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The theory of the motion of vortex lines in the mixed state of type II superconductors is derived on the
basis of a local model that is a generalization of the London theory. It is believed the model simulates
reasonably well the behavior of relatively pure superconductors (L)$0), giving a vortex line with a normal
core. It is found that if the force on a line is produced by a uniform transport current Jz, electric fields
generated by the motion drive the current through the core, so that the total current Qow is Jz+J(J(r-vt, t),
where JD(r) is the circulation of a stationary vortex and vr. is the velocity of the line. In ps,rt JT represents
superQuid Row and in part normal Row. Expressions derived for. the viscosity and Row resistivity are nearly
identical with empirical laws of Kim and co-workers. The Hall angle expected in the mixed state is the
same as in the normal state for a magnetic Geld equal to that in the core.

I. INTRODUCTION through the essentially normal cores of the vortex lines.
Rosenbaurn and Cardona' had earlier proposed such a
picture in their interpretation of data on the microwave
surface resistance of type II superconductors. Our theo-
retical model gives just this result.

We discuss here the free motion of vortices, when
they are not subject to pinning forces. The main con-
siderations which give the basis for the present theory
have been given in earlier notes. ' The essential ideas
concerning the nature of supercurrent Row go back to
London, 7 who pointed out that there can be no interior
stresses associated with supercurrent Row, since this is
an equilibrium situation. By definition, the normal
component is the nonequilibrium part of the Qow. Any
stresses must be associated with the normal component
or act at the boundaries. A Aux line moves adiabatically
so that the supercurrent distribution moves as a whole
through the metal. One can regard the distribution as a
single quantum state which moves as a rigid body.
Applied forces act on the system as a whole; electric
fields generated by the motion give rise to dissipation
and to forces acting near the core of the line.

An improved and more detailed account of the theory
is given here. We include eBects associated with Hall
fields which can give rise to helicon-type motions when
the Hall angle of the normal metal is large. These were
neglected in our earlier notes. The importance of the
Hall fields in the mixed state has been recognized by
Volger' and worked out independently by van Vijfeijken
and Niessen. While their conclusions are similar, our
theory is more complete and divers from theirs in some
important details.

' 'N the mixed state of type II superconductors, in ac-
- - cordance with the theory of Abrikosov, Aux enters
in the form of quantized Aux lines or vortices. The mixed
state exists between a lower critical field II,1 and an
upper critical field H, 2, above which superconductivity
in the bulk is destroyed. The circulating current of a
vortex gives a magnetic field along the axis. The total
Aux is quantized; normally each vortex has a circulation
corresponding to a single Qux quantum, hc/2e. If the
Aux lines are pinned by imperfections so that they can
not move, current Qow in the mixed state will be subject
to vanishing resistance. However, with a sufticient
driving force produced by a transport current, vortices
can become unpinned. Their motion is subject to a
viscous drag, giving rise to dissipation. This shows up as
a macroscopic resistivity as measured by conventional
methods. The Aux Qow resistance has been studied by a
number of observers, perhaps most completely by Kim,
Hempstead, and Strnad. ' ' Recently it has been ob-
served that type II superconductors exhibit a Hall
effect as well, with a Hall angle comparable to that of the
normal metal. 4

1Vote added irt proof. Kim and co-workers' proposed
an empirical expression for the Qux Qow resistivity and
pointed out that the dissipation can be accounted for
approximately if the transport current Qows directly
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FIG. 1. Coordinates used to discuss vortex motion. The circula-
tion of a stationary vortex outside of a normal core of radius u is
indicated by eo. This pattern is driven to move in the direction vL,
by a uniform transport flow indicated by vT. A uniform electric
Geld in the core, E„produced by the motion, gives a drift velocity
v, at the Hall angle ~ relative to I, and parallel to vz. The force
on the vortex is in the y direction, perpendicular to vp, and vt, is at
the Hall angle relative to the y direction.

A reasonable model for a vortex, suggested by a calcu-
lation of Caroli et a/. ,

"is an essentially normal core, of
radius approximately equal to the coherence distance
P about which the supercurrents circulate. They showed
that the density of quasiparticle states in the vicinity
of the axis is given nearly correctly by this model. A
schematic diagram showing a cross section of the vortex
in a plane normal to the axis is given in Fig. 1. In order
that the motion be in the positive y direction for a
transport current in the positive x direction, we take
the direction of the magnetic field in the negative s
direction, II,=—H. We assume that the penetration
depth X is large compared with P, so tha, t the field can
be taken to be uniform in the vicinity of the core.

It has been suggested by de Gennes and Matricon"
that the motion of vortices of superconductors should
be analogous to the motion of quantized vortices in
superQuid helium, in which the concept of a Magnus
force plays an important role. However, the differences
in behavior which result from the presence of the lattice
of positive ions in the metal are so marked that the
analogy is not a very close one, at least as far as the
motion of the vortex is concerned. The positive lattice
has two important effects. First, it neutralizes the
charge of the electrons, so that the vortex is subject to
a driving force only when the transport current repre-
sents a real current Qow relative to the lattice. The
driving force on the vortex is just that determined by
Ampere's rule. If the transport current density, assumed
uniform, is Jr and po is a vector representing the flux,
the force per unit length is (Jr x qo)/c. Second, the
electrons are scattered primarily by the lattice; electron-
lattice scattering dominates over electron-electron scat-

tering in bringing about steady-state Qow. The quasi-
particle excitations relax to the lattice; they do not
tend to come to a local equilibrium among themselves
so as to give a normal current Qow relative to the super-
Quid Qow, as in the two-Quid model of He Ir. It is for
this reason that second sound would be very difficult
to observe in a superconductor.

In helium, by Galilean invariance, a vortex takes up
the motion of the Quid and rides along with it. If the
ground state is moving with velocity v, and the velocity
field of the vortex relative to the fiuid is V(r), the total
velocity is v+7 (r vt). B—ecause of the positive lattice,
this is not true for a superconductor. One can define a
supercurrent flow J,(r vi, t) —corresponding to a vortex
moving with velocity vL, relative to the lattice, where
J,(r) represents a possible supercurrent flow in the
lattice frame. Because of relaxation processes which
scatter electrons to the lattice, there is an additional
component of flow J„(r vi, t) res—ulting from the motion,
and the total flow is J=J„+J,. The normal component
which gives rise to dissipation and viscous drag is, near
T=O, large only near the core.

We shall show that for a local but otherwise rather
general model of a superconductor the steady-state Qow
is a superposition of the superconducting Qow pattern
of a stationary vortex, J'o(r), and the transport current:

This is true for all fields between H, i and H, i. Part of Jr
comes from J„and part from J,. Electric fields set up
by the motion drive the transport current through the
normal core. If the vortex were pinned, the transport
current would Qow around the core and there would be
no dissipation.

When the Hall effect is taken into account, the direc-
tion of the electric field in the core is at the Hall angle
o. of the normal metal relative to the transport current.
The motion of the vortex is in a direction perpendicular
to the electric field, and is thus not in the direction of
the force (J to Jr) but, as illustrated in Fig. 1, is at the
Hall angle relative to this direction. The theory indicates
that for our model the component of vL, parallel to v~ is
independent of the electron-lattice relaxation time g
and is equal to (H/H, 2)vT, where H is the field in
the core."

de Gennes and Nozieres" have suggested that in
sufficiently pure type II superconductors vortex lines
should move with the Quid according to the Magnus
force concept. This would imply that as ~ —+~, the
velocity vr, should approach vz rather than (H/H, 2)vr
as predicted by the present theory. We believe that the
difference comes in assumptions as to how relaxation to
steady-state motion is brought about. As we have
mentioned, our theory should apply if the dominant

' C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Letters 9,
307 (1964)."P. G. de Gennes and J. Matricon, Rev. Mod. Phys. 36, 45
(1964).

~ The effect of Hall fields on the motion of Aux bundles in type I
superconductors has been observed by W. De Sorbo, Phil. Mag.
112,853 (1965).For a discussion of the theory, see P. G. de Gennes
and P. Nozihres, Phys. Letters 15, 216 (1965).
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relaxation process is electron-lattice scattering but their
theory would apply if electron-electron scattering were
more important.

The pattern of circulation outside of the core can be
described in terms of a momentum pe= —tt/2r for unit
Qux quantum, where the factor of 2 in the denominator
comes from pairing. As the vortex moves, momentum is
lost at the core boundary at a rate"

(1.2)

where e is the electron density. There is an equal loss
of momentum from current Qow in the core. The total
corresponds to the Magnus force

F =—(e%)(vr, x q,)
which must act somewhere in the system to supply this
rate of loss of momentum. In a superconductor, the
momentum may be supplied from a remote part of the
system.

Just how the momentum is supplied depends on the
circumstances; it may come from a decrease in super-
current Qow in part of the system, or under steady-state
conditions when an array of vortices is moving, it may
be supplied by an electric 6eld maintained by an
external source. In this latter case, the electric field is
just what one would calculate as generated from moving
flux lines by induction, V x E= c'BB/—Bt In stea. dy-
state Qow, vortices enter on one side of the specimen
and leave on the other, but when the current is main-
tained by a battery, there is no net change of total Qux.
For this reason, objections have been raised against
calling the field an induction field, "but nevertheless the
result is correct. If Qux were leaking out of a persistent
current ring, the current Qowing around the ring would
decrease in time, and one could then call the elec-
tric Geld a true induction field.

Kim and co-workers' have shown that the Qow

resistivity p~ of alloys and metals studied follows an
approximate law of corresponding states. When ex-
pressed in terms of the reduced variables T/T, and
H/H, 2, it is given by

pr/p = PH/H, 2(0)7f(T/T, ), (1.4)

where f(T/T, ) is a slowly varying function which
reduces to unity as T —+ 0. For f(T/T, )= 1, this corre-
sponds to a viscous drag qv~ opposing the Lorentz force
Jr+0/c on a vortex, with

rt.x,= cpoH, 2(0)o „/c'= rrhncu, 2r, (1.5)

where 0„ is the conductivity of the normal metal and

"W. F. Vinen and P. Nozieres, by somewhat independent
methods, have analyzed vortex motion in terms of momentum and
energy Quxes, giving insight into the connection with Magnus force
concepts (private communcations). Equation (1.2) is one of the
relations they derive.

'4 R. G. Jones, E. H. Rhoderick, and A. C. Rose-Innes, Phys.
Letters 15, 214 (1965) and J. Pearl, ibid. 17, 12 (1965). Also see
S. D. Josephson, Phys. Letters 16, 242 (1965) and H. B. G.
Casimir, ibid. 17, 177 (1964) who have shown that the Qux cutting
argument gives the correct result.

co,2
——eH, &/(mc) is the cyclotron frequency in the

field H, g.

About half of the dissipation occurs within the normal
core and about half in the transition region just outside
the core. In this latter region, there is a rapid decrease
in pairing indicated by a decrease in the gap parameter
6 as one approaches the core boundary. A dissipation
associated with a time rate of change of 6 as the vortex
moves by has been suggested earlier by Tinkham. "In
our local model, 6 goes to zero at the core boundary,
rather than at the axis, as would. be the case in the true
nonlocal theory. Similarly, about half of the effective
mass of the moving vortex comes from the core and
about half from the transition region. The latter con-
tribution has been considered by Suhl. " The time
required for relaxation of the vortex motion to steady-
state Qow is of the order of the electron relaxation time 7.

The criterion for the validity of the theory is that
eL,v-((u; meaning that the distance the line moves in a
relaxation time be small compared with the core radius.
An equivalent statement is that the normal currents be
small compared with the circulating supercurrents just
outside of the core. This should be true under nearly all
conditions. We believe that the theory should be valid
even when the mean free path of the electrons is large in
comparison with the core diameter, as it may be in pure
metals. Even though the probability that a given
electron be scattered as it goes through the core may be
small, considering all of the electrons, a large number of
scatterings will take place in the core within a relaxation
time. One may regard the core as similar to a small
region in the interior of a pure metal. Voltage gradients
and current densities are well defined even though the
size of the region is small compared with the mean free
path (m.f.p.). The response of the electrons to electric
and magnetic fields between scatterings is taken into
account in the theory.

In Sec. II we give the basis for the local model. The
theory of the Qow pattern associated with a moving
vortex line for a local model near T=O'K is discussed in
Sec. III. Expressions for the dissipation and viscosity
coeKcient for this model are derived in Sec. IV. The
Hall effect, which gives a component of motion parallel
to the transport current vz is discussed in Sec. V, in
which we also consider problems associated with effec-
tive mass and backQow. Modifications of the theory
required for finite temperatures and for the case of a
small m.f.p. from impurity scattering, such that p, &p,
are discussed in Sec. VI. Finally, in Sec. VII we consider
possible extensions of the theory and modifications that
may be required to take nonlocal effects into account.

II. LOCAL MODEL OF A SUPERCONDUCTOR

Since superconductivity theory is nonlocal, a correct
mathematical description of a vortex is dificult. The

' M. Tinkham, Phys. Rev. Letters 13, 804 (1964).
"H. Suhl, Phys. Rev. Letters 14, 226 (1965).
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FrG. 2. Variation of the gap parameter ~ as a function of the
radial distance r from the axis of the vortex in the local and non-
local theories. The core radius u is where 6 goes to zero in the local
theory and is roughly the point of inflection in the nonlocal theory.

current density at a given point depends on the fields in
a region surrounding the point extending over distances
of the order of the coherence distance $. Qualitatively,
it is known that for unit Aux quantum the complex gap
parameter A(r) which measures the pairing, is of the
form f(r)e's where j(r) vanishes for r +0, in—.creases
linearly for small r, and approaches the normal value
6p for large r, as indicated in Fig. 2. The point of
inflection, which occurs at r P, is a measure of the size
of the core. The inside of the core is a region of gapless
superconductivity; the energy required to create quasi-
particle excitations is negligibly small. By solving the
appropriate nonlocal Gor'kov equations for a pure
superconductor near T=0 K, Caroli et u/. "have shown
that the density of quasiparticle states in the core is very
nearly that of a normal region of radius $.

In order to simplify the mathematics, we replace the
true nonlocal superconductor by an ideal local model in
which the supercurrent density J,(r) depends only on
the kinetic momentum P of the paired electrons in the
ground state. When there is a magnetic field described
by a vector potential A, P= p,—(%)A. In place of the
current density, it is convenient to introduce the
velocity v, of the superQuid, defined so that the density
of mass flow is J,= p,v„where p, is the superfluid
density for P=v, =0.'r rs One may express tI, as a
derivative of the local free energy per electron, F(P):

v, = 8F/r)P. (2.1)

A core may be introduced by taking a model such that
e, ~0 when the momentum reaches a critical value
P=P„as shown in Fig. 3. The core radius a is that for
which P —+ P, and A ~ 0. Thus for H((H, s, P=p,= h/2r and u= h/2P, . A schematic plot of I5.(r) for the

"These de6nitions differ from those used earlier by one of the
authors (Ref. 19). In the earlier article, v, was used to represent
the velocity of the ground-state pairs, so that mv, of that article is
what we now call P. In the present article, it is more convenient
to let v, represent BIi/BP, so that the current density is p,v„with
p, independent of v,. In the earlier article, the current density was
given formally by the same expression, but this required that p, be
velocity-dependent.' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950); A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz.
32, 1442 (1957) LEnglish transl. : Soviet Phys. —JETP 5, 1174
(1957)j;L. P. Gor'irov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959)
PEngIish transl. :Soviet Phys. —JETP 10, 998 (1960)g.

F(P) = (P'/2m)I1-l(P/P. )'j,
which gives .,= (P/~)l 1—(P/P, ) j.
The parameters are evaluated as follows:

F(P,)=P,'/4m =H,s).'/87m) z,'.

(2.3)

(2.4)

(2 5)

For II&(H,2, one may get a relation between the core
radius a= 6/2P„and H,s. Since for this model

H, s 4eH, s) s/kc, ——
we have from (2.5), with ) r,'= inc'/(4s. nc'),

H, s Ac/(2ea') . ——

(2 6)

(2.7)

A similar relation is found for other models. Perhaps
a more realistic model for pure metals at low tempera-
tures is to replace (2.3) by the correct relation between
e, and P for an ideal superconductor for P uniform in
space, and thus to neglect nonlocal effects. This relation
has been derived by Rogers. "At T=O, mv, =P until
P reaches a value Pg, such that P~vI; ——60, above which
depairing can occur. Here v& is the Fermi velocity. As
P increases above P&, 6 drops rapidly to zero. The
equation which determines 6 as a function of P for.

Pvp) 60 is

60
ln—=cosh—' —1—

vpP

The critical value P, for which 6=0 is

P,= ,'e„As/s~ = e-„h/(2rrgs),

(2 g)

(2.9)

FIG. 3. Schematic vari-
ation of free energy per
particle F(P) and veloc-
ity v, =BF/BP in the
local theory. The mo-
mentum P is that per
electron of pairs in the
ground state. The criti-
cal momentum is indi-
cated by P,.

P~ pc

K. T. Rogers, Ph.D. thesis, University of Illinois, 1960
(unpublished); see J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).

local model is shown in Fig. 2 along with that for the
nonlocal model.

The free energy F(P,) for P=P, is equal to the
normal-superconducting free energy diGerence per elec-
tron. To get the free-energy difference per unit volume,
one must multiply by n the electron density, and the
superfiuid density ratio p,/p.

F F,=—H, /8s'= rs(p. /p)F(P, ) . (2.2)

Here II, is the critical Geld at temperature T, and
p,/p= Xl,'/X' when expressed in terms of the penetration
depths.

The Ginzburg-Landau theory is an example of this
sort. Here F(P) is of the form
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which gives
P '= 0'/4a'= 3A'/4vrlb

a'= (~/3)leap

(2.12)

(2.13)

where e„=2.178 and ]p——Ass/shp is the coherence
distance. The core radius a, determined from P,= ~s ts/a,
is

(2.10)

Gor'kov's expression" for H, 2 at T=O'K may be
written

(2.11)

Finally, for the impure case such that l((Pp, the
critical momentum for which d —+ 0 as given by Maki's
theory" is

mv, =P= y,—(e/c)A.

The equation of motion of the superQuid is

(3.1)

dVs e=—vip+ —E+—(v, x H)
m c

(3 2)

depairing is possible. If the electrons are accelerated by
the held in the depairing region, relaxation will occur to
the supercurrent flow J,(P). We assume a simple re-
laxation time r for this relaxation process, with r equal
to the collision relaxation time in the normal state.

In the local London theory there is a linear relation
between the velocity and the momentum

The expression for H, 2 in terms of u is again

II.s = 3hc/2xelgp Ac/2ea'——. (2.14)

where po is the chemical potential per unit mass in the
absence of currents or fields. All currents will be
measured in the lattice frame of reference. This equation
can be simplified by use of

Thus this appears to be a universal relation. We shall

show that for a rather general local model the vortex
motion does not depend on the form of the function
F (P), but only on P,. When the core radius is expressed
in terms of H, ~, we are led to a law of corresponding
states for the flow resistance similar to that proposed

by Kim et al.
According to the local model, all of the momentum

loss associated with the vortex motion occurs at the
boundary of the core, even though e, goes gradually to
zero as r approaches a. This is an unrealistic feature of
the model. In the nonlocal model, the total rate of loss

of momentum will be the same, but it will be spread out
over a region of P about the axis.

III. FLOW PATTERN FOR A LOCAL MODEL

We shall present in this section the theory of motion
of an isolated vortex for a local model of a relatively
pure superconductor near T=O'K. It is assumed that
the m.f.p. l) $p, so that the superfluid density

p, = p=nm. We also assume that the normal current
densities generated by the motion, as well as the trans-
port current density Jr which produces the force on the
vortex, are small in comparison with the superQuid Qow

just outside the core. Since the latter are of the order of
10' or 10' A/cm', this should be the case in actual super-
conductors except under very extreme conditions. We
shall defer consideration of Hall fields to a later section,
so that here we are concerned only with the component

,
of the vortex motion perpendicular to Js and parallel to
the force produced by Jz. In accordance with the
notation of Fig. 1, Jr is in the x direction and v~ in the

y direction. As discussed in Sec. II, our model is a
generalization of the London theory.

With this model there is no normal current Qow except
when P exceeds the value Ps=tkp/ss above which

~ L. P. Gor'kov, Zh. Kksperim. i Teor. Fis. 37, 1407 (1959)
LKnglish transl. : Soviet Phys. —JKTP 10 998 (1960)g."K.Maki, Physics 1, 21 (1964); 1, 12/ (1964).

dV, BV, vs
+VB ' vvB = —VB x (v x VB)+s vsB

dt Bt . Bt

and the London equation

curl v, =—(e/mc) H.

After cancellation of some common terms we have

e
= —v(t p+ss.')+—E

m

Alternatively, this equation can be written, with use of
E= —(1/c) (BA/Bt) cL q, wher—e A and ip are the vector
and scalar potentials,

~vs e 8A

mc Bt
(3.3)

e aA
= —vLF (P)+ep 3—

c Bt
(3 5)

where f is the total force. Multiplying this relation by

8
v, = F(P),

8
we get

=VB'f (3.6)

which"is the expression for energy conserve, Jog.

Here p is the chemical potential per unit mass:

p= pp+-', v,'+ (e/m) &p. (3.4)

The driving force on the electrons consists of the two
terms on the right-hand side of (3.3).

In the case where v, is no longer a linear function of

P, as discussed in Sec. II, this equation should be
modi6ed to
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FxG. 4. Schematic diagram of the force field in'the vicinity of
the core from the free energy gradient, —grady, resulting from
motion in the vertical direction.

The momentum for the moving vortex can be written

P(r—vrf) = Pp(r —vie)+Pi(r —vrt), (3.7)

where Pp(r) is the momentum which gives the super-
Quid Qow of a stationary vortex and P~&(Pp gives the
modification of the superQuid Qow arising from the
motion. We assume that the penetration depth X))gp,
so that one can take the magnetic Q.eld uniform near the
core. Then Pp will have only a 8 component given by
(see I'ig. 1 for notation)

Ig e
+ rII, —

2f 2C
(3.g)

where H is the magnetic field in the core (taken along
the —s direction if e is positive). Assuming that all
quantities (P,A, q) vary with time like P(r—vz, t) the
driving force f on the electrons outside of the core is

f= —(vr, v)P. (3.9)

To terms of order er„we may take P= Pp in this expres-
sion. In cylindrical coordinates r, 0 this force has
components

f„= (vt, xk)„(Pp/r),

fp (vt. x k) p(—BPp/Br),
(3 1o)

where k is a unit vector along the s direction.
In our model in which quasiparticle excitations relax

to the lattice, we obtain the field in the core by con-
tinuing the force field (3.10). This leads to a uniform
electric field E, in the core given by

em, = (vr, x k) (BPp/Br), . (3.11)

The chemical potential p in Eq. (3.5) will be continuous
across the boundary of the vortex core, corresponding
to equilibrium of the core boundary in the lattice frame
of reference. Since VE= 0 at the boundary, the tangen-
tial component of the electric 6eld is continuous, but
there is a discontinuity in the radial component. This
arises from a surface charge density at the core boundary

Pp/ es)
me„„=e,r cos8—

]
1—m—[.

rE Pi

(3.17)

A general form for e„which includes the possibility of
backQow and reduces to the correct form at large
distances from the core, is

Be, (Pp)
sino,

BPp
3.18)

G er,r BPp(
e„=e,(Pp) —.,+..—

~

1—m
rP m Br k

a2 &17 Pp
'vz —sg—— —1—I

r2 m r

v. (P,
)) cos9.

Pp

of magnitude o = (her, /4eea') cos8. This surface charge
density is an unrealistic feature of the local model; in
the true nonlocal theory it would be spread out over a
radial distance $p. The field pattern is shown in Pig. 4.

The normal current Qow in the transition region out-
side the core may be determined as follows. We begin
by omitting Hall e6ects and so assume that the current
is parallel with the driving field. Provided a relaxation
time r exists, the electrons may be regarded as being
accelerated freely for a time r under the force f. The
total velocity v= v.+v at a time t is then

v, (t)+v„(t)=v, (t r)+—(f/m)r. (3.12)

Note that v, (t—r) corresponds to the quasi-equilibrium
at time t—7-. The supercurrent Qow is modified by the
motion, and v, is the total superQuid velocity

v, = v. (Pp+Pi) =v. (Pp)+vsly (3 13)

where Pi and the corresponding v, i are the corrections
from the transport current. When P(P~, so that
mv, (P) =P, Pi is just equal to the momentum of the
transport current Pz, and v, i——vr. However, P will
differ from Pz in the transition region, Pq(P(P, .

Since v, (P) is parallel to P, we must distinguish be-
tween adding a component Pip parallel to Pp and a
component Pi„perpendicular to Pp. Expansions valid
for Pj.&(Pp are

v p= v, (Pp+Pip) = v, (Pp)+Pip (Be,/BPp),
v,„=P,„(e,(Pp)/Pp).

(3.14)

Similar considerations apply to the terms in r in (3.12).
To quantities of the first order in v& and vt. , we may
replace P by Pp in the difference v, (t—r) v, (t), an—d
find:

[v (t r)—v (/)$—p= —fpr(Be (Pp)/BPp)
[v, (t—r)—v, (&)j,=—f„r(e,(P,)/P, ). (3.15)

For simplicity we will assume that the vortex is
moving in the y direction. Then

fp= —er, sin8(BPp/Br), f„=er, cos8(Pp/r). (3.16)

Thus the normal current is given by

BPp( Be,)
me„p= e~r sin8

~

1——m
Br k BPpl

'
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Po
'vr, r BPp 8'vg (Pp) )

1—m
~

sin 8. (4.16)
m Bt' BPp i

With use of (4.4) and (4.14), this gives near r =a,

P'J g
———mop sino. (4.17)

The expression for PJ „is more complicated but will not
be required. When P is very close to P„ it is no longer
true that Pi, is small so that (3.14) requires
modification.

The total superfiuid momentum is (for EE((H„.s)

Pg= —(h/2r)+Pig, P„=Pi,. (4.18)

We now displace the origin of coordinates a distance yo
along the y axis, where yp/a is assumed small. In the
new coordinate system,

Pe= —(h/2r)+ (hyo/2r') sin8+Pie,
P„= (hyp/2r') cos8+Pi„.

Thus from (4.17) if we choose

Ago= 2828 Vp)

(4.19)

(4.20)

then Pe —h/2a at t——he boundary r= a as before. It is
interesting to note from (4.13) that yp corresponds to
the distance the vortex will move in a time r, i.e.,
yo=el. r. The relaxation time of the vortex is approxi-
mately 7 and when this is taken into account one should
take the position of the cylinder at time t—r. This dis-
places the cylinder back to its original position. Thus
the transport current should not have any important
effect in determining the core boundary in the case of
sxnall currents.

The total force exerted on the normal electrons in the
core by the electric Geld Z, is

F„=gra'gME. ,= ,'grlhei, (1+-ba') . (4.21)

The total integrated force in the x direction on the
normal electrons in the transition region is from (3.17)

&a out =+&&I
8Po ( 8vs'

rdr
~

1—m
8r k aPo

Po I'
+—

i
1—m— . (4.22)

r& Po

In determining the core radius in Sec. II from the
condition P=P„we have omitted the transport current.
The eBect of superimposing the transport current on the
Qow due to the vortex is to displace the cylindrical
surface at which P —+ P, with respect to the center of
rotation. Let Pi be the momentum associated with the
transport current. We can identify Pi by comparing
(3.14) with (3.18). Thus omitting ue in (3.18), we find

ai, (Po)
PL8

This integral may be evaluated in a similar manner to
(3.23) with the result

F,.„,=-,'~nhv, (1—ba') .

The total force is thus

FN= Fsin+Feout= rrrgh&r
q

(4.23)

(4.24)

and corresponds exactly to the Magnus force. The
normal electrons lose momentum at this rate to the
lattice. Under the steady conditions, such as those used
in measurements of resistivity, this loss of momentum is
supplied by the external battery.

tan(x= (er/mc)H= M~r ~ (5.1)

where co, is the cyclotron frequency.
There is no force and no viscous drag associated with

the component parallel with vz. The rate of energy
dissipation in the core Jr E, depends only on E„and
is independent of E,„.In our model, the Hall angle in
the transition region is the same, so that the Hall fields
associated with el, produce no currents and give no
dissipation. It has been shown by Miller" that in the
local limit, the Hall angle associated with the normal
component of Qow in the superconducting state is the
same as that in the normal state.

When Hall terms are included, the drift velocity of
the electrons in the core is given by

v, = (er/m) E,+ (er/mc) (v, ~ H) .

The electric field E, normal to vr, has components

(5.2)

eE„=vr, „(BPp/Br) „eE,„= i'„(BPp/Br), —. (5.3)

In determining the normal current outside of the
core we now take into account the Lorentz force acting
on the normal component so that (3.12) is replaced by

v, (t)+v„(t)=v, (t—r)+ (fr/m)+ (er/mc) (v & H) (5.4)

and the normal components of the current are

Fg+io, rF„
~me= ) &e) =

1+to.sr'
(5 5)

~ P. B.Miller, Phys. Rev. 121, 445 (1961).

V. HALL EFFECT AND EFFECTIVE MASS

In the preceding sections we have considered only
the component of motion of the vortex line el,„normal
to the transport current Jr——Jr,. As a result of Hall
fields in the core, there will also be a component v~,
parallel with Jr, giving rise to an electric field within
the core E,„perpendicular to Jr. As illustrated in Fig. 1,
the total electric-field vector within the core is at the
Hall angle relative to Jz, and vr, is at the same angle
relative to the force on the vortex line due to Jr. The
Hall angle o. is that of the normal metal at a 6eld equal
to that in the core, thus
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for av(~o) )
Iio ——1—m

m BIo i
f.r vP'o))

m Zo)'
and f is given by (3.10).

The energy dissipation in the core is

vz,„'r(a&o)'
D; =rra'nev, E,=ora'n

m kiri. ' (5.7)

which is exactly (4.5) except that v&„replaces vz, .
Similarly the dissipation occurring outside the core
associated with the normal current (5.5) and the total
dissipation are the same as (4.10) and (4.11) with
el, ——vL,„.It is probably best to regard the viscous drag
as opposing the applied force, and thus acting at an
angle a relative to vg. Thus equating D to qvL, „' we are
led to the value of p given by (4.12).

If the motion of the line is produced by the force due
to the transport current then el,~ is again given by
(4.13) and it is found that the drift velocity of the
electrons in the core remains equal to v~. The Hall
eGect gives rise to a component of velocity of the vortex
parallel to vz which is

so that continuity of current requires a backQow outside
of the core.

According to our model, the relaxation time for the
vortex line is equal to that of electrons in the normal
metal. This result also follows from Suhl's estimate of
the eBective mass of the line based on terms from
[8!$!Btg' in the free energy. This is closely connected
with Tinkham's relaxation mechanism arising from
changes in the gap parameter just outside of the core.
In our model, about half of the dissipation and about
half of the eGective mass occur inside the core and half
in the transition region just outside of the core.

In order to estimate the eGective mass, we erst take
Jr ——0 and consider the relaxation to rest of the motion
of a vortex line initially moving at a velocity vt, . When
moving, there is a current through the core and an
associated backQow outside of the core required by
current continuity. The kinetic energy per unit length
associated with the back6ow is from, (3.18) with ve =v„

(5.10)

This is just equal to the kinetic energy within the core
from flow with a velocity e,. The total kinetic energy is

K..E.=-,'me~' ——~pe'~, '.

2mao vr (erH)
5L,+= 51,~ tano! = !!~

ar 1+ba'kmci
(5.8)

We may express v, in terms of v& from (4.14) with
el,„——~~ cosa, . Thus we Gnd that 3f, the effective mass
per unit length, is

If we use (4.15) to express a in terms of H, o, we find a
simple relation between e~, and e~,

vz~=vzv tann= (H/Hco)vrx (5 9)

Note that eJ. is independent of 7...and is equal to ~z only
in the limit H —+ H,2. Near II,~ it is smaller in the ratio
H, i/H, &. With increasing r, the quantity vz, „decreases
while e~, remains the same.

This result implies that the Hall angle as measured in
the mixed state should be equal to that of the normal
metal for a 6eld equal to the 6eld in the core of the
vortex. Experiments of Reed, Fawcett, and Kim4 on
relatively pure niobium appear to be consistent with
this picture. On the other hand, measurements on
alloys by Niessen and Staas4 yield a Hall angle which
increases as H drops below H, 2 and becomes larger than
that observed in the normal state for a field &=II,2.

These latter results are diQicult to understand on the
basis of the present model. Helicon eGects should be
observable in the mixed state when the Hall angle is

sufficiently large.
If there is an additional force on the vortex line other

than that produced by the transport current Jr, the
drift velocity v, in the core will be normal to the total
force and vI, will be at the Hall angle relative to this
force. In this case, v, will not in general be equal to vg,

2 vn(ah )'
M =

! ! r'(1+ba')' cos'n
m &2a'i

M=2vnma (H,&/H) sinn (5.13)

When H is near H, 2 and the Hall angle is near 90',
sinn~1, and M —+ 2xema'. In this limit the mass M is
just twice that of the electrons within the core. When
n is small, the effective mass is smaller in the ratio
[~.(H o)r7.

When Jg/0, the relaxation will be to the steady-
state motion of the vortex line described earlier. The
kinetic energy is

nmva (v,—vr) =2M{(vz„—vz, o)'+(vz, „—vz„o)'),
'
(5.14)

where v~, o and vl.„o are the velocities for steady-state
motion of the vortex line as de6ned by (5.8) and (4.13).
If a transport current Jr is applied and the vortex
starts from rest, there initially will be kinetic energy

=gr cos'n(1+ba') . (5.12)

Since the rate of dissipation is gv~' cos'e, the relaxation
time of the vortex line is approximately equal to v-, as
expected for our model. By expressing 7 in terms of tan+,
with the use of (5.1), and by using (4.15), we find a
simple form for M:
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from backQow, when v, / vy which is dissipated as
v, —& vp.

VI. IMPURITY SCATTEMNG) FINITE
TEMPERATURE

When there is strong impurity scattering such that
the m.f.p. /&)p, or at finite temperatures, the above
theory requires modiGcation since the superQuid density

p, is then less than p= em, the total density. For a given

ez, the transport current and thus the force on the
vortex line is reduced by a factor p,/p. The expression
for the viscosity coeflicierit, when given in terms of the
core radius u or H, 2, is substantially unchanged, so
that vr, is also reduced by p, /p; This means that the
Geld and drift velocity within the core are reduced by
p, /p and the dissipation by (p,/p)'. The transport
current will still tend to Qow directly through the core
with little or no backQow.

Changes in q, other than those due to changes in core
radius, may occur as a result of different mechanisms for
dissipation outside of the core. The Geld within the core
will still be given by (3.11) and the corresponding
dissipation by (4.5). If the impurity scattering pre-
dominates over lattice scattering, the usual situation,
the relaxation time v will be independent of tempera-
ture. At finite temperatures, however, the presence of
quasiparticle excitations requires modiGcation of the
expressions used for calculating the dissipation. Further,
when l(gp, even at T=O'K, the local model we have
used is unsatisfactory.

A limiting case, valid for all values of l, which can be
treated without difhculty is T —+ T„ for then the
conductivity of the superQuid will approach that of the
normal metal. The total dissipation outside of the core
is then

X'0 ~&L,y

If a uniform magnetic Geld is assumed, the upper limit
of integration must be chosen so that the total Qux

enclosed is one quantum, or

prappH = v-hc/e.

When the dissipation outside of the core is added to
that inside, and u is expressed in terms of H, p(T) by
means of (4.15), one again finds a result for it very close
to Kims empirical expression (1.5), but now with

H,p(T) in place of H, p(0).
The reason that the local model we have used can

not be applied directly to the impure case, t((gp, is that
changes in the gap parameter 6 occur with increasing
momentum P long before one reaches the gapless
region. In our model it is assumed that me, =P for
P'(P'q, when no depairing can take place, and it was
reasonable to assume a simple relaxation time for the
quasiparticles for P&P&. For T=O'K, in the local limit
of the impure case, there is an energy gap and thus no

dissipation until P reaches the value for gapless super-
conductivity. This occurs for P very close to P.. The
dissipation outside the core calculated on the basis of
the local model is quite small, less than 10% of that
inside the core." While the dissipation in the core is
unchanged, this wouM lead to a value of q not much
more than half the empirical one, and the current
density in the core would be almost twice the transport
current density J&, implying that there would be
backQow.

The correct nonlocal model would very likely lead to
an additional dissipation associated with changes of 5
in time, as suggested by Tinkham, and in regard to
effective. mass, by Suhl. Tinkham shows that if the
relaxation time for changes in 6 were the order of
r ii= gp/vv', one would get the right order of magnitude.
Note that for the impure case w, ~g is longer than the
collision relaxation time r„ii=t/vv. By use of a time-
dependent version of the Ginzburg-Landau equations,
derived by Suhl and Stephen, Suhl has estimated the
effective mass M of the moving vortex from terms
involving [8 I f ~

/cjt]'. When combined with the empiri-
cal expression for the viscosity, a relaxation time of

7.„i is obtained. The latter is more reasonable than
Tinkham's estimate. It would be desirable to have a
complete time-dependent version of the Ginzburg-
Landau equations for the impure case.

VII. CONCLUSIONS

We have seen tha, t a local but otherwise rather general
model of a relatively pure superconductor (t) $p) leads
to a Qow pattern of a moving vortex which is a super-
position of a uniform transport current density Jz and
the adiabatic motion of the Qow pattern of a stationary
vortex Jp(r —vi, t). Part of Jr represents supercurrent
Qow, part normal current Qow. Electric fields set up by
the motion drive the current through the normal core.
The force on the vortex is normal to Jr, but as a result
of the HaH effect of the normal component in the region
of the core, the motion is at the Hall angle n relative to
the force. The'component of velocity in the direction of
Jr is (H/H, 2)vr, independent of the relaxation time r.
This component leads to a Hall Geld in the mixed state
with a Ha, ll angle o,. The model leads to an expression
for bulk resistivity equivalent to the one Kim and co-
workers derived empirically.

One might hope that these conclusions would remain
essentially the same in the nonlocal theory. There would
no longer be a sharp boundary to the core; the driving
force from —gradp, would be a superposition of a dis-
tribution of Gelds of type shown in Fig.-4 with diferent
core radii. The space integral of this force, however,
would be half of the Magnus force, —(Ne/c)(vr, & qp),
as in the local model, the other half corning from the
field —(1/c)DA/Bt. It would be desirable to show more
generally, if indeed it is true in the nonlocal theory,

"V. Galaiko (private communication).
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where the factor H/H, s comes from the ratio wz„/ez

LEq. (5.9)g. This factor is missing in the expression of
de Gennes and Matricon" based on Magnus force
concepts.

that the transport current Rows -directly through the
core.

Helicon effects should be observable when the Hall
angle is sufficiently large. While macroscopically they
are related to the Hall effect, as in normal metals, in
the mixed state they are associated with helical waves
on vortex lines, such as those which have been observed
in superQuid helium. The dispersion relation for
wave on an isolated vortex for kX))1 is
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g Factor of Conduction Electrons in Metallic Lithium*
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The electron spin resonance of metallic lithium particles immersed in mineral oil has been carefully ex-
amined in order to determine the g shift of the conduction electrons with respect to the free-electron value.
By comparing the ESR frequency with the proton nuclear-spin frequency of the mineral oil, and extending
Dyson s line-shape theory to apply to intermediate-size metallic particles, the shift at room temperature
was found to be b,g = —2)(10 6. This small g shift indicates that the inherent linewidth of the ESR in
metallic lithium may well be only 4 mG in a 3000-G field. In addition, p,n Overhauser enhancement of over
750 was measured when the lithium NMR was monitored and the ESR saturated. The shift in the lithium
NMR arising from ESR saturation demonstrated that at least 75% of the measured Knight shift is due
to electron-gas paramagnetism.

I. XNTRODUCTION

HE shif t of the alkali-metal conduction-electron

g value from that of the free electron is primarily
due to the spin-orbit interaction and as such is a measure
of the D$& 0 terms in the expansion of the wave function
of the conduction electrons. This theoretical g shift for
the alkali metals has been calculated by Bienenstock
and Brooks' and found to agree with experimental data
for sodium, ' the alk.ali most amenable to measurement.
The theory does not give good numerical values for
lithium, the metal of interest in this work, but predicts
a small shif t of parts in 10—'. An earlier theory by Elliot'
also relates the g shift to inherent linewidth without
predicting the absolute value of either.

The experimental measurement of the lithium's g
shift is hampered by several factors. Ideally, a sample

*Part of the work reported here was performed as a portion of
a thesis of one of us (R. J. Pressley) in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at Princeton
University.

f Now at RCA Laboratories, Princeton', New Jersey.
f. Now at Culham Laboratory, Culham, Abingdon, Berks,

England.' A. Bienenstock and H. Broolts, Phys. Rev. 136, A784 (1964).
s G. Feher and A. Kip, Phys. Rev. 98, 337 (1955).
s R. Elliot, Phys. Rev. 96, 266 (1954).

of metallic lithium should have as narrow an ESR line
as possible in order to achieve good signal-to-noise con-
ditions and hopefully approach the inherent linewidth.
Experimental data' from bulk metallic samples do not
give sufBciently good signal-to-noise ratios to permit
a precise g-shif t measurement, because bulk samples
have not been prepared pure enough to narrow the
impurity-limited linewidth and because the volume of
lithium exposed to the microwaves is limited by the
electromagnetic skin depth. The narrowest linewidths
observed4 (0.1 G in a 3000-G field), arise from lithium-
particle conglomerates formed by ultraviolet irradiation
of LiH. However, with these submicron-sized conglom-
erates, one cannot be certain that surface properties
do not distort the metallic crystalline structure.

In this work clusters of intermediate-size particles
were used as samples. This has the advantages of
guaranteeing that the sample is indeed metallic, allow-
ing purification techniques that cause an impurity-
broadened line to sharpen considerably, and also in-
creasing the ratio of surface area to volume so that the
microwaves can penetrate a large fraction of the sample
and give a very large signal-to-noise ratio. However, in

' M. Gueron and Ch. Ryter, Phys. Rev. Letters 3, 338 (]959).


