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The defect distribution in an ionic crystal is calculated for both pure crystals and crystals containing
divalent cationic impurities. By taking the electrostatic energy into account explicitly, it is shown that bulk
electrical neutrality and space-charge regions surrounding the vacancy sources are an inherent aspect of
thermal equilibrium. Interactions among defects of the opposite charge are taken into account using the
nearest-neighbor-binding model. Inclusion of the long-range effects of the Coulomb interaction and the
question of the sign of charged dislocations are discussed.

I. INTRODUCTION

T was Frenkel' who first pointed out that pure ionic
crystals in which Schottky disorder predominates
should, in thermal equilibrium, possess a charged sur-
face and a region of space charge of the opposite sign
adjacent to the surface as a consequence of the fact that
the free energies of formation of the anion and cation
vacancies differ. Qualitatively the surface dipole region
arises in the following manner : Suppose the free energy
necessary to form a cation vacancy is less than that re-
quired to form an anion vacancy. Then, at any finite
temperature, there will be a tendency to form an excess
of cation vacancies resulting in a positively charged
surface and a region of negative space charge beneath
the surface. This charge distribution will retard the
further formation of cation vacancies while enhancing
the formation of anion vacancies. The result is that, in
equilibrium, there will exist a dipole region at the sur-
face across which there exists a potential difference
which serves to change the innate free formation ener-
gies of the vacancies into effective free formation
energies in such a way that the bulk of the crystal is
electrically neutral if the crystal is sufficiently large.
Eshelby, Newey, Pratt, and Lidiard? noted that edge
dislocations, being sources and sinks for vacancies,
would also give rise to such charging effects, the analog
of the surface charge being a charge on the dislocation
line itself with the space charge distributed with
cylindrical symmetry around the dislocation line.
When a crystal contains a small concentration of
impurities which possess an absolute value of charge
different from that of the host ions of the crystal, there
also arises a space-charge region near the surface and
around edge dislocations.? Consider a NaCl crystal con-
taining divalent cations. At temperatures where the
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vacancy concentrations are essentially determined by
the divalent cation concentration, the surface develops
a negative charge and the space charge is positive. The
resulting potential distribution serves to enhance the
cation-vacancy concentration while reducing the anion-
vacancy concentration with the result that electrical
neutrality is again maintained in the bulk of the crystal.

In contrast to previous work on the problem, we show
that electrical neutrality within the bulk of the crystal
is a consequence of thermal equilibrium and need not be
postulated to demonstrate the existence of the space-
charge regions. Thus, the space-charge regions are an
inherent aspect of thermal equilibrium.

We restrict our discussion in this paper to ionic
crystals for which Schottky disorder predominates. The
crystal model used in the calculations is presented in
Sec. IL In Sec. III the general mathematical procedure
is utilized to calculate the defect distribution in a pure
crystal. Crystals containing divalent cationic impurities
are discussed in Sec. IV where we have taken into ac-
count effects due to the association of impurities and
cation vacancies using the nearest-neighbor-binding
point of view. Inclusion of the long-range effects of the
Coulomb interactions among defects is the subject of
Sec. V. The physical nature of the space-charge forma-
tion is emphasized in the discussion of Sec. VI.

II. CRYSTAL MODEL

We restrict our discussion to crystals of the type
M+X~ with the NaCl structure for which the intrinsic
disorder is of the Schottky type. For our calculations
involving the surface region we consider an electrically
neutral crystal having free (100) surfaces at x=0 and
x=2L and of infinite extent in the y and z directions so
that the problem becomes one dimensional. We assume
that the charged-defect distribution can be suitably
smoothed so that the potential ® arising from this
distribution will satisfy Poisson’s equation for a medium
with static dielectric constant e. The boundary condi-
tions for the potential are

$=0 at x=0 and =x=2L, (2.1)
and

d®/dx=0 at x=L. (2.2)
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SPACE CHARGE IN IONIC CRYSTALS. I

The physical nature of boundary condition (2.1) will be
discussed later. Boundary condition (2.2) follows im-
mediately from symmetry and expresses the fact that,
since we demand that our entire crystal be neutral, each
half will also be electrically neutral. Thus we need con-
cern ourselves only with the section of crystal from x=0
to x=L.

In the case of the edge dislocations we assume that
we have an edge dislocation density d with the disloca-
tions regularly spaced and parallel in the crystal. As-
suming the dislocation core radius to be b, the boundary
conditions on @ in a cylindrical coordinate system with
the z axis along the dislocation line and » measured from
the center of the core are

®=0 at r=b, (2.3)
and
d®/dr=0 at r=R, (2.4)
where
R= (zd)™12, (2.5)

Condition (2.4) expresses the fact that each dislocation
and the region surrounding it out to a radius R comprise
an electrically neutral system. Condition (2.3) will be
discussed later.

We further assume that we are always in a state of
thermal equilibrium. That is, the defects all have
mobilities sufficiently high that the state predicted by a
minimization of the free energy can be attained. At low
temperatures such an assumption is of dubious validity
and we will comment further on this later.

In addition, we consider the pressure to be zero such
that the equilibrium state will be given by a minimiza-
tion of the Helmholtz free energy F

F=U-TS, (2.6)

where U is the internal energy of the crystal, T is the
absolute temperature, and .S is the entropy.

III. SPACE-CHARGE DISTRIBUTION
FOR A PURE CRYSTAL

For the case of a pure crystal, electrical neutrality of
the system means we have equal numbers of anions and
cations. Since we are considering the case of Schottky
disorder, there are three types of defects which arise.
These are anion vacancies, cation vacancies, and bound
vacancy pairs. The pairs arise from the Coulomb attrac-
tion between the cation vacancies with virtual charge
—e (e is the absolute value of the electronic charge) and
the anion vacancies with virtual charge e. As a model for
this interaction we consider the pairs to have a binding

oF= .de ony (%) Fr—ed®(x)—kT In
J, ool [

ny (%)

+6n3(x){F++F——B—kT ln[

w]}+an_(x){ P+ eb(x)— T ln[’
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energy B when they are nearest neighbors in the lattice
and no binding energy otherwise. This model ignores the
long-range effects of the Coulomb interaction and this
deficiency will be discussed later. A vacancy pair, being
neutral, does not contribute to the charge density. Since
we will neglect all interactions involving dipoles, va-
cancies forming pairs are essentially eliminated from
further consideration. We retain the pairs in the theory
as a prototype of important such pairings to be dis-
cussed later.

The free energy per unit area of the half of the
disordered crystal we are considering, to within an
additive quantity depending only on the temperature, is

L
F= / dx[ny (x)Ft+n_(x)F+n5(x)
X{Ft+F—B}+3p(@)2#)]-TS., (3.1)

where 7, (x) is the density of cation vacancies at x, #_ ()
is the density of anion vacancies at #, #p(x) is the den-
sity of bound vacancy pairs at x, and S, is the con-
figurational entropy. The charge density p(x) is given by

p(x)=e{n_(x)—ny(x)} 3.2)

and ®(x), the electrostatic potential, is to be determined
from Poisson’s equation

V2 (x) =d*®(x)/dx?= —4mp(x)/€,

where e is the static dielectric constant.

The quantities F* and F— are the free energies of
formation of the cation and anion vacancies and include
the change in vibrational entropy of the crystal because
of the presence of the defect. In the same sense B should
also be considered to be a free energy including the
binding energy of the defects together with an entropy
term arising from the modification of the vibrational
spectrum due to the presence of the pair. We assume the
quantities F+, F—, and B are independent of x, an as-
sumption that will be discussed later.

We now make a variation of F with respect to the
three independent quantities, #,.(x), #—(x), and %z (x).
Thus

(3.3)

0F= / dx[ny () Ft-+6n_(x) F—+6n3 (x)
0

X{Ft+F-—B}4+35{p(®x)® (%)} 1—T8S.. (3.4)

The variation of the term involving p(x)®(x) is dis-
cussed in Appendix A and 85, is evaluated in Appendix
B. Using Eq. (B5) of Appendix B and the results of
Appendix A, Eq. (3.4) becomes

N—n_(x)—np(x)
n_(x) :”
2 (N —n_(2)—n5(*) ) (N —n.(2)—np(x))
(N —ngp(x))np(x) ]}] , (33)
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where NV is the density of anion or cation sites in the
crystal, z, is the number of nearest unlike neighbors of
an ion, and % is Boltzmann’s constant. Since there exist
no restrictions on the quantities varied, the conditions
for a minimum of free energy are that the coefficients of
ony, on_, and dnp in (3.5) must all vanish. Assuming
n4/N, n_/N, and np/N are much less than one, these
conditions become

ny.(x)=N exp{— (F+—ed(x))/kT},
n_(x)=N exp{— (F+e®(x))/kT},
np(x)=Nz, exp{— (Ft-+F—B)/kT}.
Using Eqgs. (3.2), (3.3), and (3.6), we have
d2<I>_ 47reN|: {_F‘—I—e@}
P kT

el S5 w0

Let us now define &, as that potential which makes the
right-hand side of (3.7), that is p, equal to zero. Thus

e, =3 (F+—F-). (3.9)

3.6

i

We attach no physical significance to &, at this point.
If we now define

2(x)={e®(x)—ed} /R T,
8rNe

(3.9)

K= exp{ (e®,—F*)/kT}, (3.10)
kT
and
s=kx, (3.11)
Eq. (3.7) can be rewritten as
d?z/ds?*=sinhz. (3.12)

The solution to this equation, using boundary condition
(2.2), is?

coshzo— coshzy )12
KL=kF(Sin_1 {'—I;——l——} , k) 5 (313)
cosnzog—

where F(®,k) is the elliptic integral of the first kind,

2 12
k= (——————) , (3.14)
coshzz+1
20=2| smo=— €D /kT, (3.15)
and
21=3| sur.={eP(L)— 2} /kT. (3.16)

8 The first integration of (3.12) yields, using (2.2),
1 &

V2 (coshz—coshz )12 *
Making the substitution ¢=coshz, Eq. (3.13) results.

ds=
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Let us consider for illustration a NaCl crystal with
L=1 cm at 500°K. Using for F* and F— the values*

F+=0.80 eV—3.1kT,

F-=132 eV—3.1kT, (3.47)

together with5
N=2.25X10%/cm?,

¢=5.62, (3.18)
we find kL=1.22X10% From (3.13) this then means
that coshz,=1+4u with #<1. Since coshzz~1, z,~0,
and ®(L)=®,. Since ®,, was defined as the potential for
which p=0, we see that the state of thermal equilibrium
wncludes electrical neutrality within the bulk of the crystal
as long as kL>>1, and we need not postulate this condi-
tion initially as has been done in the past.

Aslong as kL>>1, we can obtain the solution of (3.12)
in a form more amenable to computation. The result is

z=4 tanh™'{e¢~* tanh (}20)}, (3.19)

where 2o is still given by (3.15).

Thus we see that the potential, zero at the surface,
becomes ®,, within the bulk of the crystal where there
exists electrical neutrality, but only when «L>>1. Note
that the vacancy concentrations when =%,

ny=n_=Ne~FrHFOIIT (3.20)

are the concentrations normally assumed to exist
throughout the crystal.
In Fig. 1 are shown curves of z/zo, using (3.19), as a

function of s for 20=0.10, 1.0, 10.0, and 100. The value
of s for which 2/20=0.368 is seen to decrease as |zo]

4 These values were selected rather arbitrarily using as a basis
the experimental work summarized in R. Dreyfus and A. Nowick,
J. Appl. Phys. Suppl. 33, 473 (1962), and the theoretical summary
givgr;)by F. Fumi and M. Tosi, Discussions Faraday Soc. 23, 92

1957).
¢ 5 For actual applications, the temperature dependence of e
should be considered.



SPACE CHARGE IN IONIC CRYSTALS. I

increases, being =1 for |20| 1, 0.30 for zo=10, and
decreasing to 2X 1078 for 2o=100. Thus, the potential
achieves its bulk value essentially exponentially for
|20]| S1 and even more rapidly as |zo| increases be-
yond 1.

Using the data representing NaCl given in (3.17) and
(3.18) « is tabulated in Table I for various tempera-

TasBLE I. Quantities characteristic of pure NaCl.

T (°K) «7!(cm) x, (cm) o (esu/cm?) E (V/cm)
1100 1.45X1077 1.27X10~7 3.58X 103 2.40X 108
900  4.55X1077  3.77X1077 1.32X103 8.87X108
700 2.83X10¢  2.10X10°¢ 2.72X102 1.83X 105
500 8.21X10%  4.80X1075 1.60X 10! 1.07X10¢
300 2.20X101 6.67X1072
100  8.45X101®  6.58X10%

tures. Also shown in Table I are values of x., the value
of « for which z/20=0.368. Note that ! is a reasonable
measure of the thickness of the transition region down to
near room temperature. As the temperature decreases
below room temperature we see that the condition
kL>>1 is not satisfied for crystals of reasonable size.
Then Eq. (3.19) is no longer valid and z(s) is given by

coshze— coshzy) /2
s= kF(sin‘1 [——} , k)
coshzo—1

coshz(s)—coshzz ) 1/2
—kF(sin—1 {————} , k) ,
coshz(s)—1

where F (®,k) is the elliptic integral of the first kind and
k is defined by (3.14).
In terms of z the vacancy concentrations are

ny/N=exp{— (F*+F~)/2kT} exp{z},

n_/N=exp{— (F+*+F~)/2kT} exp{—2}.
These quantities are sketched schematically in Fig. 2 as
a function of x for the case F~>F+ corresponding to

NaCl. We see that in the region near the surface there
are more cation than anion vacancies resulting in a

(3.21)

—F7KT
P!

ﬂ'
LN
Fic. 2. Sketch of
ny/N and n_/N as a
function of x for apure w2 ~
crystal with F~>F*, o7
I”
A
- I, N
CFATE
] ~x
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region of negative space charge. The excess charge in the
space-charge region is compensated by a layer of posi-
tive charge lying on the surface at x=0, the result of an
excess of cations. The quantity of positive charge on the
surface can be obtained by integrating the negative of
the charge density over the range 0<x<L or, alter-
natively, from the fact

D,=4no,

where o is the surface charge per unit area, and D, is the
normal component of the displacement at the surface in
the direction of increasing x. Now

dz/ds=— (e/kTk)E., (3.23)

where E is the x component of the electric field and so,
using Eq. (3.21),

o= (kTxe/2me) sinh (z0/2)

as long as kL>>1. Values of ¢ and the electric field at
=0 are given in Table I for those temperatures for
which kL>>1 with L=1.0 cm. Note that the electric field
becomes very high at high temperatures.

Several important aspects of the problem relating to
the considerations of electrostatics should be mentioned.
We used the boundary condition that the potential was
zero at the surface and found (at high enough tempera-
ture) that the potential became ®,(=®(L)) in a dis-
tance ~«71, and then remained at ®, to x= L. Thus the
structure of the surface region is essentially a dipole. It
is well known that the potential change in traversing a
dipole layer of strength 7,

(3.22)

(3.24)

r=0f, (3.25)
where |o| is the charge per unit area of each sheet of
charge and £ is the separation of the charge sheets, in a
medium of dielectric constant e is 477/e. In the model
we have used, we have an infinite dipole layer. Thus,
when we assume a zero potential surface, we have a
potential which is zero for all <0, rises to a value &,
near x=¢"', and remains at ¥, until the reverse transi-
tion occurs near x=2L. So we have immediately,

&, =4nr/e. (3.26)

For simplicity we have been considering a crystal of
infinite extent in the 4 and z directions. In the case of a
finite crystal the dipole layer will cover the entire sur-
face. Therefore the potential will be zero at all points
outside the crystal (a reasonable state for a neutral
entity) and &, within the crystal as long as one is
further than «! from a surface. The representation of
the surface region as a dipole layer breaks down of
course when kL<1 or whenever one is interested in
potential variations over dimensions ~x™1,

The above discussion, together with the results of
Appendix A, provides the justification for our neglect of
effects due to image charges. Let us assume that the
crystal extends to infinity in the « direction so we need
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worry only about the dipole layer near x=0. In the
model where the crystal is effectively infinite in the y
and z direction the image dipole layer will produce a
constant potential throughout the real crystal. It is
shown, however, in Appendix A that an arbitrary refer-
ence level for the potential produces no physical effect.
Thus the image dipole layer can be neglected.

The fact that the potential assumed to exist at the
surface is immaterial is physically clear since the defects
are affected only by the potential difference between the
surface and the interior of the crystal. This potential
difference enters the problem as a correction to the free
formation energies of the vacancies [see (3.6)] and serves
to change these energies in just such a manner that
within the bulk of the crystal electrical neutrality exists
as long as kL>>1.

For the case of dislocations much of the above
formalism can be retained. We assume that F* and F—
are independent of whether the vacancy source is the
surface or a dislocation for the present. Equations (3.6)
remain unchanged if we interpret ® as ®(r) and (3.12)
becomes, in this cylindrically symmetric case,

1 ad dZD
— —(SD'—') =sinhzp, 3.27)
Sp dSD dSD
where now
zp={e®(r)—ed, }/ kT (3.28)
and
Sp=kr, (3.29)

with « given by (3.10) and e®,, by (3.8).

If we are at a temperature such that «R>>1, then
&, =®(R) and the solution of (3.27) has been shown to
be similar to that for the surface.® The potential, zero at
the dislocation core, =15, achieves its bulk value &, in
a distance ~«1. Since the potential is always negative
for pure NaCl, the region around the dislocation con-
tains an excess of cation vacancies giving rise to a
negative space charge which is neutralized by charging
of the dislocation line.

1V. SPACE-CHARGE DISTRIBUTION IN A
CRYSTAL CONTAINING DIVALENT
CATIONIC IMPURITIES

For our discussion of the surface region we consider
the model presented in Sec. II and assume there is
present within the crystal an average concentration C
of divalent cation impurities. C is defined to be the ratio
of impurity ions to normal cations. There exists a con-
siderable body of evidence that when, for example, a
NaCl melt is doped with a substance such as CaCl,, the
Ca enters the crystal as Cat+ ions in cation sites” and

6 J. Koehler, D. Langreth, and B. von Turkovich, Phys. Rev.
128, 573 (1962).

7A. Lidiard, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 20, p. 290.

KLIEWER AND J. S.

KOEHLER

we consider this to be the case. The over-all neutrality
of the crystal then means that each divalent cation
which enters the crystal brings with it two anions.

There are now, in addition to the three types of
defects discussed in Sec. III, two types of impurity
defects which enter into our considerations. The first
consists of isolated impurities having an effective charge
of +e, and the second consists of impurities which are
close neighbors of cation vacancies. These complexes are
neutral and will not contribute to the charge density p.

For our initial considerations we take as a model for
the impurity-vacancy association the supposition that
the complex has a binding free energy B, if the impurity
and vacancy are in adjacent cation sites and no binding
free energy otherwise. Thus we are again ignoring the
long-range effects of the Coulomb interactions.

The free energy of the crystal per unit area now is
(again to within an additive constant dependent only on
temperature)

F= / dx[ny (x)Ft+n_(x)F~+np(x){Ft+F —B}
0

+ra@){Fr— B} +3p(*)2@)]-TS., (4.1)

where 74 is the density of impurity-cation vacancy
complexes, and now

p=e(nistn_—n), (4.2)
where 7 is the density of unassociated impurities.

We now make a variation of F permitting ., #_, g,
nis, and nsp to vary. Proceeding as in Sec. III (the
variation of the configurational entropy is evaluated in
Appendix C for this case), the conditions for the free
energy to be a minimum are

Nif edtan™
o2,
(1\7——2%1‘1;—%3—%{;—%4_) kT
nib(N—Zmb)z
(N—Zmb——ng—mf—n+)2N
Ft—B,+agt
=znnexp{———— ,
kT
Ny Ft—ed
=exp{— , (4.3)
(1\7—27L¢b—n3—nif—%+) kT
n_ F~ted
(N—n_—ng) kT
%B(JV—“WB)
(N—Znib-—n;g—n,-f—mr)(N—ng—n_)
{ F*—}-F‘“——B}
=p €Xpy ————( .
kT
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The Lagrange multiplier az* has been introduced to
take account of the fact that the total number of
impurities in the system must remain constant, that is,

L
/ dx(nzf-l—nw):NC’L (44)
0

Anticipating forthcoming results, we assume #./N,
n4/N, n_/N, and np/N are much less than one. In
addition we will assume in this paper that z;;,/N<<1.
Using the assumption that all concentrations are small,
(4.3) can be simplified to

ny/N=exp{— (F+*—e®)/kT},
n_/N=exp{— (F~+¢®)/kT},

i/ N=exp{— (eb+ax™)/kT},
1it) N = an exp{— (F*+— By-+an*)/ET}
15/ N=2n exp{— (F++F-— B)/kT}.

(4.5)

The charge density p as given by (4.2) becomes, using
Eq. (4.5),

p=eN[exp{— (ed+ant)/kT}
+exp{— (F~+¢®)/kT}

—exp{— (Ft—e®)/kT}]. (4.6)

We again define &, by the condition that p=0 when
®=3®,. Thus,

0=exp{— (e?,+ant)/kT}
+exp{— (F+¢2,)/kT}
—exp{— (Ft—ed,)/kT} .

With z given by (3.11), s, by

4.7)

Sy=K4pX, (4.8)
and «; by (3.12) with &, now understood to refer to a
crystal containing divalent cations, Poisson’s equation
becomes (3.12) with s replaced by s,. As long as k, L>>1
[so that ®(L)=4®, ], the solution is again given by Eq.
(3.19) with s replaced by s;. The quantity 2o is given by
(3.15). As in the case of the pure crystal, the potential
goes from zero at the surface to its bulk value &, in a
distance of the order of x,~. Before determining &, we
need to evaluate azt. This evaluation is carried out in
Appendix D.

Having now an expression for ag*, we could solve
Eq. (4.7) for e¢®,. However, if one inserts axt [see
Eq. (D20)] into (4.7), the result is a cubic equation for
e*2=/*T which, though solvable as it stands, yields a
solution which tends to obscure the physics. Thus we
shall present some preliminary arguments which lead to
useful approximations in the solution of Eq. (4.7). Keep
in mind that we are discussing the situation for «, >>1.

8 The assumption #:s/N<K1 will be eliminated in the following
paper. Its use prevents us from discussing arbitrary temperatures.
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In view of the fact that the free impurities will be
either attracted or repelled by the surface, depending
upon the sign of &, [see Eq. (4.5)], while the concen-
tration of impurity-vacancy complexes is uniform
throughout the crystal, it is most useful to define the
degree of association p of the impurities in terms of the
total impurity concentration beyond the transition
region. Thus,

Nib
pE

Biptnis| 2mo

Fr—B,—ed,) T
= [1—!—2,,,,—1 exp{——;;—————}] 4.9)

such that beyond the transition region, when & is
effectively &,

nig/N=(1—p)Cs (4.10)

and

i/ N=pCi, (4.11)

where Cj is the total impurity concentration beyond the
transition region which means the region x, 1Sx<L.
Using (4.5), (4.9), (4.10), and (4.11),

. 0[ Sam exp{ — (FF— B.)/kT}+exp{—ed,,/E T} ]
L exp{— (B — B /RT) + & exp{— et kT |’
(4.12)

where £, is defined in Eq. (D18). Thus we now have an
expression for the “bulk” impurity concentration as
well as an expression for the degree of association in
terms of this concentration.

In terms of the quantities just defined, our neutrality
condition (4.7) can be written

(1—p)Crtexp{— (F~+ed,,)/kT}

—exp{— (Ft—ed,)/kT}=0, (4.13)
so that
el ¥T = gF IR (1— p)C1/24-{[(1—p)C:/2

+exp[— (F+F)/RT]}?). (4.14)

For reasonable impurity concentrations and moderate
temperatures we expect the first term in the square root
to completely dominate the second. Physically, this
means we have a negligible number of anion vacancies
which is mathematically equivalent to assuming
F~— o0, Using this assumption we find

+[£:24+4Czpn exp(B/RT) 2} . (4.15)
This solution for e®,, is valid for intermediate tempera-
tures. The failure of this expression as the temperature
is lowered is due to the breakdown of the approximation

n:7/N<18 (see below). At high temperatures it is no
longer valid to consider F~— . The highest tempera-
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TasrE II. Maximum temperature for which Eq. (4.15) is valid

for L=1.0 cm. (All temperatures in °K.)

¢ 10~ 105 10 10~

By (eV)
0.20 639 727 840 994
0.40 639 725 833 967
0.60 630 705 791 891

tures of validity for Eq. (4.15) using the parameters
representing NaCl are given in Table II for various
combinations of B, and C.

At sufficiently high temperatures, as is evident from
Eq. (4.14), e®,, will become that for the pure crystal,
Eq. (3.10), corresponding to the €' — 0 limit in Eq.
(4.15). Using the aforementioned NaCl parameters, the
temperatures above which e®, is essentially that of the
pure crystal are given in Table III. For temperatures

Tasre III. Minimum temperature for which e®., is given by
pure crystal solution, Eq. (3.8), for L=1.0 cm.® (All temperatures
in °K.)

C 10— 105 10 102
B, (eV)
0.20 945 >1100 >1100 >1100
0.40 939 >1100 >1100 >1100
0.60 907 1053 >1100 >1100

» Melting point for NaCl =~1073°K.

between those given in Tables II and III, Eq. (4.14)
must be solved as it stands.

Curves of e®, for C=1075 1075 104 and 10~° are
given in Fig. 3 for B,=0.40 eV using the NaCl parame-
ters.? Note that at moderate temperatures the potential
is positive, becomes zero at a temperature 7o depending

0.40;

0.10| =10

eda

(eV)

0005—186 260 300 400 500 N 600N 7005 800 "§00 1000 00

T(K)

-010)

-0.20

-0.30l

Fi16. 3. The temperature dependence of e®,, for a NaCl crystal
containing divalent cations with B, =0.40 eV. The vertical lines on
the curves mark the temperature below which the solution (4.15)
is no longer valid.

? The temperatures below which Eq. (4.15) becomes invalid are
noted on these curves. For high values of the binding energy B,
Eq. (4.15) is valid down into the temperature range in which the
existence of thermal equilibrium becomes questionable whereas
such is not the case for low values of the binding energy.
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upon B, and C, and approaches the potential for the
pure crystal at still higher temperatures. Physically, T
is that temperature at which the intrinsic concentration
of free cation vacancies is equal to the free impurity
concentration, that is,

exp{—F*/kTo}
=C/[2an exp{— (F*—B,)/kTo}+1] (4.16)

since £,=1 for T'=T. Values of T, for various combi-
nations of € and B,. are given in Table IV for the NaCl
parameters.

Increasing B, results in less free charge in the crystal,
the slope of e®,, in the impurity-dominated region is less
steep and the potential for a given temperature is re-
duced. Decreasing B, has the opposite effect. These
features are evident in Table IV.

TasLE IV. Values of T, the temperature for which the potential
becomes zero, in °K, for L=1.0 cm.

C 10-¢ 10— 10+ 103

B, (eV)
0.20 549 635 753 915
0.40 546 628 731 860
0.60 509 568 643 739

Curves of «; ! as a function of temperature are given
in Fig. 4 using the data representing NaCl and B,
=0.40 eV. These can be interpreted as the thickness of
the space-charge region only for |ed,|/kTS1 as
discussed above. Thus, for T'>To, x,~' will be an
adequate representation for the double layer thickness
while the thickness becomes increasingly less than «,~!
as T decreases below 7. Increasing B, to 0.6 eV in-
creases significantly the value of x; ' in the region where
the impurity content is significant as a consequence of
the reduced free-charge content within the crystal.
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F1c. 5. Sketch of charged defect concentrations for a crystal with
F~>F* containing divalent cations and T'>T.

Reducing By to 0.2 eV produces minima in the curves of
k! which are more pronounced than those of Fig. 4.
For example, C=10—¢ produces a minimum of k;~?~107°
cm at 7=>~250°K, whereas C=10"* corresponds to a
minimum at ~350°K, where x;'~2X10~7 cm. It
should be pointed out that our present assumption that
ke L>3>1 will be satisfied for crystals of reasonable size
down to well below room temperature.

The concentrations of the charged defects can be
obtained from (4.5) and (D13). Sketches of these
quantities for temperatures greater than and less than
Ty are given in Figs. 5 and 6. Note that for T'<T, the
impurities tend to congregate near the surface whereas
for T>T,, the opposite occurs. The tendency for the
impurities to congregate near the surface for T'<T is
the reason the solution discussed to this point breaks
down at low temperatures.®

The charge on the surface serving to neutralize the
space charge, negative for 7'<T'o and positive for
T >T,, is given by (3.24) with « replaced by « since we
are still considering x, L>>1.

To this point in the discussion of crystals containing
divalent cations we have dealt solely with the problem
of the surface. As pointed out in Sec. III, edge disloca-
tions, being sources and sinks for vacancies, behave in
many respects like a surface.

The equation determining the potential around the
dislocation is (3.27) with zp given by (3.28) and sp4 by

(4.17)

SD4=Kyqt.

We are considering all defect concentrations to be small
everywhere. The neutrality condition (4.7) will be
satisfied at =R provided x, R>>1 so that ®(R)=&,. It
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is not immediately obvious that the Lagrange multiplier
should be the same for both the dislocation and the
surface. The reason why C15C is the tendency toward
depletion of the bulk impurity concentration by the high
concentration near the surface for 77<T. This effect is
negligible in the case of dislocations for normal dis-
location densities (~108 lines/cm?) with C>10-3, Con-
sidering the dislocations to be in a region of impurity
concentration Cj, we find for the dislocations

-]

e —_—

P kT
Ci

" oan e5D{— (P —B)/KT) + exp{ — b /kT}

(4.18)

Using for C; the expression (4.12), we see that agt for
the dislocation is identical to that for the surface. Keep
in mind that we are still considering F*+ and F~ to be
constant for a given crystal, independent of the vacancy
source.

A numerical method for the solution of Eq. (3.27) is
given in Ref. 6. It is shown there that the structure of
the solution is similar to that for the surface. For T'< T,
the potential, zero at r= 15, increases to &, in a distance
Skyt resulting in a negatively charged dislocation and
a region of positive space charge, comprised essentially
of divalent ions, surrounding the dislocation. For T'> T,
the space charge, now consisting of an excess of cation
vacancies, is negative and the dislocation is charged
positively. The charge on the dislocation line per unit

T
—(F¥=8/kr -e¢a/m]
Znn! 33

_ —edu/KT
e

—(¢ —p VKT -
zn,,er B, xr+€$e¢Jer

—F7/KT
e

SURFACE ~x

F16. 6. Sketch of charged defect concentrations for a crystal with
F~>F* containing divalent cations. The temperature is less than
To but within the realm of validity of Eq. (4.15).
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length Q is given by
ekT dZ D
Q=———@b)— (4.19)
2e dspy|Spyr=rky

for ky R>>1 and all defect concentrations small. Note that
the equation which gives the temperature for which
the dislocation charge vanishes is (4.16).

V. INCLUSION OF LONG-RANGE FORCES
BETWEEN DEFECTS

From Eq. (4.5) it follows that

Midb Zan
—_ ___eB+/kT .

Nynif N

(5.1)

Lidiard" showed that the inclusion of Coulomb effects,
within the context of the Debye-Hiickel theory, resulted
in Eq. (5.1) becoming

Mip Znn

NN f

where Vpm, the Debye-Hiickel potential energy, is
given by

VDH= 52K+/€(1+K+a) . (5.3)
If an impurity and a cation vacancy have a separation
less than @, they are considered to form a neutral com-
plex whereas they interact with other charged defects
via the long-range forces if the separation is greater than
a. We consider the vacancy and the impurity to be a
complex if they are in adjacent cation sites. For all
larger separations the interaction is assumed to be
Coulombic.

Equation (5.2) was derived under the assumption
that the defect distribution was uniform and that local
neutrality existed throughout the crystal. In the present
problem this is clearly not the case near surfaces or
dislocations. However, near surfaces or dislocations the
preponderance of defects of one sign and the resultant
high electric field means that the dominant Coulomb
effects have been included in these regions. Thus it is
reasonable to utilize Lidiard’s formalism for including
the Coulomb interactions within the bulk of the crystal
where the assumptions apply. If we do so, we see that
the long-range forces result in the binding energy B,
becoming B,° where

B+eif= B+“‘ VDH . (54:)

The same modification is clearly appropriate for the
binding energy B as well. In addition tl}e long-range
forces result in F* becoming Fe;t and F~ becoming

0 A, Lidiard, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 20, p. 307.
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F ot~ where
Feyst=Ft—1Vpn

and
Fetr=F—3%Vpy. (5.5)

Physically, Egs. (5.5) are statements of the fact that the
existence of the Debye-Hiickel charge clouds reduce the
energy of formation of a vacancy by half of the Debye-
Hiickel potential energy on the average.

That the combination produced by Egs. (5.4) and
(5.5) is correct can be seen from the following argument.
Consider a cation vacancy and an anion vacancy which
form a complex. The change in the crystal energy due to
the addition of a complex is independent of whether or
not long-range effects are included since the complex is
neutral. If long-range effects are not included the energy
of the crystal, with respect to that of the crystal prior to
the introduction of the pair of defects being considered,
will be F+F~ when the defects are widely separated.
When the complex is formed the energy will drop to
Ft+F~——B,. If long-range forces are included, the
introduction of the pair of defects will require an energy
Fesf™F o, The final energy of the resulting complex
will then be Fets™+ Fer— B* which is, using (5.4) and
(5.5), Ft+F~— B, as it must be. An identical argument
can obviously be made for impurity-vacancy complexes.

The inclusion of the long-range forces requires self-
consistent solutions in general since Festt, Fog~, and
B,° all depend upon ®,,. This introduces some degree
of complexity but the long-range effects are important
and should be included when the defect concentrations
are substantial.

VI. DISCUSSION

Let us briefly consider a pure sodium chloride crystal.
From (3.6) it is clear that the effective free energies of
formation which must be supplied to put a cation
vacancy and an anion vacancy into the bulk of the
crystal are F*—ed,, and F~+e®d,. The potential differ-
ence &, appears across the surface dipole layer and thus
the dipole layer serves as the agent whereby information
as to the electrical state of the bulk of the crystal is
transmitted to the surface, and thereby to any potential
vacancies. That is, in equilibrium the presence of the
dipole layer changes the innate free energies of forma-
tion Ft+ and F~ into effective free energies of formation
Ft—ed, and F~+ed,, such that the actual free energy
which must be supplied in putting an anion vacancy or
a cation vacancy into the bulk of the crystal is the same
thus ensuring electrical neutrality within the bulk. It is
then obvious that if F+=F~ no dipole layer will exist
since the innate free energies of formation give rise to
electrical neutrality automatically.

Similar considerations apply to the edge dislocation
since it also is a vacancy source. There must exist a
sheath of negative space charge counterbalanced by the
positive charge on the dislocation line itself such that
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the effective free energies of formation of the two types
of vacancies become equal because of the fact that the
vacancies must traverse the potential field around the
dislocation before reaching the bulk.

Consider now the situation for a NaCl crystal con-
taining a small concentration of divalent cation im-
purity. At sufficiently high temperatures where the
concentrations (3.20) are much greater than the divalent
ion concentration, the situation is essentially the same
as for the pure crystal. The surface (and the edge
dislocations) will have a positive charge due to the ex-
cess evaporation of cation vacancies, the space-charge
region will be negative, and the potential across the
dipole layer will be such that the effective free formation
energies of the two types of vacancies are equal. As we
reduce the temperature, the bulk concentration of both
types of vacancies will be reduced in equal parts in
accordance with (3.20) and e®,, will remain at (3.8) as
long as the concentrations (3.20) remain large compared
with the divalent cation concentration. When the con-
centration of free divalent cations becomes an appreci-
able fraction of the concentrations (3.20) it is clear that
the potential change from surface to bulk must become
smaller in magnitude, though still remaining negative,
such that the precipitation of anion vacancies is en-
hanced while the precipitation of cation vacancies is re-
tarded. Physically this occurs since the precipitation of
equal numbers of both types of vacancy would, when
the presence of the divalent impurities becomes notice-
able, produce a positively charged bulk which would
serve to attract into the bulk some of the vacancies
comprising the negative space charge thereby reducing
the potential across the space-charge region. The result
of this process is that p is zero within the bulk of the
crystal or

n()Fnis(0)=ni(x), (6.1)

where o indicates the bulk of the crystal. Since we are
now considering decreasing temperatures, the surface
(and the edge dislocations) serves as a vacancy sink and
the reduction in the magnitude of the potential means
that the precipitation of an anion vacancy becomes
energetically more favorable than the precipitation of a
cation vacancy.

With a further decrease in temperature this trend will
continue. That is, the potential difference continues to
decrease in magnitude resulting in a further enhance-
ment of anion vacancy precipitation compared with
cation vacancy precipitation until the temperature is
reached where the innate difference between the concen-
trations of anion and cation vacancies is precisely equal
to the concentration of free cation impurities, or

NeFHETo— N FI¥0=p; | rp,.

The temperature where (6.2) is satisfied, designated T'
in Sec. IV, is the temperature where the potential
difference between the surface and the bulk becomes
zero since the innate free formation energies F*+ and F~

(6.2)
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are of such a magnitude that bulk electrical neutrality
is ensured without need of modification of F+ and F- by
a dipole layer. Thus the surface and the dislocations are
uncharged at this temperature. We saw in Sec. IV that,
when T'= T, the anion vacancy concentration using the
NaCl parameters has become essentially zero. In this
case (6.2) is to a good approximation

NeF*iTo (6.3)

nifl T=Tq)»

indicating clearly that at T=T, we have within the
crystal essentially equal numbers of free impurities and
free vacancies.

As the temperature is reduced slightly from 7'=T,,
the cation vacancies will continue to precipitate out on
the surface (and the dislocations) since the initial
tendency is to maintain a concentration based solely on
thermal considerations, a concentration given by

ny=Ne F*/rT, (6.4)
However, this precipitation of negative charge will
attract positively charged impurities (the only re-
maining source of positive charge) and the result will be
a dipole layer with a potential rise from the surface to
the bulk which decreases the effective free energy of
formation for cation vacancies from F+ to F+—e®d,, thus
making further precipitation energetically unfavorable
and preserving bulk neutrality.

For temperatures less than T then, the dipole layer
arises through the precipitation on the surface (and the
edge dislocations) of cation vacancies possessing a nega-
tive charge and the resultant attraction by this negative
charge of positively charged impurities into the region
beneath the surface (and around the dislocation). Thus,
in the temperature range where the cation vacancy
concentration is governed by the quantity of divalent
cations present, the surface charge and the charge on the
dislocation line will be negative and the sign of this
charge depends in no sense upon the fact that F~>Ft,
but only upon the charge possessed by the impurities.
Hence, for a crystal containing divalent anions, the
surface charge in the temperature range of extrinsic
conductivity will be positive because anion vacancies
will be appearing at the surface. The fact that F~>F+
is important for a doped crystal only in that there will
exist a temperature such that the potential is zero
everywhere for a crystal doped with divalent cations
whereas no such temperature exists for a crystal doped
with divalent anions.

It is now clear that the presence of the dipole layer is
an inherent aspect of thermal equilibrium and a ques-
tion as to the ability of the dipole layer to form at an
arbitrary temperature is really a question of whether or
not the crystal is in thermal equilibrium at the tempera-
ture under consideration.

As pointed out by Eshelby et al.,? it is by no means
certain that the free energy of formation of individual
vacancies at dislocations is equal to that for a surface
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even though the free energy of formation of a Schottky
pair should be essentially the same for the two sources.
The possibility that the individual formation free
energies for the two sources can differ is a consequence of
the fact that the transfer of a cation say from a dislo-
cation jog to a kink in a surface step involves the
transition of a positive jog into a negative jog and a
negative kink into a positive kink. Since the environ-
ments in the two cases are not identical, these are not
necessarily compensating processes. Thus the surface
and the dislocations might be uncharged at different
temperatures.

We have assumed that, in a crystal containing diva-
lent impurities, all the impurities are present either in
the free state or associated with a vacancy of the oppo-
site charge. Thus we have not considered higher com-
plexes which might exist such as impurity precipitates
and aggregates of impurity-vacancy complexes. The
presence of such complexes would serve to reduce C.
Studies made by Ninomiya,"* Chiba ef al.,”* and Dryden'®
on KCI and NaCl crystals doped with divalent cations
indicate that the predominant higher complex formed
around room temperature is an aggregate of impurity-
vacancy complexes. Since this type of aggregation has
only a small effect upon the theory, it seems possible that
the attainment of the state predicted herein will be
principally limited by the mobility of the defects.

Electrical charge developed during plastic deforma-
tion of alkali halides has been reported in several
publications.*2? In each of these studies crystals with
electrodes plated or pressed onto the surfaces were
deformed and potentials appeared at the electrodes.
These potentials were attributed to the motion of
charged dislocations.

Since alkali halide crystals commonly designated pure
contain concentrations of divalent cations of the order of
10—¢ such that the room-temperature conductivity is in
the extrinsic range, the present theory predicts that
dislocations in “pure” crystals at room temperature
should be negatively charged. However, there is no
unanimity of opinion as to the sign of the dislocation
charge as determined experimentally in such crystals.
Some investigators have concluded, on the basis of their
interpretation of the dislocation motion involved, that
the dislocations are negatively charged whereas others
have concluded the opposite. Rueda and Dekeyser®
found that dislocations in “pure” and CdCle-doped
NaCl were charged negatively, while doping with Na,O,

11T, Ninomiya, J. Phys. Soc. Japan 15, 1601 (1960).

12y, Chiba, K. Ueki, and M. Sakamoto, J. Phys. Soc. Japan 18,
1092 (1963).

13 J, Dryden, J. Phys. Soc. Japan 18, Suppl. III, 129 (1963).

1 J, Caffyn and T. Goodfellow, Proc. Phys. Soc. 79, 1285 (1962).

15D, Fishbach and A. Nowick, Phys. Rev. 99, 1333 (1955).

16 A, Hikata, C. Elbaum, B. Chick, and R. Truell, J. Appl. Phys.
34, 2154 (1963).

17 F. Rueda, Phil. Mag. 8, 29 (1963).

18 7. Rueda and W. Dekeyser, Acta Met. 11, 35 (1963).

9 H, Kanzaki, K. Kido, and S. Ohzora, J. Phys. Soc. Japan 18,
Suppl. III, 115 (1963).
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produced positively charged dislocations. This behavior
is completely consistent with the ideas presented above
and the sign change when the concentration of divalent
anions exceeds that of the divalent cations merits
particular mention. Hikata e al.' have not measured
the dislocation charge directly, but have constructed a
model based upon their results which suggests that the
dislocations are positively charged in “pure” NaCl at
room temperature. They have also demonstrated the
fact that screw dislocations in NaCl are uncharged.

Several important questions emerge in connection
with these deformation studies. First of all, are the
dislocations being observed dislocations which were
present initially and presumably in an equilibrium state
with their charge cloud and then extracted from their
charge cloud, or are they freshly produced dislocations
which might be uncharged at production? Secondly,
when a dislocation is torn from its charge cloud by a
stress does it carry with it the entire charge it had
originally, a part of the original charge, or does it
emerge uncharged? Thirdly, what will be the charge
state of an initially uncharged dislocation after it has
moved a distance through the crystal?

Let us consider a NaCl crystal at room temperature
containing a concentration of the order of 10~¢ divalent
cation impurity. The equilibrium theory says the dis-
locations should be negatively charged, so if we can
extract the dislocation in its original state the charge
will remain negative. Suppose now that through the
action of a dislocation source an uncharged edge dislo-
cation is produced within the crystal. If the dislocation
feels it is in a pure crystal, the fact F+<F— and the
absence of a potential field would lead to the dislocation
acting as a source of cation vacancies principally and the
dislocation would develop a positive charge. However,
this tendency is counteracted by the presence of a
concentration of cation vacancies greater than that
based on thermal considerations due to the presence of
the impurities. These vacancies will attempt to establish
the equilibrium configuration around the dislocation.
That is, they will tend to precipitate on the dislocation
until the potential difference between the core and the
bulk, which was initially zero, reaches the equilibrium
value. The result is a dislocation charged negatively.
This effect depends upon the ability of the vacancy to
reach and attach itself to the moving dislocation. Based
on the present theory, in equilibrium the dislocations at
room temperature possess a significant negative charge
since the precipitation of vacancies is an energetically
favorable condition. This fact, together with the small
charging resulting if the dislocation attempted to act as
if it were in a pure crystal, suggests that for divalent
cation concentrations at least as low as 10~% the moving
dislocation should accrue a negative charge and that the
effect should be enhanced for greater impurity concen-
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trations.? This is suggested by the work of Rueda and
Dekeyser'® since adding CdCl, to the “pure” crystal did
not change the sign of the charge. This is not conclusive,
however, since no distinction is made between effects
due to dislocations present prior to deformation and
freshly formed dislocations although the method of
deformation they used would probably contribute a
large number of new dislocations. We must conclude
that the questions posed above remain unanswered and
the dynamic problem of an initially uncharged dislo-
cation moving through the crystal should be investi-
gated. In addition, the dislocation motion involved in
the experimental studies must be established before the
sign of the dislocation charge can be determined
unequivocally.
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APPENDIX A: VARIATION OF THE
ELECTROSTATIC ENERGY

We consider 7 to be the variation of the electrostatic
energy term in Eq. (3.4)

1 L
I- / (o (P}, (AL

The variation of p(x) follows immediately from (3.2).
Consider the second part of (A1),

I—l Ld 0P A2
R f 10 (2)50 (). (A2)

Using Eq. (3.3), Eq. (A2) becomes
(A3)

We have stated earlier that the boundary conditions
on the potential are given by Egs. (2.1) and (2.2). Let
us retain boundary condition (2.2) but, for the moment,
assume that the potential at the surface is fixed at
&=®;. Now integrate (A3) by parts. Using (2.2) to-
gether with the fact that &, is fixed, we have, after
interchanging the order of differentiation and variation,

e L 7dd\ /dd
I1=——— 6(—-—)(—-—)dx.
8t Jo dx/ \dx

% The possibility that impurity precipitation could reduce the
effective impurity concentration to the point where the dislocation
became positively charged remains. In addition compensation for
the divalent cations by other impurities can occur. [B. Fritz, F.
Liity, and J. Anger, Z. Physik 174, 240 (1963) ; M. V. Klein, Phys,
Rev. 122, 1393 (1961).]

(A4)
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Integrating by parts once again, we have

ne oGl )L e G)] 0

which can be written
1 L
)-—I—-— / dx®Pop.
Z=( 2 0

The imposition of the condition of electrical neutrality
on each half of the crystal requires the charge per unit
area on the surface o to be

€ adP
I, =—3& 16(-—— (A6)

8r dx

€ <d<I> ) /Ld A7)
o=——— =— xp
47 \dx z=0. 0
so that the first term of (A6) becomes
1 L
— / dx®0p. (A8)
2J0
Thus
L
I= / (@ () —81/2)5p () (A9)
0

or

I=e/ dx{®(x)—®1/2} {on_(x)—dny (x)}. (A10)

Since we are now assuming that the potential at the
surface is @, there is an additional term in the free
energy Eq. (3.1) due to the surface charge. This
contribution Fgys IS

Fourt=30® (A11)

or, using (A7)

Fourt= Lr
et == /0 da®1p (). (A12)

Thus the variation of the total electrostatic energy
I+4-6F gyt vields

OF cle=¢ / dx{® () — D1} {on_(x)—0ns.(x)}. (A13)

Note that the surface potential enters in such a way
that if we now redefine our potential as

&' () =2(x) — 1,
then (A13) becomes

(A14)

L
0F qe=¢ / dx® {on_—on.}. (A15)
0

Since this is equivalent to (A10) with &;=0, we see
there is no loss of generality by requiring the potential
at the surface to be zero and ignoring the surface
electrostatic energy. Thus, we conclude that the varia-
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tion of the electrostatic energy term in (3.4) is
L
I=e/ dx® (x) {on_(x)—ony(x)} . (A16)
]

We want to emphasize that the potential ®(x) in (A16)
is the difference in potential between the point x and the
surface as is most clearly seen from (A13). Thus the
surface potential is completely arbitrary.

APPENDIX B: CONFIGURATIONAL ENTROPY OF
A PURE CRYSTAL IN WHICH SCHOTTKY
DISORDER PREDOMINATES

Consider a macroscopically small volume of the
crystal AV ; still containing a large number of defects in
a region where the defect concentration is essentially
constant. Suppose this region contains #+°AV; cation
vacancies, #_AV; anion vacancies, #gp‘AV; bound
vacancy-pairs, and NAV ; anion and cation sites. The
number of ways these components can be arranged over
the available sites is

wi= 2 AV NAV [ (N —n5)AV ]!
XA{[n AV ][0 AV ]I (N —ny. —nph) AV ]!
XL(N—n_i—np)AV ] [ns*AV ]}, (B1)

where 2, is the number of nearest unlike neighbors of a
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given ion. In the NaCl structure, z,=6. Because of an
assumption, we can use Stirling’s approximation for the
factorials.

Varying Inw,; with respect to #.% #n_% and nz?, we
find

5(11’1101) = AVi{anB" ln[

2N —n4t—np?)(N—n_i— nB"):I

(N—nB‘)nB‘
 [[N—nyi—ngt
+ony 1n|:———————. :I
1’l«+'
. N—n.."-—-nB"
+on_t In[——f——]} . (B2)
n_t

For the entire crystal the configurational entropy S, is

given by
Se=kIn({] w))=k Y Inw;, (B3)

where % is Boltzmann’s constant and the sum is over the
set of volume elements comprising the crystal. A
variation of .S, yields

8So=Fk L 6(nw.). (B4)

Using (B2), (B4) becomes, in a continuous representa-
tion where all quantities are functions only of #,

8S./unit area=% /

0

’ dx{&ng (%) lnl:

+61y (x) lnl:

20 (N —n_(2)—n5(x)) (N —n (%) —n5(x) )]
(V—np(x))ns(x)

il P Ll

n_(x)

74 (%)

As stated above, AV; must contain many defects in a region where the defect concentration is essentially constant.
In transforming from Eq. (B4) to Eq. (BS) where all quantities are a function of x, these conditions become

nd | Az|>1

and

| dn/dz|Ax|<<n,

(B6)
(B7)

where # is any defect density, A4 is the area in question, and the integration in (BS) should be thought of as a sum
over successive Ax’s which satisfy (B6) and (B7). Conditions (B6) and (B7) must be satisfied in order that (BS5)

be wvalid.

APPENDIX C: CONFIGURATIONAL ENTROPY OF A CRYSTAL FOR WHICH SCHOTTKY
DISORDER PREDOMINATES CONTAINING DIVALENT CATIONS

As in Appendix B we consider a macroscopically small volume of the crystal AV ; still containing a large number
of defects in a region where the defect concentration is essentially constant.

Suppose this region contains: 7, AV ; cation vacancies, #_*AV; anion vacancies, #g‘AV ; bound vacancy pairs,
nis*AV ; free impurities, #:,°AV ¢ vacancy-impurity pairs, and NAV; anion and cation sites. The number of ways

these constituents can be arranged over the sites is

(napiAVi—-1)

[([V— Znu,i)A V,:l'

Zﬂ("BiAV")I:(N—nBi)AVi:I!

W=z, AV T  (WAV—27)] -
7=0 I:nzfAVz:lV

[nB iAVi] I[n,-/"AVij II:n_HA V;I !D’L_“A V'.]'

1
(€1

-
[V —2n:i—ngi—ni—n ) AV (N —ngi—n_)AV L
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where 2., is the number of nearest like neighbors of a given ion, 12 for NaCl. Because of our assumption we can use
Stirling’s approximation for the factorials with the result

Inwi= AV {n? InZun+np? Inza—ni In[7: AV i 140074+ (VN —20%) In[ (N— 2149 AV ]

+ (N—WB") ln[(N—nB")AV,-]—— (N—' 2”,'1,"'—'}1/3"'—%”‘.—%_*.") ln[(N-—2n,~b"—n3"——m,«i——n+‘)AV¢]

— (NV—npi—=n_%) N[ (N—np'—n_5)AV ]—np’ In[np’AV ]—n:s In[n: AV ]— 0, In[n, AV ]

(nip?AV 1)
—n_tn[n AV J4+(AV)T > In[NAV.—25]}. (C2)
=0

This last term of (C2) is equal to
(nipfAVi-1)

o' In(VAV;)— ,
s @

as long as 74,/ N<1. Now
(nipiAV—1) )
J=3L (e’ AV~ (ni'AV )]
=0
and since (#:°AV;)>>1 by assumption, (C3) becomes
’l’nb" ln[NAV,-]— (%ibi)Z/N. (C4)

Using (C4), a variation of (C2) with respect to #y% n_%, n,s%, n:¢, and npt yields

6(1n'w,') = AV,'{BM,'/’. ln[

]

N—Zn;b"—nB‘—nif"—n+‘ . z,.,.(N-——Zn,-b‘— n3i~n,~f"—n+‘)2N
]—I—me‘ 111|: }

23] (N— 2%;5")2%;@‘

+5n3'. ln[

2n (N— 2np°— MIB"—%.';'.— n.,_") (N“?’I;Bi'— n_i):l

(N—nB‘)nB‘

. N— Znib"—nB‘—mf‘—n.,_" X N—-’}’LBi— n_t
+om,’ ln[ - :I—}-«Sn_' In[—-———. :” . (Cy)
gt n.*

For the entire crystal, the configurational entropy S, and its variation are given by (B3) and (B4) of Appendix B

with §(Inw;) given by (CS5). Converting to a continuum representation with all quantities functions of « only, the
final result is

S, L N—2n:(x)—np(x)—nir(x) —ny (x)
m: /; dx[&m,(x) lnl: @ :|
Znn (N — 2140 () — 15 (8) —m47 (%) — 4. (x) 2NV :l
(V=215 (x) Y245 (x)
20 (N — 2145 (%) — 15 (%) — 147 () — 14 () )V —ns(x)—%—(x)):'
(NV—ngp(x))ns(x)
o () lnl:N—Zn;b(x)—ng(x)—nif(x)—n+(x):|+8n—(x) ln[N——nB(x)—n_(x)]} . ()

7y () n_(x)

+6m45 () ln[

+oénp(x) ln[

Conditions (B6) and (B7) of Appendix B must be conserved,
satisfied in this case also.

L
dx(n:s+np) =number of impurities in th
APPENDIX D: EVALUATION OF THE /‘, (rirtma) o OF IMPUTHes wm the

(d1)
LAGRANGE MULTIPLIER ag* crystal per unit area.

The condition determining the Lagrange multi- The densities #;; and #;; are given in (4.5) assuming all
plier is that the total number of impurities must be defect concentrations to be small.
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Consider a unit area of the crystal. The number of
bound impurities is

L
/ dan =2, NL exp{— (F*— B+axt)/kT}, (D2)
0
and the number of free impurities is
L
/ danig=Niy ™ exp{— (egt+e®,)/kT}
0 ke L
X/ exp{—z}ds, (D3)
0

with z given by (3.19) since ax* is the multiplier when
#+L>>1. Defining the integral in (D3) as 7,

I= / ) exp(—2)ds, (D4)

and making the substitution
¢~° tanh(z¢/4) =tanh(z/2),

I can be shown to be

2012 dy cosh2y #0/2 dy sinh27
- =] ., o)
2y,  sinhpy 2yy Sinhy
where
v4=tanh 1{e*:L tanh(1z0)}. (Do)

The integrals in (DS5) can be readily evaluated so that

T=k,L+2 exp{—320} —2

Xexp{—2 tanh—1(¢—*+L tanh(}z0))}. (D7)

Since the mean impurity concentration within the
crystal is €, the number of impurities per unit area is

K. L. KLIEWER AND J. S. KOEHLER

CNL. Hence CNL is equal to the sum of (D2) and
(D3) using (D7) so that

C=3un exp{— (F*— By+ag™)/kT}
+exp{— (axt+ed.)/kT}
X (142 (k4 L)~ (exp (—320)
—exp{—2 tanh~! (e tanhlz)})]. (DS8)

Since . L>>1, exp[—2 tanh—{exp(—«;L) tanh(3z0)}]
~1 and the term containing (k;L)™! is significant only
for exp(—320)>>1. Thus we have

Cz,, exp{— (F+— By+an™)/ET}
+exp{— (ax+ed.)/kT}

X420, L) exp{—d20}]. (DY)
Defining
8w Ne? Ft+ 2
§+=[ekT exp{——k—TH —r exp(z0/2)  (D10)
and
b= 14200 D), (D11)

we conclude
C=1tn exp{— (F*— By+aux™)/kT}
+ & exp{— (axt+ed,)/kT} (D12)

so that
agt
|~ | _
C
"~ exp{— (Fr— By)/ET) + £, exp{—cb,/kT)

(D13)

Note that L in the present model is the volume-to-
surface ratio.



