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&loch Electrons in External Electric and Magnetic Fields
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The Schrodinger equation for a Bloch electron in external electric and magnetic 6elds is rewritten with
the help of redundant variables, the wave function being obtained when a limiting process is carried out.
The connection with the standard effective-mass approximation is discussed, and an application to the case
of crossed electric and magnetic 6elds is carried out for the simple case of two parabolic bands in order to
examine the singularity —,nt*iE/Bl' that appears in the energy in the effective-mass approximation when
B -+ 0+. We conclude that below a certain value of E/B the character of the solution changes and the
effective-mass formula is then not applicable.

I. INTRODUCTION the lattice periodicity or not. This is most clearly seen
in the &loch functions tp(ri, rs) where the periodicity is
manifested as lb(ri, rs+R) =p(rr, rs), the Bloch function
being reproduced when we set rr=rs, so that lb'(r)
=f(rt=r, rs=r). We will show, by explicitly construct-
ing the proper functions, that a partial periodicity is
still present in this case, although we can no longer
expect the simple splitting that occurs in Pti(r). Our
procedure will lead us naturally to a function b(r, k) that
contains the variable r2 explicitly and is the Fourier
transform of P(ri, rs) with respect to ri, with the under-
standing that now k is a variable in its own riglit and in
general cannot be identified with the variable k that
appears in fti(r). Once we have obtained the equation
that defines b(r, k), whose eigenvalues correspond to the
ones in the original problem, the most natural approach
is to expand the solutions in terms of the periodic part
of the unperturbed Bloch functions. Since we are start-
ing from an exact equation, we are in a better position
to appreciate the range of validity of the approximations
involved. From this, the effective-mass approximation
as well as less common, but sometimes better, approxi-
mations can be obtained readily.

In Sec. II we develop the general formalism. In Sec.
III we consider the problem of crossed electric and
magnetic fields and apply the previous results to an
idealized two-band model in order to study the behavior
of the apparent singularity -', srt*(E/8)' that appears in
the energy when the effective-mass formula is applied
to nondegenerate bands.

HE behavior of a Hloch electron in the presence of
externally applied fields has been examined ex-

tensively in the last few years. Two approaches have
been used in most of the published work. . Luttinger and
Kohn' introduced a suitable set of basis functions and
expanded the perturbed solution in terms of these func-
tions, so the problem reduced to the computation of the
expansion coefficients. However, in a series of papers,
Kannier' replaced the original Schrodinger equation for
the problem, a partial differential equation in three
variables after the usual assumptions are made, by
another partial differential equation of higher dimen-
sionality whose solutions and eigenvalues bear a definite
relation to the solutions and eigenvalues of the original
problem. %e employ Wannier's approach, but the equa-
tion we obtain differs in several respects from the equa-
tion proposed by him.

When an electron is acted on solely by the periodic
potential V(r) we can find three translation operators
that commute with each other and with the Hamil-
tonian, and which provide a convenient way of cata-
loging the wave functions. Most important, these
translation operators disentangle that part of the solu-
tion which has the lattice periodicity from the part that
does not have this periodicity. In this simple case the
wave functions are the well-known Bloch functions

p~(r) =exp(ik r)N (r,k)

with tt„(r,k) satisfying the periodicity requirement

N.(r+R, k) = tt„(r,k), II. MODIFIED WAVE EQUATION

The Hamiltonian for a Dirac particle of mass m and
charge q (the charge of the electron is taken to be q = —e)
in the low-energy limit is given by' (correct to order
e/etc', e being the energy).

where R is any lattice vector, k labels the eigenvalues of
the three translation operators and e labels the different
bands.

tA"hen we add constant and homogeneous electric
and magnetic fields to the periodic potential, the
above procedure is no longer valid. Questions then
arise as to what is the meaning of a band in this
case and how to catalogue the wave functions. It is not
clear et priori whether part of the wave function shows qh qh'

+qe(r) — gotr 8+—V E,
4m Sm'c'* Supported by the V. S. Air Force Once of Scientific Research.' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955}.' G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962); other ref

ences are listed here.
er- 3 B.Kursunoglu, Modem Quantum Theory (W. H. Freeman and

Company, San Francisco, 1962), p. 305.
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where e are the Pauli matrices, A(r) is the vector po-
tential, C (r) is the scalar potential, E= —~74 is the time-
constant electric field, B=V'XA is the magnetic field,

go is the free-particle g factor and we use mksa units
throughout.

In what follows the spin terms will be neglected since
they do not add any essential features. Therefore the
Schrodinger equation, for a particle in a periodic scalar
potential (1/q)V(r), vector potential A= —',B xr, and
scalar potential p= —K r corresponding to the ex-
ternally applied constant and homogeneous fields,
reduces to

1 q—i7,——B xr +V(r) —qE r—e f(r)=0. (2.1)
2m i

As is well known, this equation is not invariant when
the variable r is changed to r+R„, and the resulting
equation is

A;2 1 q
—2——V'„——B x(r+R„) +U(r) —qE (r+R„)—e

2' i 2IE

with the requirements that b(r, k) must be finite, con-
tinuous and have the lattice periodicity in the variable r.

Equation (2.5) can be written as

) 3/2

b(r, k) =
2x)

dp exp( —ik. g)P(g)F(y —r), (2.7)

where the function F(y—r) is defined as follows:

completeness. If, however, we required solutions other
than the ones given by Eq. (2.3), then Eq. (2.1) could
not possibly be satisfied with the requirements of
finiteness and continuity normally imposed on the wave
function that determine the eigenvalues e. Therefore we
believe, but have not proved, that the functions
LEq. (2.3)7 are complete to the extent required to pro-
duce the desired wave functions. }

Finally, the function b(r, k) must satisfy

k2 1 2 1

2ns i 2i&
~ ~

—q„yk+. B xi71, +U(r)+ qE—V'I, —e
Z

Xb(r,k) =0 (2.6)

Xf(r+ R„)=0. (2.2) F(g—r) =P„b(g—r—R„). (2.8)

Instead of attempting a solution of Eq. (2.1) by ex-
panding f(r) in some complete set of functions, we try to
remove from Eq. (2.2) the terms that contain (r+R„).
This is accomplished if we consider the functions

expL —ik (r+R.)7&(r+R„), (2.3)

where k is a real variable. The equation that these
functions satisfy is, making use of Eq. (2.2),

A2 1 2

2m i 2ik~ ~

—~7„+k+ B x V'„+ U(r)+ —qE V'„—.
z

XexpL —ik (r+R„)7&(r+R„)=0. (2.4)

It is clear that the functions LEq. (2.3)7 we have just
defined are only particular solutions of Eq. (2.4), which
is now invariant with respect to the change of variable
r-+ r+R„. Therefore, among the set of functions that
satisfy Eq. (2.4) there should exist some that are
periodic in r.

Since the set of functions LEq. (2.3)7 is closed with
respect to all the possible lattice translations R, it
should be possible to obtain the periodic solutions of
Eq. (2.4) as a linear combination of the functions
LEq. (2.3)7.

The only possibility is

8/2

b(r, k) = — P„exp(—ik (r+R„))P(r+R„). (2.5)
2'

Therefore the periodicity in r singles out a unique solu-
tion of Eq. (2.4). (It should be noted that closure of a
set with respect to a certain operation does not insure

Equation (2.'7) shows that b(r, k) is the Fourier trans-
form of a function B(r,ri)

B(r,r,)=P(ri)F (ri—r)

dk exp(ik ri)b(r, k) (2.9)

and the wave function P(r) is reproduced to within a
constant factor by setting r~ ——r. In order to avoid the
singular factors that arise when we use the definition
Eq. (2.8) for the function F(y—r), we will consider the
limiting case of a function sharply peaked at the lattice
sites and everywhere different from zero. Taking the
Fourier transform of Eq. (2.6) we obtain

A2 1 1 q—~7„+-Vp——B x g +V(r) —qE p
—e

2m i i 2A
~ ~

XB(r,y) =0. (2.10)

Since B(r,p) is the product of two functions, the approxi-
mation to the wave function is related to how well we
are able to approximate Eq. (2.8). Although this is the
proper criterion to use for the goodness of the approxi-
mation, it is not the most practical approach, and in
most cases we will expand Eq. (2.10) in a convenient
set of periodic functions in r. This procedure will yield
directly to an effective-mass equation for the modulation
functions, that play the role of expansion coefficients.

One of the most immediate features of Eq. (2.10) is
that we can look upon it as being the wave equation for
a coupled system, and this is in last analysis what allows
us to talk about an effective Hamiltonian after we
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average over the "lattice" coordinates r. We can recog-
nize in Eq. (2.10) the Hamiltonian of two particles, one
moving under the influence of the lattice and another
subject to the external electric and magnetic fields. The
coupling term is of an unusual type, being a bilinear
expression in the kinetic momenta. It is characteristic
in this problem that the coupling term is not a small
perturbation, and when we perform a canonical trans-
formation that eliminates the leading nondiagonal terms
in (1/i) V'.„, we find that the main result is to replace the
free mass m of the particle in the external fields by the
effective mass no*. Therefore, when we are dealing with
light holes and electrons the ratio of the free-particle
energy to the energy brought about by the coupling
term is of the order m*/m and to a good first approxima-
tion the free-particle energy can be neglected entirely.
This is the approximation used by Wolf' in his study of
the matrix elements in bismuth and by Keldysh' in the
problem of deep levels in semiconductors. In the case of
heavy holes, for example, the ratio m*/m is of order one,
which corresponds to the intermediate coupling case
and the approximation is obviously not good.

Two more points we wouM like to make before closing
this section are: First, from inspection of Eq. (2.6) it is
clear that b(r, k)WF(k)u(r), where u(r) is the periodic
part of a Bloch function, because the coupling term con-
tains the momentum operator for the r particle and
Lysi«i„pf/0 so they cannot be diagonalized simul-

taneously. Therefore the best we can do is to use a
combination of the I's for which p is diagonal to first
order (effective-mass approximation), or otherwise con-
sider a general expansion of the type Q„F„(k)u„(r).
Second, wheneve'r E R„AO, where R„ is any of the
lattice vectors, the Stark ladder of eigenvalues e+ qE R
are generated by the mutually orthogonal wave
functions

g
exp

~

—R ~ p+ —8 x r ~P(r)

ig
=exp —8 xr R„r R. . 2.11

2a r

This can be proved by noticing that the operators
o = exp((i/A)R„(p+-', gB x r)) satisfy the commutation
relation

netic fields, in the eRective-mass approximation for the
case of nondegenerate bands. His solution indicates that
in a transition between two such bands the Landau
levels are brought together by an amount s(mt+ms)
&&(E/J3)', where mi and ms are the effective masses at
the top and bottom of the valence and conduction
bands, respectively. Experiments performed by Vrehen~
in the optical absorption in germanium below the direct-
gap band edge indicate that this is actually the case for
the values of E and 8 used in the experiment. They
satisfy the condition

where E, is the energy gap. We would expect such a
necessary condition on physical grounds since otherwise
higher order interactions between the bands could not
be neglected and nondegeneracy would not apply. This
is the physical reason behind the singularity present in
Aronov's solution when 8 approaches. zero. Intuitively
we may expect that below a certain value of the mag-
netic field the character of the solution will change
from a "magnetic-type" solution to an "electric-type"
solution.

In this section we show that indeed the character of
the solutions change below a certain critical value of the
magnetic field. In addition the effective-mass results are
reproduced when the above inequality is satisfied since
the idealization of the model used will make other
conclusions questionable.

We will assume a two-band model for light holes and
electrons where the energies, measured from the center
of the gap, are, respectively,

(3 1)

(3.2)

The magnetic field 8 is taken along the z direction and
the electric field E along the x direction. Writing ey, e2, ~3

for the three unit vectors along the coordinates axis,
Eq. (2.10) in this case is

1 1 B ' A' 1 B qB—e3 V r —
p22' Z Z Bpa 21s z Bpy 2A

P&;o.]=qE R o. , (2.12)

and then it is a simple matter to prove Eq. (2.11).

III. CROSSED ELECTRIC AND
MAGNETIC FIELDS

Aronov' has given the energy eigenvalues for the
problem of a Bloch electron in crossed electric and mag-

4 P. A. WolG, J. Phys. Chem. Solids 25, 1057 (1964).
5L. V. Keldysh, Zh. Kksperim. i Teor. Fiz. 45, 364 (1963)

LEnglish traiisL: Soviet Phys. —JETP 18, 253 (19645).
6 A. G. Aronov, Fiz. Tverd. Tela 5, 552 (1963) /English transl. :

Soviet Phys. —Solid State 5, 402 (1963)j.

B gB
+ — — pi ——e B(r,p) =0 (3.3).

i Bpq 2A By

If, now, we choose u (r) to be the periodic solutions of

1

-2' i~~ r
—'7,+4es+&ses

~
+V(r) —e. u. (r) =0, (3.4)

7 Q. H. F. Vrehen, Phys. Rev. Letters 14, 558 (1965).
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absence of the 6rst derivative:

B(r,p) = exp(iksps+ikzps+ (qB/2ih) pspl)

+ I gl(pl)zzl(r)+g2(pl)N2(r)] (3 3)

we fi'nd that the equations satisfied by the modulation
functions are

d' qB
O 12 O 12 2l &21 12

dx2 2iIE

(ql'-)'ln»l'
+ (el e qEx) (e2 e qL~x)

2(e2—e—qE'. x)

86] l9cy 1 8
gE X+ gl

k2 Dkg i dX

qB (nlsp21 nslp12)x q+ I
n12

I

4 zh
I
n12

I
e2 —e—qL'x

Xfl(x) =0. (3.8)1 8 gB
+ n12 p12 x g2

z Bx

8 g8
n21 p21 x gl

2 x (qL:)'—ln»l 'I:(q&)'x' —(el+e2 —2e)q&x7+
2(e2—e qEx)'—qB ~e2)

+ e2—c—qE+ Ix+ ———
g2 ——0 (3.6b)

h c)k2) cjkl i c)x qB (n12p21 n21p12)x

4 iA;

qadi'

when g = r, and the terms

(h'/2~) I:—~'/~pl'+((qB/h) pl)'jg'(pl)

are neglected. Here we have used the notation:

n;; = ( h/zzz) (i lp. Ij ), p;, = (h/zzz) (i I p„ Ij),
and the formula'

and with eigenvalues equal to

I n12
I I (qB/2zh) (n12p21 n21p12)+ (ei e) (es e)) ~

It is clear that the sign of the quadratic term of this
potential will determine whether the eigenvalues are
discrete or continuous. If we wish to reproduce the
Landau levels in some approximation, it is therefore
necessary that(h/m)(il p I i)= —(h2/zzz)k+ V2e, (k) .

(3.6a)
This equation can be looked upon as a Schrodinger
equation for a one-dimensional system moving in a
potential

Making use of the assumed parabolicity of the bands

I Eqs. (3.1), (3.2)$, Eqs. (3.6) reduced to

gB
g,—&

—qr~ — Ak2 X gg
m]

8 gB
+ n12———p12 x g2

——0, (3.7a)
z 8$

18 g+
n21 p21 x gl

i Bx

L(qB/2i h)(ni2p21 nlsp»)j'&(q&)'ln12I (3.9)

Equation (3.8) cannot be solved exactly, but, we can
approximate it, if the electric field is small enough, by
replacing the terms that contain (es—e—qEx)—' by some
average value e'. The approximate equation is then

{In» I
'd'/dx'+(el —e)(e2—e)—e'

+I (qE)'x' —(el+es —2e)qExj
—

I (qB/2zh)(n12p21 nslp12)x/
I
n12

I
1'}f1=0. (3.&0)

The eigenfunctions of this equation are the same as the
one-dimensional harmonic oscillator, and the eigen-
values are given by

+ e2 e qE+ hks Ix g2=0 (3 7b)
( )( ) p+(

ns2

=(2~+i) In»l(a —k)1~2 (3 i~)
Furthermore, since the bands will be parabolic only

in the neighborhood of the maximum or minimum of the
energy, we will neglect the contribution of the terms
hks(qB/zlz;), and set k2 ——0.

After some straightforward but tedious manipulations
we can obtain from Eqs. (3.7) an equation for a function
fi(x) that differs from the equation for gl(x) by the

a= Inlsl 'L(qB/2zh)(n»p21 —nslp») j',
k= (qZ)2,

c=qE(2c —el—e,),
R= c/2(a b) . —

In order to make connection with the results of the
effective-mass formula we assume that ns~=m2=m soA. H. Wilson, The Theory oJ" Metals (Cambridge University

Press, New York, 1958), 2nd ed. , p. 46. el+e2=0, consider only the low-lying eigenvalues, so
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&—&l.=2~=&„neglect ~', and make the identifications Vile have thus proved that the requirements for the

(1/~)(1/2t: n&s st nst ts =&
validity of the eGective-mass formula, guessed on

physical grounds, are indeed appropriate.
'a

~
nts

~

'= (1/2i) (ntstast —nstPts) . ACKNOWLEDGMENTS
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I rom the quantum equation for the density matrix, equations are derived which characterize the be-
havior of magnetization and mean exchange-interaction energy of ferromagnets in an external magnetic
6eld for a wide temperature region. In the limiting case T)&Tz (Tz is the Curie temperature), these equa-
tions lead to the 31och-type ferromagnetic-resonance equations (for sufficiently weak magnetic 6eld). In
the low-temperature region T&&T& these equations lead to the well-known Landau-Lifshitz equations.
Expressions for the relaxation times are obtained which connect these parameters with the microscopic
properties of ferromagnetic substances.

'HE behavior of the magnetization of ferromag-
netic substances placed in an alternating magnetic

field is fully determined theoretically by solving ferro-
magnetic-resonance equations. It is usually supposed
that ferromagnetic-resonance equations are di6erential
equations connecting time derivatives of three magnet-
ization components, on the one hand, and the values of
these components and the value of the external magnetic
field, on the other hand. Such, for example, are the well-

known Landau-Lifshitz phenomenological equations
used for the description of ferromagnetic resonance in
the low-temperature region (T(To, where To is the
Curie temperature). This equation has the form, '

dM — — x I Mx(MxH)j
=y MxH (1)

M

In the opposite high-temperature limiting case (T))To)
the behavior of the magnetization of ferromagnetic
substances is satisfactorily described either by the
empirical equation obtained, by Codrington, Olds, and

Torrey, ~

1 (M.H)H-—=sf«H) ——M—
dt H

1 (M H)H-
+—xoH — —,(2)

or by phenomenological equations derived by Skrotski
and Shmatov, '

dM, „/dt=y[M x Hj, , „—(ftzI, „xoFI,„)/z't, —
dm, /dt=~[M x Hj, (M. xN.—)/r„. — (3)

In the above equa, tions, M is the magnetization, H is
the external magnetic field, Xo is the static magnetic
susceptibility, and Tg T1 Tg Tg and Tll are relaxation
times.

Although Eqs. (1)—(3) are in a,ccord with many ex-
perimental facts, they have nevertheless some defi-
ciencies. Firstly, these equations are valid in the limiting
cases of high or low temperature only. Secondly, the
methods used for obtaining Eqs. (1)—(3) do not give
possibilities for determining the relaxation constants
involved in the above-mentioned equations. And finally,
equations for magnetization components only cannot
give, in the general case, the full description of ferro-
magnetic-resonance absorption. This is because of the
necessity of taking into account the variation of the
mean exchange energy during saturation, as we shall see
further on.

These deficiencies are explained by the fact that
magnetic-resonance equations were determined formerly
either by means of empirical selection or by a phenome-
nological method. It is interesting therefore to consider
ferromagnetic-resonance absorption from the micro-

L. D. Landau and E. M. Lifshitz, Physik Z. Sowjetunion 8,
153 (1935).

2 R. Codrington, M. Olds, and H. Torrey, Phys. Rev. 95, 607
4I'1954).

' G. V. Skrotski and V. T. Shmatov, Zh. Eksperim. i Teor. I iz.
34, 740 (1958) /English trsnsl. : Soviet Phys. —JETP 7, 508
(1958)].


