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The resonant scattering of acoustic phonons by interstitial atoms at the (-'„s',—2) position in the Si and Ge
lattices has been investigated using the Green s-function matrix technique of Lifshitz. The lattice contribu-
tion to the Green's function is calculated using a spherically symmetric phonon spectrum with transverse
and longitudinally polarized phonons. The observed dispersion relation along the (1,0,0) direction is included
in the calculation. The interstitial contribution to the Green's function is calculated exactly and dominates
at low frequencies. The interaction matrix is constructed from nearest- and next-nearest-neighbor inter-
actions and limited in form by symmetry considerations. The interaction matrix and interstitial mass M
are the independent variables in the calculation. The resonance frequency co and width Aced are calculated
as functions of the force constants of the interaction matrix and interstitial mass. Results show that a
single effective force constant E can be defined such that cocc (X/M)'~' and ha&/co ccaPM' over most of the
transverse acoustic band. Thus, a measurement of both quantities co and bar should allow an unambiguous
determination of Xand M. Several methods are proposed for observing interstitial resonances.

I. INTRODUCTION

'HE internal motions of crystals may be described
as composed of the superposition of a number of

traveling-wave modes or phonons which are character-
istic of the crystal. Many of the measurable properties
of the crystal are derivable from a knowledge of these
modes, their interactions with each other, and their
interactions with external radiations. Likewise, many
of the properties of the phonon field may be inferred
from measurements of crystal properties. A good
example is the construction of phonon dispersion rela-
tions from inelastic scattering of thermal neutrons. '

When defects are present in the lattice, the phonon
spectrum is altered and so in turn are the crystal prop-
erties which are dependent on the phonons. Observation
of the frequency and response shape of phonon-scatter-
ing resonances associated with such defects should
provide a method for determining some of the properties
of the interactions of interest. In the neighborhood of a
defect exhibiting a phonon resonance, large amplitudes
of vibration will build up at the resonance frequency
and interactions between the phonon field and other
processes which occur in the vicinity of the defect
should be observed. For example, an increase in spin-
lattice interaction strength, enhanced phonon-assisted
electronic transitions, and increased infrared absorption
for charge-associated defects would be expected.

The general theory for handling such defects has been
developed by Lifshitz, ' Koster and Slater, ' and Lax.4

*This work was supported by the U. S. Atomic Energy
Commission.
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(1958); B. N. Brockhouse, Phys. Rev. Letters 2, 257 (1959) and
others. See also, Inelastic Scattering of Neutrons in Liquids und
Solids (International Atomic Energy Agency, Vienna, 1961,
1962), Vols. I and II.' I. M. Lifshitz, Nuovo Cimento Suppl. 3, 733 (1956), and refer-
ences in this paper.

3 G. F. Koster and J. C. Sister, Phys. Rev. 94, 1392 (1954);
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4 M. Lax, Phys. Rev. 94, 1391 (1954).
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Techniques for calculating the various thermodynamic
functions have been developed by Lifshitz, ' Montroll
and Potts, ' and Mahanty, Maradudin, and Weiss. 6 The
method of double-time Green's functions has also been
applied to the theory by Elliott and Taylor. ~ Applica-
tions of the theory to resonant scattering have been
considered in general by Klein, Takeno, ' Krumhansl, "
and Klliott and Taylor. ~ Specific applications have
considered vacancies" " and substitutional mass
defects. """Recently, Wagner" considered resonant
scattering of phonoms by the internal modes of molecules
substituted into the lattice. The interstitial has been
considered only in the linear chain by Montroll and
Potts. '

The resonant scattering of phonons by vacancies or
interstitials has not been treated for diamond-type
lattices even though the properties of such defects are
of great interest in studies of radiation damage in silicon
and germanium. Vacancy production in these covalent
materials, however, is accompanied by a reformation
of the broken atomic bonds in such a manner as to
appreciably reduce the local symmetry. "An analysis
of this low-symmetry, strongly bonded defect would

~ E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).' J. Mahanty, A. A. Maradudin, and G. Weiss, Progr. Theoret.
Phys. {Kyoto) 24, 1055 (1960).

' R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (London)
83, 189 (1964).' M. V. Klein, Phys. Rev. 131, 1500 (1963).' S. Takeno, Progr. Theoret. Phys. (Kyoto) 29, 191 (1963)."J.A. Krumhansl, Report of the Copenhagen Conference on
Lattice Dynamics, 1963 (unpublished).

"G. F. Nardelli and N. Terzi, J. Phys. Chem. Solids 25, 815
(1964)."R.Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962)."P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)
A273, 222 {1963);Proc. Phys. Soc. (London) 81, 453 (1963).

~4 G. W. Lehmann and R. E. DeWames, Phys. Rev. 131, 1008
(1963).

"M. Wagner, Phys. Rev. 131, 1443 (1963)."R.A. Swalin, J. Phys. Chem. Solids 18, 290 (1961); Q. D.
Watkins, J. Phys. Soc. Japan 18, 22 (1962).
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yield a quite complicated dependence of resonance
properties on the variable-interaction matrix. It is
doubtful that a comparison of the results of such an
analysis with experiment would yield much information
regarding the actual properties of the vacancy because
of the complexity of this dependence. The interstitial,
on the other hand, is relatively weakly bound'7 and
should not disturb the local symmetry appreciably if
it is located on a single atomic site, as assumed in the
present paper. The resultant analysis should then be
less complicated than that for the vacancy.

In this paper the resonance scattering of phonons by
interstitial atoms in the Ge and Si lattices is examined
by the Green's-function technique of Lifshitz. ' The
interstitials are considered to occupy the (-'„si,—', ) position
in the unit cell, and the resonance frequency and width
are calculated for various values of the force constants
and interstitial mass.

The Green's-function matrix method is outlined
brieRy in Sec. II and applied to the interstitial problem.
In Sec. III the symmetry properties of the interstitial
environment are exploited to simplify the problem, and
a description of the numerical calculations is contained
in Sec. IV. The results of the calculations are presented
and discussed in Sec. V, and the conclusions and
summary are contained in Sec. VI.

II. THE GREEÃ'8-FUNCTION MATRIX METHOD

A. General Theory

The Green's-function technique of Lifshitz' offers a
particularly straightforward method of treating the vi-
brational spectrum of a perturbed crystal by reducing
the problem to a small number of dimensions, com-
patible with the complexity of the perturbation. The
method has been discussed and applied frequently in
the literature, ' ' ""but it is reproduced here in abbre-
viated form for clarity and as an introduction to the
notation of the following sections.

The internal dynamics of an unperturbed crystal
composed of 1V atoms are described in the harmonic
approximation by the eigenvectors e» and the eigen-
values co»' of the characteristic matrix D, of the crystal
through"

(D nil„'I)vi, „0. — ——

The ~» represent the normal modes, or phonons, of the
crystal with +» being the corresponding vibrational
frequency. In an infinite crystal the subscript k is the
propagation vector of the phonon. In a finite crystal the
identifi. cation of k with the propagation vector will be
valid for k))2~/u, where u is the dimension of the crystal
(i.e., the identification is valid. for phonons with wave-
length inuch smaller than the crystal dimensions). The

"K. H. Bennernenn, Phys. Rev. 137, A1497 (1965).
'8 The symbol k appearing as a subscript or summation index

will mean the vector k unless otherwise indicated.

(D—ePI+I') v= 0.
The perturbation matrix F is given by

(3)

where AV;, , the change in V;,, and AM;, the change in
M;, characterize the perturbation, and 5;; is the Kro-
necker delta.

The e6ect of the perturbation on the crystal dy-
namics may be given at least two distinct, but equiva-
lent, interpretations. First, Eq. (3) may be viewed as a
scattering problem. In this case it is appropriate to cal-
culate a scattering matrix and look for resonances in the
scattering. Alternatively, Eq. (3) may be viewed as an
eigenvalue problem, similar to Eq. (1), but with
changed values for some of the elements of D. In this
case the appropriate solutions to (3) are a new set of
frequencies and normal modes. Correspondence may be
made between the two descriptions by noting that the
resonance scattering in the f'irst description corresponds
in the second description to normal modes at the same
frequency having larger amplitudes of vibration in the
vicinity of the defect than at other locations in the
crystal.

The scattering problem may be solved by introducing
the Green's-function matrix G dehned as a solution to

G(oP) LD—eisIj=I.
Solutions to (5) exist for ebs not an eigenvalue of D.
Choosing n'=aPq~+i~ e~ gives the outgoing scattered-
wave Green's function. ' After calculation of the scatter-
ing inatrix the parameter

~
ej may be allowed to go to

zero. An explicit representation of G(e~s) is given by

where the ni„and a&i,~' are solutions to (1), and. v~~t is
the Hermitian transpose of e».

The scattering solutions to (3) are divided into an
incident part ul, „and a scattered part m», then with the

subscript p is a polarization index and serves to dis-
tinguish between phonons having the same k.

The 3E)&3S matrix D is related to the crystal po-
tential energy V through

D =(M"M ) "—'(O'V/BN;Bu)= —(M;M)-"'V; . (2)

The 3X coordinates I; represent the set of Cartesian
displacements of the atoms from their equilibrium posi-
tions. The mass M; is the mass of the atom to which
the coordinate I; refers. Since three of the u; will refer
to the same atom, the corresponding three M; must
necessarily be equal.

In general with the introduction of a defect which
changes both the crystal potential and some of the
atomic masses, the internal dynamics of the perturbed
crystal are described by the solutions ~ and oP of the
equation
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help of (1), (3), and (5) it can be shown that

ws~= —Gl'(1+GI') '»„. (7)

With T defj.ned by

Eq. (7) becomes
r= r(1+Gr)-t,

'Rlc &
=—GT'V Ir,&.

Normally, F will be nonzero only in a small subspace
of the 3E-dimensional space of the crystal. It follows
from (8) that T is nonzero only in the same subspace. "
If g, t, and p represent the projection of G, T, and F
onto the nonzero subspace of F, then an explicit repre-
sentation for t is

van.
7

s 1
(10)

where q, is the left eigenvector of the matrix gy be-

longing to the eigenvalue X„and $, is the corresponding
right eigenvector. Since gp is not necessarily a Her-
mitian matrix, p, may not be the Hermitian transpose of

The projection of m» onto the nonzero subspace of

F, PmI, „, is given b

from which the resonance condition

X,(ce,)

1+X,(ce,)
=maximum, (12)

The problem of locating resonances associated with
the perturbation then reduces to one of evaluating and
diagonalizing gy over the range of frequencies of
interest. The resonance width may be determined from
(13), or directly from (12).

The scattering amplitude will depend on the matrix
elements

(» ' Gyk. ) (~.,»~)

1+1,

From (14) it is seen that the coupling of a particular
phonon into the resonance depends on the left eigen-
vectors rl, through (tl, ,»~), while the coupling of a par-
ticular phonon out of the resonance depends on the right
eigenvectors g, through (»„,Gyg, )

"To obtain this result expand the operator (1+GI') ' in a
Taylor series. Each term of F(1+Qj.) ' is then of the form
F (Gl')" which has the desired property. See also Ref. 8.

with co„as resonance frequency, is obtained. For sharp
resonances, the full width at half-maximum will then
be given by

ImX„(ce„)
~ce=2Iee&/s

(d Reh„/dec)„„„

B. Application to the Interstitial

The theory of Sec. IIA is applied to the interstitial
problem by including the interstitial in the unperturbed
lattice, but with in6nitesimal coupling. Three of the
solutions to (1) are then the three Cartesian coordinates
of the interstitial, (ut, us, us), with corresponding a& =0.
The remaining solutions are the usual traveling-wave
phonons of the perfect lattice. The Green's function
then becomes, using (6),

&a~&x~

G( ')=
Php11pg, s &2I &2 j y ~2y

where the left sum is over the lattice phonons and the
right sum is over the interstitial coordinates.

The interstitial is coupled to its environment through
the perturbation (interaction) matrix I'. Prom (4),

(16)

Application of the theory is then a straightforward
procedure.

III. SYMMETRY PROPERTIES

The interstitial is assumed to occupy the (s,—'„-,')
position in the unit cell of the diamond lattice. Calcula-
tions by Weiser" indicate that small charged inter-
stitials may prefer the position (s, s, s). This latter posi-
tion will not be considered, though the general conclu-
sions of this paper should apply.

The symmetry of the environment of the interstitial
is T~. The nearest neighbors lie at the vertices of a
regular tetrahedron while the next nearest neighbors
are at the vertices of a regular octahedron. The axes of
the octahedron pass through the edges of the tetra-
hedron maintaining the tetrahedral symmetry. Any
Jahn-Teller distortion of the local environment should
be small because of the small interaction of the inter-
stitial with the lattice as compared with the inter-
actions of the lattice atoms among themselves. This is
indicated by the comparison of the energy of migration
for an interstitial atom with the energy of creation of a
vacancy-interstitial pair which are &0.5 and 5—6 eV,
respectively. ""A further indication is the small length
change introduced into the Si or Ge lattice through
radiation damage, though this latter could be accounted
for by positive and negative volume changes for inter-
stitial and vacancy. "The calculations that follow will

ignore any change in the local symmetry which might
arise through distortion.

A. The Symmetry Coordinates

The Cartesian coordinate system describing the
interstitial and its local environment is chosen with the

"K.Weiser, Phys. Rev. 126, 1427 (1962)."G. D. Watkins, Bull. Am. Phys. Soc. 9, 48 (1964);Proceediags
of the International Conference on the Physics of Semicondlctors
(Dunod Cie., Paris, 1965); Vol. 3, p. 97.

~ F.L. Vook, Phys. Rev. 125, 855 (1962).
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r.=2r,+2r»+6r„+3r„. (17)

The coordinates are listed in Table II. The notation for

interstitial at the origin and axes passing through the
vertices of the octahedron of next nearest neighbors. The
tetrahedron of nearest neighbors is oriented with one
vertex lying in the (1,1,1) direction from the inter-
stitial. The location and numbering of the atoms is
given in Table I.

The symmetry coordinates have been obtained for
the tetrahedron plus interstitial and the octahedron
plus interstitial separately by the projection method. "
The resultant coordinates are then orthogonalized
where necessary. The set of coordinates spans the repre-
sentation F, of the group T& given by

TABLE I. Location of atoms interacting with the interstitial.
@=lattice constant; r =-',a; r„=-',u.

Atom
number

1 (jnterstitisl)
2
3

5
6

Location
Atom

number

7
8
9

10
11

I.ocation

r (o,i,o)
r (0,0,1)
r (1,o,o)
r (0,1,0)
r (0,0,1)

the irreducible representations of Tq is that of Bethe. '4

The matrices g, t, and y must form I'~ representations
of the group. From (17) it is noted that diagonalization
of two 2)&2, one 3)(3, and one 6)&6 matrix completes
the diagonalization of the 33&(33 gy matrix.

TA~LE II. Symmetry coordinates of the complex of interstitial, nearest and next-nearest neighbors.

F1 Representations
(15,1) = (1/46){(xg *9)+—(y7 ylp)+(28 zll) }
(75,2) = (1/g 12){(xg+ys+zs)+ (xg —yg —zg) —(x3 yg+zg) —(x4+y4 —24) }

F12 Representations
(8 1)= (1/Q 12){(xg —xg) + (yz —ylp) —2 (zg —2ll) }
(e,2) = (1/Q 24) {(xs+yg —225)+ (xg —yg+222) —(x,—y, —22,) —(x4+ys+224) }
(8,1)= (1/2) {(yz —y») —(xs —xg) }
(8,2) = (1/Q 8){(ys —xs) —(yg+xg)+ (yg+xg) —(ys —x4) }
I'25 Representations

(P, 1) = (1/2) (xg+xl1 xlp x7)

($,2) = (1/2) (zlo —zz+ys —yn)
(43)=(1/48)(zg+24 zs 23+yg+ys —ys —yg)

(77, 1)= (1/2) (y,+yg —yll —yg)

(77,2) = (1/2) (xl1—xg+zs —zg)

(77,3) = (1/I 8) (y4+yg ys y2+xg+x5 x2 x4)

({,1)= (1/2) (zz+zlp 29 26)

({,2) = (1/2) (yp —ys+xv —xlo)

({',3) = (1/Q 8) (x3+xg x5 x4+zg+25 24 zg)

F15 Representations

(x,1)= (1/Q6) (xg+xg —2xl)
(x,2) = (1/(84) '~') {3(xv+xlp+xs+xll) —4 (xl+xg+xg) }
(x,3) =(1/(308) ' '){7 (x2+xs+xs+x5) —4 (xl+xg+ xv+xg+x9+x1 p+xl1) }
(x,4) = (1/(11)'7') (x1+x2+x3+x4+xg+xs+xz+xs+ xg+xlo+xll)
(x,5) = (1/2) (yvl —ys+zz —zlo)

(x,6) = (1/Q 8) (zg —zs+zg —zg —y4 —ys+yg+yg)
(y, 1)= (1/Q 6) (yz+ylp —2yl)

(y,2) = (1/(84) 7 ){3(yll+ys+yg+ys) —4 (yl+yz+ylo) }
(y 3) =(1/(308)'"){7(yg+ys+y4+ys) —4(yl+ys+yv+ys+yg+ylp+yll) }
(y,4) =(1/(11) 7 ){(yl+yg+ys+ys+yg+ys+yz+ys+yo+ylo+yll) }
(y, 5) = (1/2) (x,—xll+zg —zs)

(y,6) = (1/g 8) (x3 xg+xg x4 zg 25+24+23)
(2,1)= (1/0 6) (zg+zll —22,)
(2,2) =(1/(84)'"){3(zs+zg+zz+ 10)—( 1+ 8+ 11)}
(z 3) (1/(308) ){7(22+zs+zs+zg) 4(zl+zg+27+z8+zg+zlp+zll) }
(2,4) =(1/(11)'7'){(zl+22+zs+24+zp+zg+zz+zs+zg+zlo+zll)}
(2,5) = (1/2) (yg —yg+xn —»)
(2,6) = (1/8) (yg yg+y, yg —x3 xg+—xg+x4)

J.S. GriKth, The Theory of Transition Metul Ions (Cambridge University Press, Cambridge, England, 1961),p. 167.
'6 H. Bethe, Ann. Physik 3, 133 (1929).
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—1/(o' 0
G(int) = 0 —1/o&'

0 0

0
0

—1/co'.
(18)

All 6,; for which one of i, j refers to the interstitial and
the other refers to an atom of the perfect lattice are
zero. G;; for both atoms in the perfect lattice is given by

e eI, 'el, „&*e'~'
Gv(~') =—Z-

M lc&
—

CO

(19)

where r is the vector from the atom represented by j
to the atom represented by i. The star represents com-
plex conjugation. The factor e, the number of atoms
per primitive unit cell, is included so that the polariza-
tion vectors ej,„are normalized in a primitive unit cell.
That is,

B. The Green's-Function Matrix

The interstitial contribution to the Green s-function
matrix is evaluated from (15). The last sum contains
the interstitial contribution. The three-by-three sub-
matrix which gives the projection of g onto the subspace
of the interstitial coordinates is given by

where

Ggg= A (r)+f(2x' —y' —s')/r'jE(r),
G.u=A (r)+L(2y' —*'—s')/r'Ã(r)

Gg, ——A (r)+((2s' —x'—y')/r']E(r),
G,„=—(s/r)S (r)—3 (xy/r') T(r),
G„,= (z/r)S(r) —3( xy/r')T(r),

G„=(y/r) S(r)—3 (xs/r') T(r),
G„=—(y/r) S(r) —3 (xs/r') T(r),
G„,=—(x/r)S (r)—3 (ys/r2) T(r),
G,„=(x/r)S(r) —3 (ys/r') T(r),

(22)

es,*'cay*'*j 0 (kr) 'JJO'(&l, q a)
A (r) =—(4n )'~' Q

QT ky CO&y
—07

tion of this group (in the approximation in which the
numerical work is carried out) terms beyond l=2 must
be zero. Thus (21) is truncated after the terms in /= 2.
The 3X3 part of g representing the matrix components
between two atoms in the lattice can then be written as

P; eq„'eq~ '* e», (prim——itive cell)

y else eky
i jw

Gap —
GOy

rl /4(b "' ep„*'ep~"*j2(kr)'Jju'(8~, rp~)

(20) &()=—
I

E'E 3

The eI,„'form a basis for the primitive unit cell and are
the same in each primitive unit cell.

From Eq. (17) it is determined that the matrices g
and gy will have only 33 independent terms of the form
(19) since they must be invariant under the symmetry
group. It is thus necessary to evaluate only 33 terms of
the form (19) in order to evaluate these matrices. In the
numerical work the phonon spectrum is taken as spher-
ically symmetric with transverse and longitudinal
polarization. This increase in symmetry reduces the
number of independent components to 20. This can be
seen by expanding the exponential in (19) in a series of
spherical harmonics as

4'
G' (~') = — 2 (~)"JJl"'(~., ~.)

lm

el„'eel, *pl'"(4, e p) jl(kr)XQ, , (21)
ky CO&p

—
GO

where (8„&p„) are the angles describing the vector r
while (gq, q~) are the corresponding angles for k. The
spherical Bessel function of order / is represented by
jl(kr). The magnitudes of Ir and r are k and r,
respectively.

The polarization vectors, which depend only on the
atomic locations in the unit cell and not the absolute
atomic positions in the lattice, form a three-dimensional
(/=1) representation of the full rotation group. Since
the second sum in (18) must be an identity representa-

'4y eke ~jl(kr) gl (~k 0 l')
S( )=—(24~)'" Q

ky GO@~
—(d

e (40m )'~' e„„'le&~'l*jn(kr) y2'(p&, yp)
2'(r) =—

I

EE 3 ) COp —COy

(23)

r= (x,y,s) =rl —r2

and r~, r2 are the position vectors of the two atoms.
The expressions (22) and (23) have been obtained by

the use of the correct symmetry properties of the lattice
and therefore are correct expressions for g through terms
in l= 2 in (21).In the limit of spherical symmetry in the
phonon spectrum and transverse and longitudinal
polarization the expressions are correct to all orders of
the expansion (21).

Th'e expressions (22) and (23) are no easier to
evaluate than the expressions (19); however, use of
Eqs. (22) and (23) reduces the bookkeeping neces-
sary to evaluate the g matrix in the aforementioned
approximation. The 20 expressions to be evaluated
result from the Ave values of r for the four functions
A, E, S, and T. For r=0, the functions E, S, and T are
zero, and if the two atoms occupy different positions in
the diamond-lattice primitive unit cell, then S is zero.
This reduces the number of expressions to 15 and a for-
tuitous geometrical factor eliminates the need for one
of the E's reducing to 14 the number of independent
expressions needed in evaluating g.
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Vs= V6(0)+73 fi(r,)+43.f2(r'),
Vr = Vr(0)+b77 f3(r:)+b4 f4 (r'),

where

f1(r:) (+1 a6) + (at a9)'+ (yt —y7)

+ (y1 y10) + (st 28) + (sl 211)

(24)

f (r')=+ (r r')' f (r)

f3 (r4) 3 (zt yl 21 z2+y2+22)

+ (+1 yl+&1 &3+y3 &3)

+ (»+yt —21+*4—y4+24)'

+ (*1+yt+21—*3—y3—23)',

(25)

f =E (rt-r')' f3-
2=2

In Eqs. (24) and (2.5) r, represents the dhsplacement of
the ith atom from its equilibrium position. The number-

ing of atoms is as indicated in Table l. This form of the
interaction is that required by the symmetry of the
complex of atoms interacting with the interstitial in
the harmonic approximation. Uo is the interaction po-
tential for the octahedron of next nearest neighbors
while V~ is the interaction potential for the tetrahedron
of nearest neighbors. Second derivatives of the above
expressions then will yield the matrix AV;; from which
I';, may be constructed.

Transformation of g and p to the coordinate system of
the symmetry coordinates can be carried out after some
tedious algebra. The results are not presented here, but
are used in the numerical calculations.

C. The Perturbation Matrix

The perturbation matrix includes the changes in
force constants when the interstitial is allowed to couple
the lattice. Coupling to the nearest and next nearest
neighbors is assumed along with the assumption that
the presence of the interstitial does not change the
forces between the atoms of the lattice nor the sym-
metry of its local environment. The interaction po-
tential is then given by

B. The Interaction Matrix

P=2at,
&=-;(bii+2b3) .

(26)

An estimate of the sizes of a, P, and b can be obtained by
noting that the migration energy of the interstitial is
&0.5 eV.'~ "Holding the lattice atoms fixed and moving
the interstitial half the distance from one interstitial
position to the next should provide an approximate
method of relating the migration energy to the coupling
constants.

Using the expression (21) for the potential this
method gives EC=(42+2P+28)=5.0 kerg/cm' for a
migration energy of 0.5 eV. For a slightly diferent
model of the potential, namely V= Vep; e &~" '4~, ad-

justing the parameters Vo and p, to give a migration
energy of 0.5 eV and a maximum value for E, yields
X=4.0 kerg/cm'. Electrostatic interactions can give
larger K values for a given migration energy. They
must be attractive, however, and will reduce the force
constant for an interstitial located at (-,',1,21). Implicit
in this analysis is the assumption that interstitial mi-

gration proceeds along the body diagonal rather than
via a substitutional path.

In view of the above discussion the values of 43, P, and
b were allowed to vary such that 0&E'&30.0 kerg/cm'.
ln addition to a variation of force constants the inter-
stitial mass was varied from 0.05 times the host mass
to J.65 times the host mass in Ge and to 2.00 times the
host mass in Si. The numerical calculations were carried

INTER~g I IT IAL GERMANIUM

X PL AflE
x+iy= x(~)
SUBSPACE

47 =P=S
K = I0.66 kergsicm

0.05

co = I5

TA BAND EDGE

The interaction matrix was taken as one of the in-
dependent variables in the calculation. Expressed in the
symmetry coordinates, the interaction matrix depends
on the following linear combinations of a&, u„, b„and b„:

Q= 2QII )

IV. NUMERICAL CALCULATIONS

A. The Green's-Function Matrix

The expressions (23) were evaluated using transverse-
and longitudinal-polarized phonons. The spectrum was
assumed to be spherically symmetric and a dispersion
relation was used which agrees with the observed dis-
persion relation' in the (1,0,0) direction. The expres-
sions were evaluated at frequencies of 93o&L71/40,

73=1,2 39 (where o7L71 is the maximum frequency
for the longitudinal-acoustic modes) and used in the
evaluation of the g matrix.

L
-0.5

j
I 7 28

I

0.5

Fzo. 1. Graphical representation of X(44l, an eigenvalue of the
gy matrix, in the FI subspace of the matrix. The resonance fre-
quency co is determined from ReX(op) = —1 (see Eq. 12); thus no
resonances are indicated in this figure. The dashed line connects a
frequency just below the transverse-acoustic band edge with one
just above. The dashed line has no other significance. The fre-
quency is given in units of orI,+/40, where coLA is the 1ongitudinal-
acoustic bpnd-edge frequency in the {1,0,0) direction.
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0.1— l5

ca =s9 ~I

FIG. 2. Graphical representation of
X(&u), an eigenvalue of the gy matrix
in the I'~5 subspace of the matrix. The
resonance frequency co is determined
from Reh(&o) = —1 (see Kq. 12); thus
two resonances are indicated in this
6gure at frequencies 11.9 and
~17.3. The dashed line indicates the
transition across the transverse-acous-
tic (TA) band edge, but its location is
not signi6cant. Frequency units are
the same as in Fig. 1.
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out on the CDC 1604 computer at the Sandia Corpora-
tion, Albuquerque, New Mexico.

V. RESULTS

A. Resonant Frequency

Typical dependence of the gp eigenvalues on fre-
quency is show in Figs. 1 and 2. The transverse-acoustic
band edge occurs at ~= 16.6 for Si and at +=15.4 for
Ge. The dashed lines on the figures thus connect fre-
quencies just below this band edge with those just above
it. The model of the phonon field used is most in error
in this region, and detailed comments on the behavior
of the eigenvalues across the band edge are not justi-
fied. This region is ignored then; note that resonances
occurring near the band edge will be dificult to resolve
from other band-edge effects.

The eigenvalues are proportional to E for Axed ratios
of the force constants n, P, and 5. It is then possible to
contract or expand the eigenvalues about the origin by
changing the force constants. For appropriate values
of E the eigenvalues having the frequency dependence
of Fig. 1 can lead to resonances satisfying the condition
(12). These resonances will occur only above the trans-
verse-acoustic band edge and require in all cases K&30
kerg/crn'. In view of the discussion on the expected
magnitude of E it is unlikely that eigenvalues of this
form will produce resonances.

The eigenvalues of the form shown in Fig. 2 will
always produce at least one resonance for %&30
kerg/crn' and can produce two. When a single reso-
nance is produced it lies inside the transverse-acoustic
band, and when there are two, one lies within the trans-
verse-acoustic band and one lies above it. The resonance
lying above the transverse-acoustic band occurs only
for E)10 kerg/crn' and has been investigated only for
interstitial mass equal to host mass.

Three of the eigenvalues of the V~5 block of the gy

matrix have the form shown in Fig. 2, and all remaining
eigenvalues of gy are of the form shown in Fig. 1. The
three eigenvalues leading to resonances are degenerate,
and thus a single resonance will be associated with the
interstitial in Ge or in Si.

The resonance frequency is shown as a function of K

30—
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FIG 3 Resonance frequency co versus eRective force constant
E= (a+2P+25) for interstitial atoms in germanium. The dashed
line indicates ~ ~E /. R is the ratio of interstitial atom mass to
germanium atom mass. Curves are all for ~ =P=B, except that the
branching of the E =1.00 curve just below the TA band edge
indicates the eRect of using 2~ ——2P =8. The lower branch corre-
sponds to the latter choice.
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TAsI.K III. Comparison of effective force constants for various ratios of a, p, and b. Transverse-acoustic band
edge is at co =15.4 in germanium and co=16.6 in silicon.

2.0
40
6.0
8.0

10.0
12.0
15.0

2.52
10.2
23.2
42.2
68.5

105.5
268.3

2.52
10.2
23.2
42.4
69.1

Germanium
3

2.52
10.2
23.2
42.3
68.8

106.3
301.4

2.52
10.2
23.2
42.0
67.9

103.5
224.6

2.52
10.2
23.2
42.1
68.2

104.6
247.1

2.95
11.9
27.0
49.0

~ ~ ~

119.4
225.3

2.95
11.9
27.0
48.9
78.5

118.1
215.2

Silicon
3

2.95
11.9
27.1
49.4
80.1

123.2
268.2

2.95
11.9
27.0
48.9
78.5

118.0
214.0

2.95
11.9
27.0
49.0
78.9

119.3

Germanium
a= p=&

2 ~=2p=5
3 2~=2p=B
4 2~= p=26
5 2~ ——p=B

Silicon
p=B

2 ~= p=105
3 n= 10p=b
4 100.= p=b
5 10~= 2p=b

in Fig. 3 for Ge and Fig. 4 for Si. The parameter varying
from one curve to another in the figures is R, the ratio
of the interstitial mass to the host mass. Except near
the transverse-acoustic band edge the resonance fre-

quency varies nearly as E'~'. For a fixed frequency it is
also noted that the ratio E/R is nearly constant vary-
ing by about &5% over the range of values of R . Thus
co~ (E/M)"' except near the transverse-acoustic band
edge, the expression becoming more accurate as we

move away from the band edge.
For a given value of K and E the resonance fre-

I
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quency is relatively insensitive to the individual values
of a, P, and 5 except near the transverse-acoustic band
edge. This is indicated in Table III for both Ge and Si.

In the initial calculations if the lattice contribution to
the Green's-function matrix had been set equal to zero,
the results indicated above as approximate would have
been exact. It is thus concluded that the lattice con-
tributes very little to the location of an interstitial-
associated acoustic phonon resonance except when the
resonance falls near the transverse-acoustic band edge.
The lattice is thus very stiff and the interstitial may be
effectively considered for most values of the force con-
stant to be a simple mass on a spring.

B. The Resonance Width

The dependence of the gp eigenvalue on frequency as
shown in Fig. 2 can be represented in the acoustic band
by

Re) = c((v)/co',

Imh = const&&co,
(27)

IO—
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3
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5 ~
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isi
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tsJ
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UJ
K

I I

I IO

EFFECTIVE FORGE CONSTANT (erga/eel) x IO

I

IOO

Ace=(0) Emh
~

=nty. (2g)

The quantity y= Ace/co is plotted in I'ig. 5 for Ge and
Fig. 6 for Si as a function of resonance frequency. As
in Figs. 3 and 4, the variable characterizing the various
curves is the interstitial mass E .

The set of curves in Figs. 5 and 6 can be approxi-
mately represented by the formula y ~ o&"M~ with n—3
and k—1. The curves show that a measurement of both
to and y would allow a determination of E (or M) from
which Figs. 3 or 4 would yield E.

C. The Resonance Eigenvectors

where c(a&) is a slowly varying function of co. Placing
this functional dependence into the expression for the
resonance width (13) yields

FIG. 4. Resonance frequency ~ versus eGective force constant
X=(n+2P+25) for an interstitial atom in silicon. The dashed
line indicates co ~ E'/'. Curves are all for m =p=b.

Typical behavior of the resonance eigenvectors as
functions of resonance frequency, force-constant ratios,
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FIG. 5. Resonance frequency co

versus resonance width at half-maxi-
mum for interstitial atom in ger-
manium. E is the ratio of interstitial-
atom mass to germanium-atom mass.

O

3
0
O
COI-
~4—R

O
K
LLI

Q
La)
K
0

Oz
xo 2
CA
LU
K

I I

IO IO

RESONANCE WIDTH AT HAI F MAXIMUM (hcjy/(g)

I

IO

I

IO

and mass ratio is shown in Tables IV, V, and VI, re-

spectively. The coupling of phonons into the resonance
will depend on the left eigenvectors g„while the cou-

pling out of the resonance will depend on the right eigen-

vectors $, as discussed at the end of Sec. IIA.
The eigenvectors presented in the tables all involve

the x components of the various atoms involved in the

resonance. The two other resonances, degenerate with

the resonance indicated, will involve similar eigen-

vectors with respect to the y and s displacements. These
eigenvectors may be obtained from those in the tables

by an appropriate rotation of the coordinate system.
The complete eigenvectors are not presented in the

tables. The displacements of the remaining atoms may

FIG. 6. Resonance frequency co

versus resonance width at half-
maximum for interstitial atom in
silicon. R is the ratio of inter-
stitial-atom mass to silicon-atom
mass.
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TABLE IV. Resonance eigenvectors as a function of frequency (germanium). R = 1.00; 2o =2P=b. The correct coeflicients for the
right eigenvectors are obtained by adding iXImaginary to each of x1, x2, ~, etc. The left-eigenvector coefBcients are correct as pre-
sented. The coefEcients for the other x; may be obtained from those given through the relations x2=x3 ——x4=x5, x6=x9, and
XV =X8 =X10=Xl le

Right eigenvectors
GD 2.00 4.00 6.00 8.00 10.00 12.00

X1
X2

xv
x6
Imaginary

1.0000
0.0029
0.0023
0.0030
0.0002

0.9994
0.0116
0.0095
0.0125
0.0018

0.9966
0.0268
0.0218
0.0294
0.0065

0.9870
0.0502
0.0397
0.0556
0.0170

0.9600
0.0844
0.0643
0.0954
0.0370

0.9027
0.1323
0.0895
0.1537
0.0700

XI
1.029
1.012
1.030
1.065
1.137
1.302

Left eigenvectors

2.00
4.00
6.00
8.00

10.00
12.00

X2—0.1432—0.1445—0.1469—0.1518—0.1616—0.1842

X7—0.0716—0.0724—0.0739—0.0767—0.0827—0.0968

—0.0716—0.0722—0.0733—0.0754—0.0798—0.0894

TasLE V. Resonance eigenvector dependence on the ratios of o, P, and b (germanium). ~=6.00, R = 1.00. The correct coefEcients for
the right eigenvectors are obtained by adding i)&Imaginary to each of the x1, x2, ~, etc. The left-eigenvector coefficients are correct as
presented. The coefficients for the other x; may be obtained from those given through the relations x2=x3=x4=x5, x6 ——x9, and
X7 X8 X10 X11

Right eigenvectors

X1
X2

x6
g7
Imaginary

Left eigenvectors

0.9966
0.0264
0.0289
0.0215
0.0065

1.029
1.031
1.030
1.027
1.028

0.9964
0.0273
0.0302
0.0220
0.0065

—0.1027—0.1288—0.1470—0.0732—0.1140

0.9966
0.0268
0.0294
0.0218
0.0065

g6
—0.1025—0.1284—0.0733—0.0730—0.0569

0.9969
0.0253
0.0274
0.0209
0.0065

X7
—0.1033—0.0684—0.0739—0.1470—0.1146

0.9967
0.0259
0.0290
0.0222
0.0065

a= p=6
2 0. =2p=6
3 2~=2p=8
4 2~= p=25
5 2m= p=6

TzsLE VI. Resonance eigenvectors as a function of interstitial mass (germanium). co =6.00, n =p = tI. The expressions for the g; under
the right-eigenvector heading, (a,b), imply that the coefficient of x; is the complex number a+ib. The imaginary part of the left
eigenvectors is too small to be included in the table. The coeKcients for the x; not listed may be obtained from the relations
x2 =x3 —x4 x5 x6 x9 and x7 x8 x10 x11.

Right eigenvectors
E 0.20 0.50 0.75 1.00 1.65

X1
X2

x{j
X7

Left
E~
0.20
0.50
0.75
1.00
1.35
1.65

(0.9991,0.0009)
(0.0104, 0.0022)
(0.0119,0.0025)
(0.0083, 0.0025)

eigenvectors
X1

1.005
1.014
1.022
1.030
1.040
1.048

(1.003, 0.0030)
(o.o187, o.oo4s)
(o.o185, o.oo45)
(o.oiso, o.oo44)

X2
—0.0497—0.0765—0.0923—0.10SS—0.1212—0.1329

(0.9970, 0.0048)
(o.o23o, o.oos6)
(0.0253, 0.0057)
(o.oi87, o.ooss)

x6
—0.0757—0.0929—0.1032—0.1118—0.1220—0.1296

(0.9966, 0.0065)
(0.0268, 0.0065)
(0.0294, 0.0065)
(0.0218, 0.0065)

X7
—0.0102—0.0515—0.0758—0.0960—0.1201—0.1382

(0.9954, 0.0089)
(o.o3o6, o.oo76)
(o.0336, 0.0078)
(o.o2so, o.oo77)

(O.9984, O.OiO8)
(0.0336, 0.0085)
(o.o353, o.oo86)
(0.0271, 0.0083)
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be obtained from those presented through the relations

Sg—$3—$4—$5 )

Xo—X9 p

+7 +8 ~&Q 11 ~

(29)

Note that phonons involve only displacements of the
atoms 2 to 11 and will therefore couple either in or out
of the resonance only through these coordinates. Ex-
ternal radiations (gamma rays, neutrons, etc.) may,
however, couple in or out through the interstitial co-
ordinates (x&,yr, s&).

Table IV shows that the coupling into the resonance
is relatively insensitive to the resonance frequency,
while the coupling out is a monotonically increasing
function of resonance frequency for frequencies within
the lowest acoustic band. For broad resonances the
monotonic increase of coupling with frequency will lead
to a small shift of the resonant frequency to higher fre-
quencies, and a similar change will occur in the reso-
nance width. These shifts are negligible, being of the
order of a few percent near the band edge.

Table V shows the eigenvector dependence on the
ratios of rr, )3, and 5. The coupling out of the resonance
is seen to be relatively insensitive to changes in the
ratios of the force constants, while the coupling in
depends quite strongly on the force-constant ratios.
Some insight into the this difference between the parts
of the resonance-scattering event is gained by noticing
the re1ative phase between the interstitial motion and
the lattice motion as indicated in Tables IV, V, and VI.
The excitation of the resonance occurs when the lattice
and the interstitial are moving out of phase while the
de-excitation of the resonance occurs during in-phase
motion. It is clear then that the force constants wou1d

play an important role in the out-of-phase excitation,
but would have relatively little effect on the in-phase
de-excitation. The small effect that the force constants
do have on the right eigenvectors (which determine the
de-excitation) is due to the slightly out-of-phase motion
of the lattice and interstitial.

The mass dependence of the eigenvectors is contained.
in Table VI. Entries in this table show that the coupling
of the resonance to both incoming and outgoing
phonons increases with increasing mass. This is in
accord with intuition. The entries in Tables IV, V,
and VX apply to the Ge lattice. Similar results are ob-
tained for the Si lattice, but are not presented here.

VI. DISCUSSION

In the previous sections it has been shown that inter-
stitial atoms in the (-'„-,',—',) site in silicon and germanium
are expected to resonantly scatter acoustic phonons. For
reasonable choices of the interstitial-lattice forces a
single resonant frequency results which is related to the
forces through an effective force constant E. In addi-
tion, the frequency varies as the inverse square root of

the interstitial mass, as expected. The resonance width
also depends on the effective force constant and inter-
stitial mass. A measurement of both the resonance fre-
quency and width will thus allow an unambiguous de-
termination of the effective force constant and. the
interstitial mass."

In the process of determining the resonance frequen-
cies, the resonance eigenvectors and eigenvalues of the
gy matrix have also been calculated. These eigenvectors
and eigenvalues can be used to construct the scattering
matrix at the resonance frequency. Because of the
simple model of the phonon Geld used in these calcula-
tions, the calculated eigenvectors may only be approxi-
mate. Before more complicated models of the phonon
Geld are considered, however, there should be some
comparison of the present calculations with experiment.
No observations of interstitial atoms located in the
(rs,

r
sPsr) site of the unit cell have been rePorted for silicon

or germanium. "A few methods are thus suggested by
which observations might be made.

A. Proposed Methods of Observation

The proposed methods of observing the interstitial
resonance, which will be brieQy discussed here, include
spin-lattice relaxation effects, infrared absorption,
phonon-assisted electronic transitions, and low-tem-
perature thermal conductivity. Mossbauer observation
of similar resonances has previously been, discussed in
the literature, " and the general conclusions should

apply to observation of the interstitial resonance.
Infrared absorption measurements of similar resonances
have also been recently reported'" as have theoretical
and experimental discussions of effects on low-tempera-
ture thermal conductivity. ""

1. SPin Lattice Relaxat-ion

Spin-lattice relaxation which proceeds through local
modes has been detected for hydrogen in CaF2."Similar
results should be obtained for spin systems in the
vicinity of an interstitial, with relaxation proceeding
through phonons having the resonance frequency. The
presence of the interstitial resonant-scattering center
causes the density of phonon states in the vicinity of
the interstitial at the resonant frequency to be in-
creased over the density of states at other frequencies;
this should lead to an exponential temperature de-

~~ Similar results would be expected for the interstitial bound in
the (-'„-'„-',}position in the unit cell, with two resonant frequencies
instead of one because of the reduced symmetry in this site.

2' As this paper was in its Gnal draft a paramagnetic center in
neutron-irradiated silicon was tentatively identi6ed as an inter-
stitial silicon ion. D. Chen and C. Kikuchi, Bull. Am. Phys. Soc.
10, 582 (1965).] Though the authors do not identify the location
of this center in the unit cell they report an isotropic g factor,
consistent with the Tz symmetry of the (s,—',,—',) site.

~7 A. j'. Sievers, Phys. Rev. Letters 13, 310 {1964).
2' C. T. %'alker and R. 0. Pohl, Phys. Rev. 131, 1433 (1963).
s' D. W. Feldman, J. G. Castle, Jr., and J. Murphy, Bull. Am.

Phys. Soc. 9, 740 (1964).
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pendence in the Raman relaxation time of the spin
system. The relaxation through the quasilocal modes
should be more easily observable than the relaxation
through local Inodes since the energy is more nearly
conserved in the intermediate states for the quasilocal-
mode case. The exponential temperature dependence is
similar to that predicted by Orbach when phonon scat-
tering proceeds in resonance with an excited electronic
state. "

Z. Infrared Absorption

Charged interstitial atoms should exhibit infrared
absorption with a peak absorption at (or near) the
phonon-scattering resonance. That is, the resonance
should be excited by absorption of the incident radia-
tion, and it should decay through the lattice modes.
The x~ component of the eigenvectors presented in
Tables IV, V, and VI will be important in this process.

For interstitial mass of the order of the host mass
(E =1) the expected location of such absorption would
be in the range 0—100 cm ' for Si and 0—50 cm ' for Ge.
These ranges are chosen on the basis of the earlier dis-
cussion of migration energy and are chosen such that
E&10.0 kerg/cm'.

For interstitials which are weakly bound to the
lattice the expected absorption would be in the lower
portion of these frequency ranges and would be in-
accessible through present infrared techniques. This
might be the case for Si interstitials in Si which seem to
be mobile at very low temperatures. "Similar behavior
would be expected for the Ge interstitial in Ge. Im-
purity interstitials are more tightly bound, being mobile
around 200 Cy and might be observable through in-
frared absorption measurements.

3. J'hoeorl;Assi sted ELectrorli c TrmssiHorIs

Absorption bands associated with electronic transi-
tions in the vicinity of the interstitials should exhibit
effects which are related to the presence of the inter-
stitial. In particular these bands should be accom-
panied by peaks associated with 0, 1, 2, . . ., etc., reso-
nance phonons being created (or absorbed) simultane-
ously with the electronic transition. If the electronic
states are very sharp and the interstitial resonanceis
isolated in frequency from other phonon modes which
might be simultaneously created with the electronic
transition, the one-phonon line associated with the
resonant phonons should have very nearly the shape of
the phonon-scattering resonance at low temperatures.
A fairly accurate measurement of the resonance width
might be possible through such effects, as well as the
resonance frequency.

'0 R. Orbach, Proc. Phys. Soc. (London) 77, 821 (1961).

4. I.o7o Tem-perature Thermal Conductivity

Low-temperature thermal-conductivity measure-
ments should provide a complementary probe to the
methods listed above. Wagner'5 has predicted minima
in the thermal-conductivity curves associated with
resonant scattering of phonons by substitutional
defects. These minima have been observed by Walker
and Pohp' and are quite broad. Similar results should be
obtained for interstitial associated resonances.

If electrons are also associated with the interstitial,
effects which concern both the electronic scattering
resonances and the interstitial scattering resonances
might be observed. In particular, interference between
these two modes of phonon scatteting might lead to the
narrow minima in the thermal-conductivity curves ob-
served by Goff" and Vook." Grifhn and Carruthers"
have previously tried to explain Goff's results on the
basis of resonant scattering of the phonons through the
electronic states alone. These calculations did not re-
produce the observed .minima.

5. IrIossbauer Absorption

Mossbauer absorption should also give information
concerning the interstitial. Mossbauer absorption asso-
ciated with the resonant scattering of phonons by sub-
stitutional defects has been previously discussed in the
literature" and the general conclusions of this discussion
should apply to the present case.

VII. CONCLUSIONS

The calculations presented in this paper show that
resonant scattering of phonons exists for reasonable
choices of interstitial-lattice forces. Observation of
these resonances would seem to be most probable
through KSR experiments or phonon-assisted electronic
transitions, though extension of infrared measurements
to longer wavelengths might provide some interesting
results. Low-temperature thermal conductivity meas-
urements should corroborate measurements made by
other means although it is thought that detailed identi-
fication of various defects would be dificult by this
method.

ACKNOWLEDGMENTS

The author would like to thank F. L. Vook, G. W.
Arnold, and J. A. Baldwin, Jr., for helpful discussions
of the present problem. Also, thanks are due to D. C.
Wallace and R. E. Nettleton for reading the manuscript
before publication.

"J. F. Go6, Ph.D. thesis, Purdue University, 1962 (un-
published) ~"F.L. Vook, Phys. Rev. 138, A1234 (1965).

~' A. Grif5n and P. Carruthers, Phys. Rev. 131, 1976 (1963).


