccarino, Phys. Rev.

Letters 6, 236 (1961).

FiG. 1. Energy bands E{k) along the I'II line. &Energy
in atomic units {a.u.).

' J. C. Slater, Phys. Rev. 36, 57 (1930).
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TABLE I. Terms of the energy matrix and overlap integrals for
Fe. R2(u, 0,0), E2*(0,0,u), where u is the lattice spacing.

Hll =Al+SB1 cosyk~u cos2k27u cos2kzu
+2D~(cosk u+cosk„u)+2Ds cosk, a

H22=A j+8By COS~2k, u COS-,'k~u COS-,'kzu
+2Ds(cosk„a+cask, a)+2Ds cosk, a

H33=~1+SB1COS2kag Cosgkyg Cosgkzg
+2Ds(cosk, a+cosk, a)+2Ds cosk„a

H44=A2+8B2 cos2k~u cos2k~g cos~k, u
+2C&(cosk,u+cosk„a)+2Cs cosk, a

H6fs ~2+8B2 cos2kau cos2kyg cosgkzu
+2C4(cosk„u+cosk, u)+2Cs cosk,u

H(2= —8B4 sin —,'k u cos-,'k„u sin2k, u

H23 —SB4 sin2k, u sin2k„u cos2k, u

H31 = —8B4 cos2'k, u sin~2k„u sin2k, u

H14=0
H24= —SBS cos2k, g sin~k„u sin2k, u

H34 —SBii sin-,'k, u cos-,'k„g sin-,'k, u

H45 = 2C3 (coskgg —cosk„g)
H1.5 = —8BS sin-,'k, u sinqk„u cos-,'k, u

H25= —SB9 cos2k, u sin —,'k„u sin —,'k, u

H33= —SB9 sin2k, u cos2k„u sin2k, u

H;;=H;;
Ai= J'fs(r)L'V(r) —Vo]fs(r)dr= —0035628 atomic units (a,u.)
As= J'f4(r)fU(r) —Up]fs(r)dr —0.0=06210 a.u.
B&=JA(r Ri)LV(r) —Vo]fi(r)dr= —0 010309 a u.
Bs=J'f4(r —Ri)LU(r) —Vp]fs(r)dr =0 032705 a.u.
Bs=J'f~(r —R&) LV(r) —Vo]fs(r)dr = —0.014751 a.u.
Bs=J'fs(r —Rz)/U(r) —Vp] f4(r)dr = —0.006576 a.u.
Bs=J'fi(r —Ri)/V(r) —Vo]fs(r)dr= (2/v3)Bs
Bs=J fs(r —Rs)LV(r) —Uo]fs(r)dr= —(1/43)Bs
Ci= J'fi(r —Rs))V(r) —Uo]fs(r)dr = —0.011387 a.u.
Cs= J f4(r —Rs*)LV(r) —Uo]fs(r)dr = —0.000582 a.u.
Cs= J fs(r Rs*)/V(r) —Up]fs(r)dr—= —0.014989 a.u.
Cs= J fs(r —Rs) LV(r) —Vo]fs(r)dr = —0.004184 a.u.
Cs= J'fs(r —Rs)LV(r) —Vo]fs(r)dv =0.006238 a.u.
Di= J'fi(r —Rs)[V(r) —Vo]f&(r)dr =0.005381 a.u.
Ds=ffi(r Rs*)/V(r Vp]—fs(r)dr=Cs—

on the direction of the electron spin, the 5 value having
been selected in such a way to fit the experimental
data on spontaneous magnetization.

The spin-orbit interaction term for the crystal is
represented by the operator

Oz„s=gi g(lr —Ril)S L(r—Ri),
where

$(&)=(1/2 ' ')Ldv()/K.
The matrix elements between the Sloch functions

C„(k) involve one-center and many-center integrals,
of which only the one concerning the central atom is
taken into account. Owing to the behavior of the P(r)
function, this fact should not involve an error larger
than that made by neg}ecting the overlap integrals.

With this simplification the matrix elements between
the Bloch functions are reduced to the simil. ar ones be-
tween the corresponding atomic functions f„:

where $ corresponds to the u; pa, rameter in the Goudsmit
notation" and n is more generally the spin eigenfunction
relative to the direction of quantization characterized

by the Euler angles 0, p.
In Fe the crystal field is strong enough to quench the

orbital moments; the spin-orbit interaction also con-
nects weakly the electronic spins with the crystal field
and gives rise to the anisotropy of the magnetic crystal
energy. The corresponding interaction matrix H&, z is
reported in Table II.

i is
0.2

The elements II„ take the following form:
0.1

Has

+Q exp(ik &t) f„(r—Ri)l V(r) —Vojf (r) «, &x

where Eo is the energy of the degenerate d level in the
free atom; henceforth this energy is assumed as refer-
ence energy.

Only the two-center overlap integrals concerning the
first and second neighbors have been taken into ac-
count. Table I reports the terms of the energy matrix
obtained for the bcc lattice, and also the overlap
integrals calculated for Fe with the lattice potential
and the Bloch functions introduced above.

-0.1
t'2s'

-0.2

-0.3
Hip

B. Spin-Deyendent Terms

As stated above, the exchange energy is formally
represented by an additional contribution ~b depending

Fxo. 2. Energy bands E(k) along FN and NH lines. Energy in
a.u. The point Ã corresponds to k =sr/a, k„=pr/u, k, =0.

"S. Goudsmit, Phys. Rev. 31, 946 (1928).



A 1306 E. ABATE AN D M. ASDENTE

Tmr, E II. Terms of the spin-orbit

—&i sing siny

2i sing cosy

—z cosg

s (cosy —i cos8 sin y)

—;(siny+icos8 cosy)

i sing

zg sing siny

—~b cosg

4$ sing cosy

&V3i sing cosy

& ( co—sy+i cos8 sin y)

0

gi Sing

—,'(siny+i cos8 cosy)

—,'v3 (sin y+i cos8 cosy)

—&i sing cosy

g$ cosg

~i sing siny

—&43j sing siny

——', (siny+i cos8 cos y)

——',i sing

s (—cosy+i cos8 siny)

,'v3 (c—osy i co—s8 sin y)

i cosg

—2i sing cosy

—
~j sing siny

—j sing

—s (sin y+i cos8 cosy)
', (cos—y i co—s8 sin y)

——',V3i sing cosy

~~VSi sing siny

——,'A(siny+i cos8 cosy)

—',v3 (—cosy+i cos8 siny)

Two general remark. s can be made:

(1) The trace of the matrix is zero; therefore for each
k the mean value of the energy levels is not affected by
the spin-orbit interaction.

(2) As the symmetry group of the crystal contains
the spatial inversion J, the invariance of the Hamil-
tonian under time reversal E gives rise to at least a
double degeneracy for each k."Consequently, the eigen-
functions belonging to each doubly degenerate level can
be deduced from each other by the anti-unitary oper-
ator JE which reverses the spin and does not change
the wave vector.

Also the peculiar form taken by the interaction matrix
III.,8

mum at the middle of the band, which was previously
found for Cr with a similar calculation' and also for
several bcc transition metals as results of other calcula-
tions carried out with different methods and approxi-
mations. ' "This fact is related, as is well known, to vari-
ous properties of metals and alloys with a Fermi level
near the middle of the band; for instance, the relatively
low values of electronic specific heat" and magnetic
susceptibility" as well the much lower capacity to

E(K)

12

0.2

0.1

is due to the invariance of the Hamiltonian under time
reversal and to the fact that each basic function is con-
nected by the operator JE with another function of the
same set.

4. RESULTS

A. Without Syin-Orbit Interaction

The E(k) values were calculated for 385 nonequiva-
lent k points equally spaced in the Brillouin zone.

E(k) curves obtained in the 6, Z and h. directions
are shown in Figs. 1, 2 and 3'3; they are similar to the
ones previously found for Cr in the same approximations
and, at least from a qualitative point of view, they can
be compared with the results given by Mattheiss, ' if
s-d mixing is taken into account.

Also the general features of the density-of-states curve
(I"ig. 4) are reproduced: One observes the strong mini-

' R. J. Elliott, Phys. Rev. 96, 280 (1954).
"In the 6gures the symbols are the same as those used by G. F.

Koster in Solid-State Physics, edited by F. Seitz and D. Turnbull
(Academic Press Inc. , New York, 1957), Vol. 5, pp. 173, 256.
Conversion of the notation of L. P. Rouckaert, R. Smoluchowsky,
and E. Wigner, Phys. Rev. 50, 58 (1936), can be made by inter-
changing the labels Z3 and Z4.

-0.1

"ss

-0.2

-0.3

Flo. 3. Energy bands L~"(k) along FP and PII lines. Energy in
a.u. The point P corresponds to h, =s./a, h„=s./a, h, =s/a.

J. F. Cornwell and E. P. Wohlfarth, J. Phys. Soc. Japan 17,
Suppl. BI, 32 (1961);E. P. Wohlfarth and I. F. Cornwell, Phys.
Rev. Letters 7, 342 (1961).

"D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958); C. H.
Cheng, C. T. Wei, and P. A. Reck, Phys. Rev. 120, 426 (1960).

"See, for instance, W. Hume-Rothery, Atomic Theory for Sttt-
dents nf Metal'llrgy (Institute of Metals, London, 1955), p. 322;
S. Taniguchi, R. S. Tebble, and D. E. williams, Proc. Roy. Soc.
(London) A265, 502 (1962).
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interaction matrix. B~ g ——$.

—s (cosy+5 cos8 slny)

~s(—siny+s cosg cosy)

i sin8

$(cosy+s cosg sin y)

~ sing

s (—siny+s cos8 cosy)

ss (sin y —s cosg cosy)

—&i sing

s (cosy+i cos8 siny)

—i sing

—', (sin y —s cosg cosy) ssVSi (sin y s—cosg cosy)

~&(cosy+i cosg siny) +sVS(cosy+i cosg siny)

sv3 (—siny+S cosg cosy) ', V—X-(cosy+i cosg siny)

&i sing sing

—~~i sing cosy

i cosg

—
m& srng smq

h~' cosg

—&i sing cosy

—yV3s sing cosy

g$ sing cosy

gs cosg

—&i sin8 sing

2' sing sing

—i cosg

-,'i sing cosy

-',i sing sing

&VSi sing cosy

—2V3i sing sing

absorb hydrogen in comparison with other transition
metals. "

On the other hand, we do not find the sharp peak
immediately at the right of the minimum, which has
been suggested" by the interpretation of specific-heat
and magnetization data concerning Cr-Fe, Cr-Mn, and
Fe-Co alloys. It is not possible to draw definite conclu-
sions on this point: on the one hand, it may happen
that the numerical integration in k space, from which

g(E) curves are deduced, is not sufliciently detailed. to
reveal sharp and narrow peaks connected with critical
points of E(k) in the Brillouin zone"; on the other hand,
this point is also ambiguous as to the interpretation of
experimental data. In fact a sharp peak for alloys at an
electron concentration close to that where ferromagnet-
ism starts is not necessarily caused by any singularity
in the trend of the density-of-states curve'0 and more-
over it is possible that at least a part of this peak is due
to localized moments. '

All the calculated curves exhibit another general

feature: A minimum, which is not as conspicuous as the
central one, can be noticed in the high density-of-states
region at the side corresponding to low energies; also
this minimum may be related to the electronic-specific-
heat data."

In spite of these analogies it is di%cult to find in these
results a support for the rigid-band hypothesis; the
various calculated curves are not similar in details and
the two for Cr and Fe (see Fig. 7 of Ref. 1 and Fig. 4
of the present work) do not particularly agree though
they have been deduced with the same method and
approximations.

rs
0.2

0.1

40-

s (E)

30-
xx

20-

]0-

-0.1 0.1 G2
Energy a.u.

FIG. 4. Density-of-states curve g(E) (number of states/atom
and atomic energy units). Ep is the Fermi level in the para-
magnetic state and Ep Ep the Fermi level for the two directions
of spin in the ferromagnetic state.

-0.
Hs

"D.W. Johes, N. Pessall, and A. D. McQuillan, Phil. Mag. 6,
455 (1961).

'8 K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Radium
23, 721 (1962).

L. Van Hove, Phys. Rev. 89, 1189 (1953).
L. Berger, Phys. Rev. 137, A220 (1965).

FxG. 5. Energy bands along I'II line, spin-orbit interaction
being taken into account. Energy in a.u.

"M. Shimizu, T. Takahashi, and A. Katsuki, J. Phys. Soc.
Japan 17, 1.740 (1962); M. Shimizu, J. Phys. Soc. Japan 18, 1192
(1963).
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E{K)
re
0.2

e Ae

&x

6' FIG. 6. Energy bands
along I'I' line, spin-orbit
interaction being taken
into account. Energy in
a.u.

These curves are reported for )=0.016 atomic units
(a.u.), a value which is probably more suitable for the
elements of the III series, for instance for %. For
/=0.0016 a.u. , i.e., equal to the value obtained for the
3d' configuration of the free Fe ion in the ground state, "
the behavior is qualitatively the same but obviously the
differences with regard to Figs. 1 and 3 are less
remarkable.

5. CONCLUSIONS

fj
-0.1

le

TABLE III. High density-of-states energy interval for
the d band of Fe.

Source

Selding (Ref. 5)
Wohlfarth (Ref. 14)
Present work
Mattheiss& (Ref. 3)
Sterna (Ref. 7)

Interval
(eV)

6.8
6.0

~4
~9

In these cases the value is not deduced from a density-of-states curve,
but from the behavior of B(k) along some directions.

B. With Syin-Orbit Interaction

The introduction of a spin-orbit coupling leads to a
10)&10 interaction matrix with imaginary terms, which
cann. ot be easily diagonalized for any k. The group
theory tells one the degeneracy of the various levels at
particular points of the Brillouin zone, where symmetry
considerations enable one to simplify and diagonalize
the interaction matrix. "

Figures 5 and 6 report the results obtained for direc-
tions 6 and A., the z axis being taken as the quantization
direction for the spin.

Degeneracies of levels F25, H25, 85, and A3 are re-
moved as well as other accidental ones along line A.

22 J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids
25, 781 (1964).

In the present results two long side tails make the
band rather broad; nevertheless the region where the
density of states is large covers a much narrower energy
interval. Table III reports the widths of high density-of-
states intervals found for Fe by various authors.

The electronic structure of the 3d band in Fe has
been studied with the tight-binding method. A com-
parison with the data concerning calculations carried
out with various methods and approximations, suggests
that some features are rather general for bcc transition
metals. Such features are the general trend. of the eigen-
values in k space, the minimum at the middle of the
g(E) curve between two high density-of-states regions,
the bonding and antibonding characters, respectively,
for eigenfunctions concerning the bottom and top of the
band. Particular agreement in the details was not found
with the results previously obtained for Cr with the
identical method, which would perhaps be expected on
the basis of the rigid-band hypothesis.

The introduction into the Hamiltonian of the spin-
orbit-coupling term made it possible to study subse-
quently the inAuence of this interaction on the d-band
structure for bcc transition metals. From a, quantitative
point of view the effect depends obviously on the value
of the parameter; the most conspicuous influence is
noticed at the middle of Brillouin zone along lines A

and 6, where various degeneracies, either accidental or
not, are eliminated, particularly around the middle of
the band. Probably this interaction does not markedly
modify the density-of-states curve, but it may be more
important in determining some details of Fermi surface,
and in fact it might be responsible for the differences in
the-de Haas —van Alphen effect found for corresponding
Inetals in the III series.
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