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In the foregoing discussion, we have used the definition
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where the superscripts (&) designate the sign in front of 9 (as X-+ 0).
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It is shown that the repulsive core present in realistic two-body potentials and in hard spheres leads to the
rapid suppression of the effects of statistics in the second virial coeKcient, except at very low temperatures.
For hard spheres, an upper bound is obtained which goes down exponentially with temperature when the
latter becomes large.

~HE eGects of quantum mechanics on the second
virial coeKcient may be formally separated into

diGraction eAects which obtain for a Boltzmann gas
and exchange contributions associated with the Bose-
Einstein or Fermi-Dirac character of the gas. This
separation arises very naturally in the formalism de-
veloped by Lee and Yang' and allows us to consider the
virial as being the sum of a direct term
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which in the limit h —+ 0 gives us the classical answer,

and of an exchange term
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II„~ is the relative Hamiltonian, P ' is Boltzmann's con-
stant times the temperature, Xp is the thermal wave-
length defined as h(2smkt) '", X is Avogadro's con-
stant, S is the spin of the individual component, and the
sign is negative for Bose-Einstein statistics and positive
for Fermi-Dirac cases.

In the case of a perfect gas we have

*Work performed in part under the auspices of the U. S.
Atomic Energy Commission.

t This work was completed at Los Alamos Scienti6c Laboratory
while serving as consultant.

)This work was supported by Air Force OfBce of Scienti6c
Research Grant No. AF-AFQSR-713-64.

$ Summer student from the Digital Computer Laboratory,
University of Illinois, Urbana, Illinois.

'See J. Q. Hirschfelder, C. F. Curtis, and R. B.Bird, Molecu-
lar Theory of Gases and I.fluids (John Wiley R Sons, Inc., New
York, 1954) with special reference to the article by J. deBoer
and R. Byron Bird on the quantum theory and the equation of
state.' T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).

At high temperatures this value is customarily' used to
represent the quantum-mechanical effects due to statis-
tics of a gas such as helium, while a Wigner-Kirkwood
expansion is used to evaluate the direct term.

The purpose of this note is to point out that, in fact,
for a real gas the presence of a strong repulsive core
entails a drastic suppression of the exchange efI'ect at
high temperature. ' We first show this to be the case for

g Lloyd D. Fosdick has, independently, reached similar con-
clusions (private communication).
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hard spheres and then consider more realistic potentials.
Introducing a complete set of eigenfunctions of the

energy P„, we can write

(rid-' *"I—r) =2 0-(r)0-(—r)e-"".

Setting the collision diameter of the hard spheres at
r=cr, we see that the matrix element is zero for r&o.
since the wave functions are zero inside this region. Next
we show that for any r the matrix element for free
particles is an upper bound to the exchange matrix
element for particles subject to repulsive forces only.
This result is immediate once we write the Wiener
integral expression' for the exchange matrix element
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We thus have
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At low temperatures (Xr large) this integral has for
limiting value the free-particle result, while at high

4 S. G. Brush, Rev. Mod. Phys. 33, 79 (1961).Especially rele-
vant is the discussion pertinent to and centered about Eq. (2.13);
see also Eqs. (5.4} and (5.5).

since the exponential is less tha, n 1. (T„~ is the relative
kinetic energy. ) In fact since paths passing through the
sphere contribute for free particles and not for hard
spheres the inequality obtains. Evaluating the exchange
matrix element for the kinetic energy yields

temperatures we obtain the asymptotic expansion
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Since X~ is proportional to T '", we see that our upper
bound goes down exponentially with temperature. In
fact, if we set the collision diameter at about 2 A and
choose a value for the mass suitable for helium, we find
that the dependence is roughly e ~". Note that this
precludes an asymptotic expansion in powers of 1/T.

Physically, we can understand this formal result by
noting that the free-particle exchange matrix element
(Eq. 3) is highly peaked about r=0 and appreciable
only for r of the order of Xr/(2w)"' or less. In other
words we see that the exchange is nontrivial only if the
particles are allowed to come closer to each other than
the thermal wavelength. If this is not possible, because
of the presence of repulsive forces, the exchange is
negligible. This is the case for hard spheres when the
temperature is large enough so that the collision diam-
eter 0. is greater than Xz. In the example mentioned
above (~/Xr) 1 when T is 16'K. As the previous
remark made on deriving the inequality (Eq. 1 &~ Eq. 2)
indicates, the matrix element outside the core will be
smaller than the free-particle result and the consequent
B,„.h smaller for a given temperature than has been
estimated. This point will not be considered further in
this note. '

Turning our attention now to more realistic potentials,
we note two diR'erences. In the first place the inter-
molecular potentials have an attractive part. If e repre-
sents the maximum well depth (e/k 10'K for helium)
then Eqs. (1) and (2) show that
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is an upper bound to the exchange matrix element for
all r. At high temperature et" —+ 1 and we recover the
free-particle result. Another difference is of course that
though realistic potentials provide strong repulsive
forces they lack the abrupt "all or nothing" character
of hard spheres. Nevertheless, since the repulsion is so
strong, the potential rising rapidly and reaching values
many orders of magnitude larger than the maximum well
depth, the wave functions are essentially zero for r's
within the core and so will be the exchange element.

We thus see again that at high temperature where the
thermal wavelength is much smaller than the core
radius, the exchange contribution to the virial will be
completely negligible.

' We hope to show in a subsequent paper that the leading term
in the asymptotic form of the logarithm of B, ,h is in fact pro-
portional to —$7r'(o/Xz)'.


