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Space Charge in Ionic Crystals. II. The Electron AfBnity and Imyurity Accumulation*
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By relaxing the condition that all defect densities be small, the calculation of the defect distribution in
ionic crystals containing divalent cationic impurities is extended to lower temperatures. The impurity
accumulation near the surface and the electron affinity are discussed.

I. INTRODUCTION
' 'N the preceding paper' a general method was pre-
- - sented for calculating the defect distribution in an
ionic crystal of the form M+X possessing the NaCl
structure. It was shown that the presence of a space-
charge region at the surface is an inherent aspect of
thermal equilibrium. The discussion in I was limited to
{100) surfaces and to situations where all the defect
concentrations were small.

We are now going to consider crystals of the same

type discussed in I with emphasis on crystals containing
divalent cationic impurities. We found in I that for
such crystals, in the temperature range where the defect
concentrations are essentially governed by the impurity
content, the impurities tend to concentrate in the
vicinity of the surface. An examination of this accumula-
tion eGect for moderate temperatures necessitates a
relaxation of the condition that all impurity concentra-
tions are small everywhere. The formal calculation is
carried out in Sec. II. In Sec. III the extent of this
accumulation is discussed for a model representing
NaC1.

There have been several studies' ' in which the
energy of the bottom of the conduction band with
respect to the vacuum level was calculated for NaCl.
These calculations did not yield results in agreement
with experimental determinations of the electron

affinity. The presence of the space-charge region at the
surfaces will clearly contribute to the experimental
electron affinity. In addition the crystal plane compris-
ing the surface is of importance. These features are the
subject of Sec. IV.

Inadequacies of the present treatment are discussed
in Sec. V.

II. DEFECT DISTRIBUTION IÃ
IMPURE CRYSTAL

Let us briefiy review the model to be used in the
calcula, tion. We consider a crystal with free (100) sur-
faces at x=0 and x=2L and of infinite extent in the y

*Contribution No. 1654. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

' K. L. Kliewer and J. S. Koehler in preceding paper, Phys.
Rev. 140, A1226 (1965), hereafter referred to as I. All notation in
the present paper is the same as in I.' S. Tibbs, Trans. Faraday Soc. 35, 1471 (1939).

'Z. Ya. Evseev, Fiz. Tverd. Tela. 5, 2345 (1963) LEnglish
transl: Soviet Phys. —Solid State 5, 1705 (1964)j.

and z directions. The crystal is to have the NaCl
structure with the intrinsic disorder being of the
Schottky type. W'e assume that the smoothed charged-
defect distribution gives rise to a potential satisfying
Poisson's equation with the boundary conditions on the
potential being C =0 and x= 0 and x= 21. and dC /dr= 0
at x=I as discussed in I. The crystal, containing a
mean divalent cation impurity content C, is considered
to be in thermal equilibrium.

The reason the solution presented in I becomes
invalid for reduced. temperatures is that the assump-
tion st;f/N«1 becomes invalid in the surface region,
that is, a significant degree of impurity accumulation
occurs near the surface. A measure of the breakdown of
this assumption is that if we use the expression for n;y
obtained in the low concentration approximation )Eq.
(4.5) of Ij, then n;I/N=1 at the surface when the

TABLE I. Values of T&, the temperature which measures the
breakdown of the assumption I;r/tV«1, in 'K, for I.= 1.0 cm.

B+(eV

0.20
0.40
0.60

10 6

302
239
119

10 5

353
272
136

424
313
157

10 '

532
371
186

condition

C=s„„exp{—(F+—B+)/k Tt)
+)+ exp{—eC„/kTt} (2.1)

is satisfied. The temperatures Tj at which this occurs
for the NaCl parameters introduced in I are given in
Table I.

To obtain a solution to the problem when the
assumption n;I/N«1 is no longer valid, we must begin
with the general expressions for the defect densities
obtained from a minimization of the free energy Lsee
Eqs. (4.3) of Ij. We now assume that all defect con-
centrations except that of the free impurities are small
everywhere. We then have

st+/(N rt;I) =exp{——(F+ eC)/kT}, —
I /N=exp{ (F +eC)/kT)—,

ttt//(N —ts;I) =exp{—(eC +ctz+)/kT), (2.2)

rt;sN/(N rt;r)s= „„sp{e—x(F—+ B++otz+)/kT), —
rttt/(N rt;I) =z„e p{—x(F++F— B)/kT), ——

A 1.241
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where 0.1+ is now the Lagrange multiplier which arises
from the need for impurity conservation. 4 The charge
density p given by

p=e(n +n;z r4~)—

becomes, using (2.2),

(2.3)

p=eS
1—exp{ ( F++—2eC+nz+)/kT)

1+exp{ (eC +nz+)/k T)
(2.4)

where we have ignored the anion vacancy contribution
because of the temperatures we are considering.

We showed in I that there exists bulk neutrality
within the crystal when x+L&&1 where

a s= (8rrlVe'/ekT) exp{(eC„F+)/kT—) . (2.5)

The potential in the region of bulk neutrality C„ is
now given by

eC„=-,'(F+—ay+), (2.6)

as is clear from (2.4). Using (2.6) we can rewrite (2.4)
as

—2eÃ

Equation (2.11) is the solution of (2.9) near the
surface. Well within the crystal the second term in the
denominator of (2.9) will be small compared to one and
the potential distribution can be determined as shown
in I. We are thus left with the problem of obtaining a
solution of (2.9) in the region where the two terms in the
denominator are comparable. This will be done in the
following manner. The solution given in I, valid when
all defect concentrations are small, will be used for all
regions where I;z/N as given by the small concentration
expression (Eq. (4.5) of I) is less than one. From the
point xp, where the low-concentration expression for
I;z/N becomes one, to the surface, we will use Eq. (2.11)
and the two solutions will be Qtted at the point xp.
In approaching the surface from within the crystal, the
concentration of free impurities is increasing very
rapidly. Thus the solution we obtain will give only a
small error in the potential distribution in the region
where r4;r/N becomes of the order of one.

Suppose now we have saturation, i.e., rz;~/N = 1, for a
distance xp into the crystal. Then at x=sp we IIlust
match (2.11) to the solution we have assumed valid for
x)xp )see Eq. (3.19) of Ij,

p=
exp{ (F++nz+)/2kT)

sink z
X— (2 &)

1+exp {—(F++nz+)/2k T}exp {—s)

where

where

aIld

s=4 tanh —'{e ' tanh(s'/4)},

t = 44+ (x xp)—

s'=s )4 o ——{sC (xo)—eC„)/kT.

(2.12)

(2.13)

(2.14)

s= {(eC (x)—eC„)/kT.

Poisson's equation then becomes

(2 8) The conditions which must be satisfied at x=xp are:
(1) C from interior =C from saturated region; (2.15)

(2) dC/dx from interior =dC/dx from

saturated region; (2.16)
sinh z

(2.9)
ds+' 1+exp{—(F++az+)/2kT) exp{—s}

(3) since we require I;z/N=1 at xp,

exp{—s') exp{—(F++nz+)/2kT) = 1. (2.17)

s'= —(F++az+)/2kT. (2.18)

with s+= I{:+x.
At su%.ciently low temperatures, the second term

in the denominator of (2.9) will be much greater than Condition (2.17) thus requires

one near the surface where —z)&1.5 So, near the sur-

face, Eq. (2.9) becomes

and
d's/ds+ —sr exp{ (F++n——z+)/2kT) (2 1O) At x=xp, from the interior,

Z Z 7 (2.19)

s= —ors+' exp{ (F++az+)/2kT)+Krs++Ks, (2.11)

where Ej and E2 are integration constants. At s+=0,
s= —eC„/kT, so

Ks= eC „/kT. —'

ds/d (14~x) =—2 sinh (s'/2),

while from the saturated region

(2.2O)

4The change in the defect distribution when 44;z/ter can no
longer be considered small everywhere produces an altered ex-
pression for the Lagrange multiplier as compared with the case
when 44;r/zV is small everywhere. This means uz,+44rzr+, where
~~+ is the multiplier introduced in I.

6 Since we are considering a crystal containing divalent cation
impurities, the potential eC„ is positive in the temperature range
now under discussion.

s= —-'~ 'xo' exp{ (F++az+)/2kT)
+Ktjz+xo —eC „/kT (2.21)

and

ds/d(s+x) = sK+xp exp{(F++—nz+)/2kT)+Kt. (2.22)

Using (2.15), (2.16), (2.18), (2.5), and (2.6), Eqs.
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(2.19)—(2.22) can be solved for xp with the result

6kT 1/2

xo= —4 sinh exp
4kT

(F++ni+)

4kT

«kT )"'
+

~

16 sinh'
87rXe'f 4kT

(F++n~+)
Xexp-

2kT

+-1/2

—4 . (2.23)
kT

The Lagrange multiplier O.L,
+ is evaluated in Ap-

pendix A. Using Eq. (A15) of Appendix A together
with Eq. (2.6) we have

At temperatures suKciently low that (F++ni+)»kT,
(2.23) can be simpli6ed to

«kT ~'I' «kT y'~'] nr,+ '"
~p= —

~
+ I I

1— (224)
2z Xe') 2rrXe l k k T

in the range where ~+I.&1. The validity of an equili-
brium calculation in this temperature range is clearly
questionable. It should be noted however that meaning-
ful results for thin films require an examination of the
case ~+I.& j..

The calculation given above is based upon a con-
tinuum interpretation of the distributions. The transla-
tion of the results of the continuum theory into atomistic
language is straightforward, but there is one point
worthy of mention. Consider a {100) surface of a
crystal. To determine the concentration of impurities
in any atomic plane underlying the surface in an atomis-
tic picture one must average the result from the con-
tinuum model over the volume covered by that plane.
Thus, with the nearest-neighbor separation being a,
the concentration of free impurities in the 6rst atomic
plane under the surface is

1 sif
ds)

a

1 2~Sf
dS~u, S

where CL„ the impurity concentration beyond the
transition region, is given by (A9). Equation (2.25) is
the correct expression for C for temperatures such
that xg&0. For @0&0, the formalism presented in I is
valid.

From (2.6) and (2.18) we see that

etc. Similar considerations apply, of course, to all the
defect distributions. It is in this sense that the condi-
tion called saturation must be interpreted for the
emergence of this condition is a consequence of the
continuum model. Thus in the atomic sense we do not
have e;f=37 near the surface. '

eC (xp) = nr,+— (2.26)

Thus the potential, zero at the surface, rises to nr+/e-
at the edge of the saturation region, i.e., at x=@0, and
then goes from —nr+/e to C„in a distance x+ ' beyond
the saturation region as long as x+L))1. So, for NaC1,
Eq. (2.25) is a valid expression for the potential for
temperatures between those of Table I and those for
which ~+I. 1. Since these latter temperatures for
NaC1 are of the order of 100'K for crystals with 1. 1
mm, we shall not examine here the defect distribution

III. IMPURITY ACCUMULATION
NEAR SURFACES

It has been shown above that for moderate tempera-
tures the impurity ions tend to accumulate near the
surface. The extent of this accumulation is illustrated in
Tables II and III for a temperature of 300'K using the
NaCl parameters. ~ I. is the volume-to-surface ratio

the concentration of free impurities in the second
exp{eC„/kT) = (2z„„) ' exp{ (F+ 8+)/kT)—

X$—1+(1+4z„Cr.exp{8+/kT))'"), (2.25)

TAnLE II. For L=0.10 cm: (1) r+ ' (cm); (2) number of impurities in the region 0&x&a+ ', (3) fraction of the crystal in the range
0&x&a+, g+ /L; (4) fraction of all impurities in the range 0&x&x+ ',. (S) fraction of bulk impurities which remain free, (1—p)
Lp is defined in Eq. (4.9) of Ij.

8+(eV)

1
2
3
4
5

0.20

1.37X10 '
6.24X 10"
1.37X10 5

2.77X10 '
0.975

10 6

0.40

3.87X10 6

7.89X10"
3.87X10 '
3.51X10-3
0.119

0.60

2.62X10 ~

7.59X10"
2.62Xio 4

3.37X10
2.66X10 3

0.20

4.68X10 '
9.92X 10»
4.68X10 '
4.41X10 '
0.818

0.40

2.13X10 6

2.64X 10"
2.13X10 5

1.17X10 '
3.92X10 2

0.60

1.46X10 '
3.82X 10~
1.46X10 4

1.70X10 4

8.41X10~

6 It can be argued physically that we must have xo(e. Details will be published elsewhere.
eC„ is determined from (2.25) or (4.15) of I. ~ is then obtained from (2.5). For situations where saturation exists, line 2 of the

tables is calculated by integrating (AS) and (A7)4to z+ instead of L and then adding (A6). When saturation has not occurred, line
2 is obtained by integrating (D1) of Appendix D of I to x+ '.
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TitnLE IIL For L=1.0X10 s cm; (1) s+ (cm); (2) number of impurities in the region 0&x&a+ ', (3) fraction of the crystal in the
range 0&z&s+ ', s+ '/L& (4) fraction of all impurities in the range 0&x& s+ ', (5) fraction of bulk impurities which remain free, (1—p)
Lp is defined in Eq. (4.9) of 17.

II+(eV)

1
2
3

5

0.20

2.64X10 '
1.67X10»
264X10 '
0.743
0.993

10—6

0.40

4.24X10 6

X10»
4.24X10 ~

0.292
0.140

0.60

2.60X10 5

7.48X ip»
2.60X10-
3.33X10 2

2-67X10 3

0.20

6.55X 10-7
1.21X10"
6.55X10 4

0.536
0.898

0.40

2.19X10 '
2.49X 10»
2.19X10 3

0.111
4.16X10-2

0.60

1.46X10 '
3.82X 10~
1.46X 10-2
1.70X10 '
8.42X10 4

for the crystal. We see from these tables that the extent
of the surface accumulatior} is markedly dependent upon
8+ for a given L and C. For 8+=0.60 eV, the fraction
of impurity ions in the range x&~+ is only slightly
larger than the fraction of the crystal involved, K+ '/L.
However, for 8+=0.40 and 0.20 eV, the fraction of
impurities within x&f(+ is several orders of magnitude
larger than Ir+ '/L. For L=0.10 cm, the combination
0= 10 ' and 8+——0.20 eV means that nearly 3% of the
impurity ions are in the range x&~+ while for
L=1.0)&10 ' cm, this figure becomes about 74'Po.
Thus we must conclude that unless the binding energy is
quite high ( 0.6 eV), the impurity distribution will
be markedly nonuniform and the impurity ions in the
surface region, because of the high electric Geld in this
region, should behave in a manner distinct from that
of the bulk impurity ions. '

In determining the appropriate value of L for a given
crystal, the existence of grain boundaries should be
considered. Eshelby, Newey, Pratt, and Lidiard' have
pointed out that grain boundaries arising from dis-
locations where the dislocation separation d is such
that d(&I{+ ' correspond essentially to surfaces back-to-
back. Thus the presence of such gain boundaries would
reduce the effective volume-to-surface ratio for a given
crystal.

As was discussed in I, the presence of the excess of
divalent-cation-impurity ions in the surface region is
compensated by a negative surface charge, the result
of an excess of anions in the surface layer. It is known
that isotopic exchange between a NaC1 crystal and a
gaseous halogen atmosphere occurs with surprising
ease. ' While the controlling factor is the detailed
energetics of the exchange we suggest that the anion ex-
cess in the surface layer might be of importance. Since
the anion excess is a function of temperature and
impurity content, an experimental test of this point
should be possible.

8 Qualitative evidence for the existence of a signihcant degree of
impurity accumulation near the surface for Ca-doped NaCl
crystals has been obtained by E. Nadgornyi and A. Stepanov,
Fiz. Tverd. Tela. 5, 998 (1963) LEnglish. transl. : Soviet Phys. —
Solid State 5, 726 (1963)j.' J. Eshelby, C. Newey, P. Pratt, and A. Lidiard, Phil. Mag. 3,
75 (1958).

"G. Benson, P. Freeman, and E. Dempsey, in Advances in
Chemistry Series, edited by R. Gould (American Chemical Society,
Washington D. C., 1961), Vol. 33, p. 26.

IV. THE ELECTROÃ AFFINITY

We have seen in I and above that for temperatures
where the defect concentrations are governed by the
divalent-cationic-impurity content, the surface develops
a negative charge and there exists a positively charged
space-charge region within the surface. The negative
surface charge consists of the deposited cation vacancies
and the space charge essentially of impurity ions. Thus
from an atomic point of view everything of interest is
occurring on the cation fcc sublattice. To this point we
have said nothing about the lattice plane comprising
the surface other than to require it to be a (100) sur-
face. However, the preceding remarks indicate clearly
that there must exist cation sites in the surface plane
and in the immediately adjacent planes. This will
certainly be the case for an arbitrary surface and in
particular for (100) and (110) surfaces. However for
a (111}surface there exist cation cites only on alternate
planes and the theory as presented will not be applicable
to this case. The unique feature about a (111}surface
is that it has a dipole moment in a perfect crystal
whereas the {100)and {110}surfaces do not. With these
ideas in mind we can then relax the condition that the
surface must be a (100) plane to the condition that the
surface must possess no innate dipole moment.

The electron affinity of a polar crystal is deGned as
that energy which must be supplied to take an electron
from the bottom of the conduction band out of the
crystal to a state of rest an infinite distance from the
crystal. Clearly the existence of a dipole moment at a
surface will contribute to the electron amenity for that
surface. If the surface of a perfect crystal is a, {100}
or a (110) plane and the ions in the surface region are
not displaced relative to their position in the ideal
lattice, there will be no surface dipole moment and the
electron amenity will be due solely to the position of the
conduction band in the perfect crystal. However, as
noted above, a (111) surface does possess a dipole
moment which can be of either sign.

Consider now a perfect NaCl crystal bounded by
{100)planes in which the ions retain the perfect lattice
spacing. For such a crystal Tibbs~ has calculated the
wave function for the lowest state in the conduction
band. Based on this wave function, Mott and Gurney"
"N. Mott and R. Gurney, Electronic Processesin Ionic Crystals

(Clarendon Press, London, 1948), 2nd ed. , p. 72.
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concluded that the energy necessary to bring a single
electron into this previously neutral NaCl crystal should
be about zero although the calculation was not very
accurate. Evseev'performed a somewhat more elaborate
calculation and concluded that the bottom of the con-
duction band lay at an energy equal to —0.06 eV.

The assumption that there will be no relaxation in
the vicinity of the surface is clearly an oversimpli6ca-
tion. Benson et a/. "have carried out an extensive cal-
culation of the structure of a (100) surface of NaCl
at T=O. They permitted relaxation of the outer five
atomic layers considering, in addition to Coulomb and
nearest-neighbor repulsive interactions, van der Waal's
forces, dipole-quadrupole forces, and quadrupole-
quadrupole forces. The result of the calculation was
that the dipole moment of this surface per unit area
is 2.25X10 ' esu which would provide a contribution to
the electron affinity of +0.085 eV.

On the basis of the calculations for a perfect crystal,
we would then conclude that the electron amenity of
a NaCl crystal bounded by (100) planes is 0.1 eV.
However, we have shown in I that the presence of
defects in the crystal gives rise to a surface dipole with
a potential difference C„as long as ~+L))1. The con-
tribution to the electron affinity due to the defect dis-
tribution would then be +eC . Since crystals normally
contain a divalent cation concentration of the order
of 10 ', the dominant contribution to the electron

amenity might well be that due to the defect distribution.
This would then imply a pronounced temperature
dependence of the electron amenity. Note also that for
thin 61ms the defect contribution to the electron

amenity would be less than eC„.'2

Timusk and Martienssen, "using their measurements
of the luminescence threshold together with the
photoemission threshold determined by Taylor and
Hartman, '4 concluded that the room-temperature
electron aKnity of NaCl was 0.8&0.2 eV. These ex-

periments were done on crystals of norminal but un-

known purity. In addition, Taylor and Hartman'4

showed that the photoemission threshold for NaCl thin
crystals was less than that for NaC1 crystals by about
0.4 eV. These experimental results are in accord with

the ideas presented above. It should be noted that the
temperature dependence of the defect contribution to
the electron amenity will occur in the photoemission
threshold.

At low temperatures it is somewhat unlikely that
thermal equilibrium will be obtained. This would tend
to reduce the potential C„ from the equilibrium value
as would impurity precipitation.

APPENDIX A: EVALUATION OF THE LAGRANGE
MULTIPLIER AT TEMPERATURES FOR

WHICH SATURATION EXISTS

The Lagrange multiplier is determined by the condi-

tion that the total number of impurity ions is conserved.

For divalent cation impurities we have for x&xo

and

n;g=E (A1)

and for x&xo

n.~0 (A2)

e;r——%exp f —(eC„+nr,+)/kT) exp( —z) (A3)

V. DISCUSSION

The principal objection to the present theory is the
fact that it predicts defect densities near the surface
which are suKciently high that the satisfaction of the
conditions under which an expression for the con6gura-
tional entropy and thus the charge density was obtained
becomes questionable in this region (see Appendices 8
and C of I). Within the bulk of the crystal, the defects
are rather well represented by point charges since we can
average over lengths hx such that the distortion around
a defect extends over a region much less than Dx. Near
the surface the rapid change in the defect density as a
function of position precludes such an average. Thus
the expression for the charge density becomes invalid
but only in a very narrow layer right at the surface. In
addition, we have neglected all elastic interactions.
These interactions will be of principal importance near
the surface where the defect density is high and relaxa-
tion effects most pronounced. Thus we must conclude
that the predicted defect distribution very near the
surface is, in detail, suspect.

However, the fact remains that the state of thermal
equilibrium with the attendent bulk neutrality requires
a surface potential 6eld such that the innate free
formation energies can be appropriately modified.
Since our treatment of the interior of the crystal is

formally accurate within the context of the model, we

suggest that, while the actual distributions in the sur-

face region might diGer from those we predict, the
electrical moment of this region, and hence C„, should

be essentially as calculated herein.

We have considered the interaction between defects
of the opposite charge to be of the short range, near-

neighbor type. However, the inclusion of the long-range
e6'ects of the Coulomb interaction has been discussed in

I so we will not pursue the topic further here.

'2For crystals such that a+I&i, the maximum potential
difference between the surface and the interior is &4„."T. Timnsk and W. Martienssen, Phys. Rev. 128, 1656 (1962)."J.W. Taylor and P. Hartman, Phys. Rev. 113, 1421 (1959).

and

rb;b Nz„„exp( —(F+ B——++nz+)/kT) . —(A4)
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From the bound impurities, per unit area, we obtain

rt,sdx= (L ocs)—Nz„„

Xexp{—(F+ B+—+cez,+)/kT} . (AS)

In the saturated region, the contribution from the
free impurities is

(A6)

L»xo, vre have

C=s„exp(—(F+ B—++rxz+)/kT+ (ocp/L)

+exp{—(crz,++eC„)jkT}+2(x+L) '

Xexp{—(cez++ee„)/kT}
X Lexp( —s'/2} —exp( —2 tanh '

X(e—~z tanh(z'/4))} j. (AS)

Since x+L))1, the second term in the square brackets
can be neglected. Using (2.5), (2.6), (2.1S), and
dehning Cl. by

The contribution from the free impurities in the un-
saturated region can be obtained from Appendix D
of I by substituting (L—xe) for L, s' for zs and ccz+

for O.II+ since we are considering ~+L&&j, Thus

1-
f

ekT ~'t'-
&z,=—C——*o+(

E2z Ne')

Eq. (AS) becomes

(A9)

I;yCh=Nx~ ' exp{ (nz,++eC„)kT}

X[a+(L—xe)+2 exp( —z'/2}

—2 exp( —2 tanh '(e "+'~*'& tanh(z'/4))} j. (A7)

The total number of impurities per unit area is the
sum of (A5), (A6), and (A7).

Assuming a mean impurity concentration C and.

Cz, =z„„exp(—(F+—B+1crz,+)/k T}
+exp{—(nz++F+)/2kT) (A10)

so that, in terms of Cl„,

exp( —cry+/2kT} = (2s„) ' exp{ (zzF+ B+)/kT—}
XL

—1+(1+4Czz„„exp(B+/kT})'tsar. (A11)

This expression has been derived under the assumption
~L»1.
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Optical Determination of the Symmetry of the Ground States of
Group-V Donors in Silicon*

R. L. AGGARWAL AND A. K. RAMDaS

DepartnMnt of Physics, Pnrdne Unheershty, Lafayette, Indhana

Excitation lines from the doublet, ts(E), and the triplet, 1s(Tr), states have been measured at tempera-
tures 80, 59, and 30'K for P, As, and Sb donors in silicon. On the basis of the relative intensities of the
lines with the same final state it is deduced that the 1s(E) state lies above the 1s(Tq) state for all three im-
purities investigated. At ~30'K the 1s(T&) ~ 2pp 2Py transitions for antimony impurity resolved into a
doublet. Uniaxial stress measurements for P and Sb, with compression F parallel to $100$ or L110j and
with the electric vector E either parallel or perpendicular to F, indicate that the lines with 1s(Tr) as their
initial state do not exhibit any splittings or shift in their energies. On the other hand, the lines with 1s(E)
as their initial state exhibit splittings with dichroic features. Experimental observations of the number and
the positions of the stress-induced components and their polarization characteristics are consistent with the
ordering in which 1s(E) lies above 1s(T&).

I. INTRODUCTION

ECENTLY one of us reported' the observation of
excitation spectra of Group-V donors P,"As, and

Sb in silicon originating from the higher-lying doublet
and triplet ground states. The separations of/these
states from the lower-lying singlet state are of such mag-
nitudes that they are signi6. cantly populated only at
temperatures much higher than liquid-helium tempera-
tures; thus the measurements reported in Ref. 1 were

*Work supported in part by the Advanced Research Projects
Agency and the U. S. Army Research Once, Durham.' R. L. Aggarwal, Solid State Commun. 2, 163 (1964).

made at liquid-nitrogen temperatures. Similar measure-
ments have also been reported by Ottensmeyer et al.2

for As and Sb in silicon. Measurements of this kind
were erst made by Fisher' in the study of the ground
states of Group-V donors in germanium. Following the
same technique the ground states of isolated lithium and
the lithium-oxygen complex in silicon have also been
investigated by Aggarwal et a/. 4 We have recently re-

~ F.P. Ottensmeyer, J. C. Giles, and J.W. Bichard, Can J.Phys.
42, 1826 (1964).

~P. Fisher, J. Phys. Chem. Solids 23, 1346 (1962). See also
j'. H. Reuszer and P. Fisher, Phys. Rev. 135, A1125 (1964).

4 R. L. Aggarwal, P. Fisher, V. Mourzine, and A. K. Ramdas,
Phys. Rev. 138, A882 (1965).


