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P,s=4/9, region II (3.19)

tions to the state function H(o), depending on the state
of the preshock gas:

This special case is also characterized by the fact
that Op=el. This is most readily seen from combina-
tion of Eqs. (2.7)& (2.9), and (2.12) at the equilibrium

points, which gives the jump equation

P,s = 3, region III. (3.20) Yoffo Pl+i ~ (3.21)

Since the signal sPeed for a gas in region III is P,s= e,
all shocks into a relativistic gas are above the critical
speed.

The phase-plane plot for this case is shown in Fig. 4.
It is clear that case B2 applies here, since d8/dx must

be 0 at some point in the shock.
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Calculation of the Yang-Lee Distribution of Zeros
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The connection between the zeros of the grand partition function Z and the function x =lim V ' ln Z at
infinite volume is discussed. Assuming a functional equation for x given, conditions for the lines containing
zeros and. an expression for the density of zeros are derived. Explicit results are given in a special case with
an attractive interaction potential.

INTRODUCTION

T is known that Yang and Lee based their phase-
~ - transition theory' on the observation that, if the
zeros of the grand partition function Z(s) in the limit
of infinite volume have an accumulation point at a
positive real value zp of the fugacity, some thermody-
namic functions are discontinuous at sp. For all thermo-
dy'namic systems which so far have yielded to an explicit
solution, ' the zeros fall on de6nite lines C in the com-
plex s plane and become dense on C at V —&~. If this
turns out to be a general feature of thermodynamic
systems, phase-transition points sp are determined as the
points of intersection of C and the positive real 2,

' axis.
The nature of a transition is governed by the density of
zeros on C near sp.

Only in trivial cases is it possible to And the roots of
Z(s) =0 directly, because when the number of particles
X becomes large, Z(s) is an extremely complicated
polynomial of degree of the order of Ã. In certain cases,
however, it is possible to find a functional equation,
the solution of which is the limit of V—' lnZ for U ~~.
In this paper we consider the re1ation between the dis-
tribution of zeros and the solutions of an equation of
this type. It is found that under certain conditions the
lines of zeros are uniquely determined. An expression is
derived for the density of zeros in terms of the limit
function.

' C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).' T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952); E. H.
Hauge and P. C. Hemmer, Physica 29, 1338 (1963);P. C. Hemmer
pnd E. H. Hauge, Phys. Rev. 133, A1010 (1964).

As an application of the method the distribution has
been explicitly solved in the case of a linear model with

potential consisting of hard core and square-well at-
traction. The main features of the results are shown

graphically.

z
y(z) = lim —1nZ(z, U) = dsg(s) ln~ 1— . (1)

g-+op s(s)

The derivative of x(s) is

g(s)
y'(s) = ds

s—z(s)
(2)

Along the curve C we have ds=dse'4't'&, where P(s) is
the argument of the tangent of C at the point z(s).
De6ne

G(&(s))=g(s)e ""
The real variable s can now be replaced by the complex

ANALYTIC CONTINUATION OF lc, '(z)

Ke assume that in the limit V —+~ all the zeros of
Z(s, U, T) fall on definite smooth lines C in the complex
s plane, and are dense on C. Denoting the number of
zeros on the line element ds at s=s(s) by Vg(s)ds, s
being a real parameter taken along C, we have
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variable, and Eq. (2) becomes

—G(t)
x'(a) =
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(3)

be analytically continued across C& into R2 and similarly
for x, (s) into Ri. The discontinuity of the derivative
xi'(a) —x2'(s), is now found modifying the path of
integration slightly as in Fig. 1. For a point s inside
Ci—Ci we have

An integral of this type is called a Cauchy integral. '
If g(s) and thus G(s) is an analytic function on C

except at a finite number of points f;, and fulfills some
obvious integrability conditions, the function x'(s)
exists and is a finite continuous function outside C.
If the particles have a hard core, there is a maximum
number of particles M(V) that can be accommodated
inside V. The quantity

M(V)
ds g(s) = lim

p'—+oo p'

is then finite and guarantees the integrability of
G(t)/(s —t). Finiteness of the integral of g(s) is, however,
not necessary for the existence of a finite x'(s) every-
where outside C. The condition of a hard-core part in
the potential can thus be relaxed as has been previously
noted by Hauge and Hemmer. ' Except at the singu, lar
points f;, the derivative x (s) has finite limiting values
as s approaches a point t on C from the left and from
the right. If G(t) does not vanish, these are unequal.

When a is real and positive, x(s) and x'(s) have a
direct physical meaning given by

p/kT= x(a),

p= Ã/U= a(x'(s)) .

Under our assumptions the transitions will be of the
Yang-Lee type. ' Cn the positive real a axis x(s) is
everywhere continuous and its derivatives are continu-
ous except at a finite number of points.

Now let C~ be a portion of C located between two
points f'i and f'2 and containing no other points l;. One
or both of the ends can lie at infinity. Call R~ and R2
two regions separated by Ci, and let x,'(s) and X,'(s) be
the values of the function (3) in the two regions. Be-
cause of the analyticity of G(s) the function xi'(s) can

FIG. 1. Analytic continua-
tion across the line Cj.

x,'(s) —x~'(s) = dt
t—S

Applying the residue theorem into the integration over
the closed path Ci—Ci we get after shrinking this path
into a point

The function of G(s) was defined on C and thus Eq.
(5) has a meaning only for a point a on the line Ci. It
gives the difference between the va, lues x'(s) as s is
approached from the two sides of C~. After the analytic
continuation of x,'(s) and x2'(s) has been performed,
Eq. (5) defines a function G(z) in the region R&+82.
It is clearly an analytic continuation of G(a) outside Ci.

Suppose now that the analytic continuation of all the
contitutuents xi,'(a) of the single-valued function x'(s)
have been eRected. As a result there are one or several
multiple-valued functions X„'(s), which are continuous
analytic functions in the whole s plane, except possibly
at the points f', which may be their branch points.
Especially, if the s plane remains singly connected when

cut along the lines C, the result of the analytic continua-
tion is a single function x (a). The integrals X„(a) of

X„(a) are the analytic continuations of the functions

x(s) in the difTerent regions.

CONDITIONS FOR THE LINES OF ZEROS

Assume now that the limit function (1) fulfills a
functional equation

&'(x,a) = o. (6)

Note, especially, tha, t if the equation of state p= p(p)
of the system is given, substitution of Eqs. (4) yields
an equation for x, y', and s. Integration then gives an
equation of the form (6). Equation (6) is understood
to be fulfilled by x(a) at any complex value s in addi-

tion to the physically meaningful real and positive
values. In the above case the equation of state p= p(p)
gives, through Eqs. (4) a unique equation (6) and thus
a unique set of solutions once we assert its validity for
complex s. In actual calculations the algebraic steps
leading to the equation of state are usually auto-
matically valid for complex values of s.

An equation of the type (6) has as solutions one or
several functions, which are analytic functions in the
whole s plane, except at isolated branch points given

by ds/dx=o. As a, simple example the equation

x' —ax' —&x+&'= o

¹ I.Muskhelishvili, Singular Integral L&qnati ons (P. Noordho6
5'. V., Groningen, 1953),

has the solutions X~=s and X2=s'~', which have one-

and two-sheeted Riqmann surfaces, respectively, m, d
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the second has the origin as a branch point. Now in
general because a solution of Eq. (6) is identical to the
function (1) in a region of the s plane, the complete
solutions of (6) are the analytic continuations X„(s)
which were discussed in the previous section.

One is then led to consider a procedure inverse to
the one discussed in the previous section. A solution
of Eq. (6) can be ma, de to be single valued by
cutting the s plane open along certain lines C and
choosing a definite branch X„(s) of one of the X„(s) for
each of the ensuing connected regions. Because it is
assumed that x(s) fulfills Eq. (6), there is a set of
boundaries C and a choice of branches Xh(s) such that
the previously defined single-valued. function is identical
with X(s) in the whole s plane.

Assume that definite C and Xh(s) have been chosen.
Then the derivative x'(s) is everywhere defined, and
is analytic outside C. Take

G()= —(2 ') 'L '()—X.'()j (7)

to describe the discontinuity of X'(s) from left to right
at s on C. Further, let the expansion of X'(s) for large

I
s

I
be of the form

x'(s) =~hsh+~h-ish '+ . .
;

X'(s) is said to be of the degree k at infinity.
It can be shown (see, e.g. , Ref. 3, p. 229) that the

analytic function with given discontinuities on the
lines C and of degree k() —1) at infinity is uniquely
determined apart from a polynomial of degree k. We
have then

—G(t)
x'(s) = dt +P/, (s).

The polynomial P i(s) is by definition identically zero.
In order that a set of cuts C and a choice of branches
X„'(s) will make X'(s) single valued, it is required that
all the branch points included in the chosen regions of
the Riemann surfaces lie on the boundary lines C. The
resulting function X'(s) with described discontinuities
is of the form (8). When C and the Xh(s) have been
chosen to give (3), the polynomial Ph(s) vanishes
identically. Further, the quantity

Eq. (6) more closely. It is to be noted that a cut in a
single Riemann surface between two branch points is
uniquely determined, requiring that the quantity (9)
be real. Once the cuts have been found, the density of
zeros on C is given directly by Eqs. (7) and (9).

EXPLICIT RESULTS WITH ATTRACTIVE
POTENTIAL

As an illustration we consider the linear system with
only nearest-neighbor interaction. The relation be-
tween pressure and fugacity is given by4

00

«{r)/hr j—e xt

p Br
(10)

This gives immediately the inverse function s=s(x).
This equation can be derived by the matrix method, '
i.e., by dividing the system into segments of length a,
and setting up a matrix, the eth power of which ac-
counts for all possible configurations in a system of
length eu. I.et the range of the potential be ha. The
eigenvalues ) of the matrix are found to be given by

gh gh —i s{h p Le
—«{va+a)/hr e—«{va)/hTjgh —« —0

v=p

In the limit a —+ 0 this gives Eq. (10), when one notices
that the largest eigenvalue is X=e x. This serves as an
example of the fact that the reality of s is usually
nowhere required in calculations of X(s).

To be able to carry out explicit computations we
choose a definite form for 1(r), the square-well po-
tential with infinite repulsion for r&d, and square well
of depth —

& for d &r &2d. Measuring I and s in units
1/d, we find

s=x/t Ee—x—(P 1)e—'&1—(11)

where E=e '~~. The case &=0 has been studied by
Hauge and Hemmer. '

The function X=x(s) defined by Eq. (11) is an
analytic function in the whole 2: plane except at the
points where dx/ds is infinite. Differentiating Eq. (11)
we find for the value of X(s) at the branch points l'; the
equation

g(s)ds=G(s)ds, (9) (12)
where ds is along the tangent of C at s=s(s), is the
number of roots in the interval ds. It must then be real
and positive.

The preceding discussion and the interpretation of
X(s) give the following set of conditions for the deter-
mination of the lines C. (1) The branch points must
lie on C. (2) Near the origin the branch X„(s) must be
chosen giving X=O for s=0. (3) On the positive real
axis X(s) is continuous. (4) The quantity G(s)ds along
C must be real and positive.

Whether these conditions give a unique solution in
the general case cannot be answered without specifying

X(s) is an infinitely many-valued function.
When L&" is in the interval 1&E&Ep, with Ep

=(1—e '/'/4) '—1.059, Eq. (12) has two real roots
&~ and X2, and an infinite number of complex roots.
The points l i and l 2() l i) are on the negative real
s axis. X(s) can be made single-valued by making a cut
C along the real axis from i i to —~. Choosing the
Riemann surface which maps a= 0 to y= 0, the image
of C is of the form | shown in Fig. 2, and the 2 plane

4H. Takahasi, Proc. Math. Phys. Soc. (Japan) 24, 60 (1942).
5 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353

(1953).
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3 cI
on the line (P, l q) is shown as a function of the distance
s along C from P. The density g(s) on the line (P, —~)
is of the order 0.1 at P in all the given cases, and
vanishes for large

~
z

~

as for hard rods. ' Because a one-

I (S)

P3

FIG. 2. The x plane. Images of the branch points and the cut.

is mapped. on the region of y plane inside C. All the
points Xq, Xs, , are on the outside of C. Thus l2,

, are on the discarded Riemann surfaces, and
the function x(z) is single-valued in the cut z plane.
The density g(s) is real and positive. It becomes in-
finite at l & and vanishes at infinity as in the case E= 1.

%hen E approaches Eo, X~ and X~ approach ——,
' and

coincide. At E&EO, they are complex and complex
conjugate of each other. The numbers l & and l 2 are then
also complex and complex conjugate. To preserve con-
tinuity with respect to E, the cut C must be of the form
shown in Fig. 3, consisting of the parts (P, —~),
(P,l'~), and (P,l 2). The point P on the real z axis maps
into three points P~, P2, P~ on the image curve C'.

The arcs C can now be computed numerically using
the reality condition for G(z)dz. The density g(s) is

simultaneously obtained. In Fig. 4 the density of zeros

I
Q, S

FIG. 4. The density on arcs (P,g&).

dimensional system with finite range potential does
not show a phase transition, the lines of zeros do not
cross the positive real s axis. The contour described by
the branch points is given in Fig. 5.

-a.5

E l2

'LOS 1
FIG. 5. The con-

tour described by
the branch points.

OPr
FIG. 3.The lines of

zeros for diBerent
values of E.
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